1
|
Batyrova G, Taskozhina G, Umarova G, Umarov Y, Morenko M, Iriskulov B, Kudabayeva K, Bazargaliyev Y. Unveiling the Role of Selenium in Child Development: Impacts on Growth, Neurodevelopment and Immunity. J Clin Med 2025; 14:1274. [PMID: 40004804 PMCID: PMC11856779 DOI: 10.3390/jcm14041274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/31/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Selenium (Se) is a vital trace element for children, playing a crucial role in numerous physiological processes, including antioxidant defense, immune regulation, thyroid function, and bone metabolism. Emerging evidence highlights its potential impact on child development and growth while also underscoring the complexity of its mechanisms and the global variations in Se intake. The aim of this review is to comprehensively elucidate the significance of Se in various biological processes within the human body, with a focus on its role in child development and growth; its biochemical effects on the nervous system, thyroid function, immune system, and bone tissue; and the implications of Se deficiency and toxicity. This review integrates findings from experimental models, epidemiological studies, and clinical trials to explore Se's role in neurodevelopment, growth regulation, and immune competence in children. Selenoproteins, which regulate oxidative stress and thyroid hormone and bone metabolism, are essential for normal growth and cognitive development in children. Se deficiency and toxicity has been linked to impaired immune function, growth retardation, and decreased immune function. The findings underscore Se's influence on various biological pathways that are critical for healthy child development and its broader importance for child health. Public health strategies aimed at optimizing selenium intake may play a pivotal role in improving pediatric health outcomes worldwide.
Collapse
Affiliation(s)
- Gulnara Batyrova
- Department of Clinical Laboratory Diagnostics, West Kazakhstan Marat Ospanov Medical University, Aktobe 030019, Kazakhstan;
| | - Gulaim Taskozhina
- Department of Clinical Laboratory Diagnostics, West Kazakhstan Marat Ospanov Medical University, Aktobe 030019, Kazakhstan;
| | - Gulmira Umarova
- Department of Evidence-Based Medicine and Scientific Management, West Kazakhstan Marat Ospanov Medical University, Aktobe 030019, Kazakhstan
| | - Yeskendir Umarov
- Department of Natural Sciences, West Kazakhstan Marat Ospanov Medical University, Aktobe 030019, Kazakhstan;
| | - Marina Morenko
- Department of Children’s Diseases, Astana Medical University, Astana 010000, Kazakhstan;
| | - Bakhtiyar Iriskulov
- Department of Normal and Pathological Physiology, Tashkent Medical Academy, Tashkent 100109, Uzbekistan;
| | - Khatimya Kudabayeva
- Department of Internal Diseases 1, West Kazakhstan Marat Ospanov Medical University, Aktobe 030019, Kazakhstan; (K.K.); (Y.B.)
| | - Yerlan Bazargaliyev
- Department of Internal Diseases 1, West Kazakhstan Marat Ospanov Medical University, Aktobe 030019, Kazakhstan; (K.K.); (Y.B.)
| |
Collapse
|
2
|
Lu C, Yang W, Chu F, Wang S, Ji Y, Liu Z, Yu H, Qin S, Sun D, Jiao Z, Sun H. Hesperetin Attenuates T-2 Toxin-Induced Chondrocyte Injury by Inhibiting the p38 MAPK Signaling Pathway. Nutrients 2024; 16:3107. [PMID: 39339707 PMCID: PMC11434908 DOI: 10.3390/nu16183107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/01/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Hesperetin, a flavonoid derived from citrus fruits, exhibits potent antioxidant and anti-inflammatory activities and has been implicated in cartilage protection. However, its effectiveness against T-2 toxin-induced knee cartilage damage remains unclear. METHODS In this study, high-throughput sequencing analysis was employed to identify the key signaling pathways involved in T-2 toxin-induced articular cartilage damage in rats. Animal models were divided into the following groups: control, low-dose T-2 toxin, high-dose T-2 toxin, T-2 toxin + hesperetin, hesperetin, and vehicle. Pathological staining and immunohistochemistry were used to assess pathological changes, as well as the expression levels of the cartilage matrix-related proteins MMP13 and collagen II, along with the activation of the p38 MAPK signaling pathway. Additionally, primary rat chondrocytes were cultured to establish an in vitro model for investigating the underlying mechanism. RESULTS High-throughput sequencing analysis revealed the involvement of the MAPK signaling pathway in T-2 toxin-induced articular cartilage damage in rats. Hesperetin intervention in T-2 toxin-exposed rats attenuated pathological cartilage damage. Immunohistochemistry results demonstrated a significant reduction in collagen II protein expression in the high-dose T-2 toxin group (p < 0.01), accompanied by a significant increase in MMP13 protein expression (p < 0.01). In both the articular cartilage and the epiphyseal plate, the T-2 toxin + hesperetin group exhibited significantly higher collagen II protein expression than the high-dose T-2 toxin group (p < 0.05), along with significantly lower MMP13 protein expression (p < 0.05). Hesperetin inhibited the over-activation of the p38/MEF2C signaling axis induced by T-2 toxin in primary rat chondrocytes. Compared to the T-2 toxin group, the T-2 toxin + hesperetin group showed significantly reduced phosphorylation levels of p38 and protein expression levels of MEF2C (p < 0.001 or p < 0.05). Moreover, the T-2 toxin + hesperetin group exhibited a significant decrease in MMP13 protein expression (p < 0.05) and a significant increase in collagen II protein expression (p < 0.01) compared to the T-2 toxin group. CONCLUSIONS T-2 toxin activates the p38 MAPK signaling pathway, causing knee cartilage damage in rats. Treatment with hesperetin inhibits the p38/MEF2C signaling axis, regulates collagen II and MMP13 protein expression, and reduces cartilage injury significantly.
Collapse
Affiliation(s)
- Chunqing Lu
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, National Health Commission Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin 150081, China
| | - Wenjing Yang
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, National Health Commission Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin 150081, China
| | - Fang Chu
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, National Health Commission Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin 150081, China
| | - Sheng Wang
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, National Health Commission Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin 150081, China
| | - Yi Ji
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin 150081, China
- Institute of Keshan Disease, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
| | - Zhipeng Liu
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, National Health Commission Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin 150081, China
| | - Hao Yu
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, National Health Commission Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin 150081, China
| | - Shaoxiao Qin
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, National Health Commission Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin 150081, China
| | - Dianjun Sun
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, National Health Commission Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin 150081, China
| | - Zhe Jiao
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin 150081, China
- Institute for Kashin Beck Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, China
| | - Hongna Sun
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, National Health Commission Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin 150081, China
- Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Harbin Medical University, Harbin 150081, China
| |
Collapse
|
3
|
Han J, Deng H, Li Y, Qiao L, Jia H, Zhang L, Wang L, Qu C. Nano-elemental selenium particle developed via supramolecular self-assembly of chondroitin sulfate A and Na 2SeO 3 to repair cartilage lesions. Carbohydr Polym 2023; 316:121047. [PMID: 37321739 DOI: 10.1016/j.carbpol.2023.121047] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/17/2023] [Accepted: 05/20/2023] [Indexed: 06/17/2023]
Abstract
Cartilage repair is a significant clinical issue due to its restricted ability to regenerate and self-heal after cartilage lesions or degenerative disease. Herein, a nano-elemental selenium particle (chondroitin sulfate A‑selenium nanoparticle, CSA-SeNP) is developed by the supramolecular self-assembly of Na2SeO3 and negatively charged chondroitin sulfate A (CSA) via electrostatic interactions or hydrogen bonds followed by in-situ reducing of l-ascorbic acid for cartilage lesions repair. The constructed micelle exhibits a hydrodynamic particle size of 171.50 ± 2.40 nm and an exceptionally high selenium loading capacity (9.05 ± 0.03 %) and can promote chondrocyte proliferation, increase cartilage thickness, and improve the ultrastructure of chondrocytes and organelles. It mainly enhances the sulfation modification of chondroitin sulfate by up-regulating the expression of chondroitin sulfate 4-O sulfotransferase-1, -2, -3, which in turn promotes the expression of aggrecan to repair articular and epiphyseal-plate cartilage lesions. The micelles combine the bio-activity of CSA with selenium nanoparticles (SeNPs), which are less toxic than Na2SeO3, and low doses of CSA-SeNP are even superior to inorganic selenium in repairing cartilage lesions in rats. Thus, the developed CSA-SeNP is anticipated to be a promising selenium supplementation preparation in clinical application to address the difficulty of healing cartilage lesions with outstanding repair effects.
Collapse
Affiliation(s)
- Jing Han
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, China; Key Laboratory of Environment and Genes Related to Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China.
| | - Huan Deng
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, China.
| | - Yang Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China.
| | - Lichun Qiao
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, China.
| | - Hongrui Jia
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education and International Center for Dielectric Research, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, China.
| | - Lan Zhang
- State-key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, China.
| | - Linghang Wang
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education and International Center for Dielectric Research, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, China.
| | - Chengjuan Qu
- Department of Odontology, Umeå University, Umeå, Sweden.
| |
Collapse
|
4
|
He B, Wang F, Shu J, Cheng Y, Zhou X, Huang T. Developing a non-invasive diagnostic model for pediatric Crohn's disease using RNA-seq analysis. Front Genet 2023; 14:1142326. [PMID: 36936436 PMCID: PMC10014721 DOI: 10.3389/fgene.2023.1142326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/03/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction: Pediatric Crohn's disease is a chronic inflammatory condition that affects the digestive system in children and adolescents. It is characterized by symptoms such as abdominal pain, diarrhea, weight loss, and malnutrition, and can also cause complications like growth delays and delayed puberty. However, diagnosing pediatric Crohn's disease can be difficult, especially when it comes to non-invasive methods. Methods: In this study, we developed a diagnostic model using RNA-seq to analyze gene expression in ileal biopsy samples from children with Crohn's disease and non-pediatric Crohn's controls. Results: Our results showed that pediatric Crohn's disease is associated with altered expression of genes involved in immune response, inflammation, and tissue repair. We validated our findings using two independent datasets from the Gene Expression Omnibus (GEO) database, as well as through one prospective independent dataset, and found that our model had a high accuracy rate. Discussion: These findings suggest the possibility of non-invasive diagnosis for pediatric Crohn's disease and may inform the development of targeted therapies for this condition.
Collapse
Affiliation(s)
- Bin He
- Department of Pediatrics, Fenghua District People’s Hospital of Ningbo, Ningbo, China
| | - Fang Wang
- Department of Pediatrics, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junhua Shu
- Department of Pediatrics, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Cheng
- Department of Pediatrics, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoqing Zhou
- Department of Pediatrics, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Huang
- Department of Pediatrics, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Tao Huang,
| |
Collapse
|
5
|
Li G, Cheng T, Yu X. The Impact of Trace Elements on Osteoarthritis. Front Med (Lausanne) 2022; 8:771297. [PMID: 35004740 PMCID: PMC8732765 DOI: 10.3389/fmed.2021.771297] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/30/2021] [Indexed: 12/14/2022] Open
Abstract
Osteoarthritis (OA) is a progressive degenerative disease characterized by cartilage degradation, synovial inflammation, subchondral sclerosis and osteophyte formation. It has a multifactorial etiology with potential contributions from heredity, endocrine function, abnormal mechanical load and nutrition. Of particular considerations are trace element status. Several trace elements, such as boron and magnesium are essential for normal development of the bone and joint in human. While cadmium correlates with the severity of OA. The present review focuses on the roles of trace elements (boron, cadmium, copper, iron, magnesium, manganese, selenium, zinc) in OA and explores the mechanisms by which they act.
Collapse
Affiliation(s)
- Guoyong Li
- Department of Orthopaedics, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tao Cheng
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xuefeng Yu
- Department of Orthopaedics, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
6
|
Deng H, Chilufya MM, Liu J, Qiao L, Xiao X, Zhao Y, Guo Z, Lv Y, Wang W, Zhang J, Han J. Effect of Low Nutrition and T-2 Toxin on C28/I2 Chondrocytes Cell Line and Chondroitin Sulfate-Modifying Sulfotransferases. Cartilage 2021; 13:818S-825S. [PMID: 34151604 PMCID: PMC8804821 DOI: 10.1177/19476035211023555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE To investigate the effects of low nutrition and trichothecenes-2 toxin (T-2) on human chondrocytes cell line C28/I2 and the gene expression levels of some chondroitin sulfate (CS)-modifying sulfotransferases. METHODS The chondrocytes were divided into 4 intervention groups: (a) control group (Dulbecco's modified Eagle's medium/Nutrient Mixture F-12 [DMEM/F-12] with fetal bovine serum [FBS]), (b) low-nutrition group (DMEM/F-12 without FBS), (c) T-2 group (DMEM/F-12 with FBS plus 20 ng/mL T-2), and (d) combined group (DMEM/F-12 without FBS plus 20 ng/mL T-2). Twenty-four hours postintervention, ultrastructural changes in the chondrocytes were observed by transmission electron microscopy (TEM). Live cell staining and methyl thiazolyl tetrazolium (MTT) assay were performed to observe cell viability. The expression of CS-modifying sulfotransferases, including carbohydrate sulfotransferase 3, 12, 13, 15 (CHST-3, CHST-12, CHST-13, and CHST-15, respectively), and uronyl 2-O-sulfotransferase (UST) were examined by quantitative real-time polymerase chain reaction (RT-qPCR) analysis. RESULTS The cells in the T-2 group and combined group had significantly lower live cell counts and relative survival rates than the control group. TEM pictures revealed decreased electron density of mitochondria in the low-nutrition group. The T-2 group and combined group both caused mitochondrial swelling, damage, and reduction in mitochondrial number. RT-qPCR showed a trend of altered expression of CHST and increased expression of UST genes under low-nutrition, T-2 toxin and combined interventions. CONCLUSIONS These results show early-stage Kashin-Beck disease chondrocyte pathophysiology, consisting of chondrocyte cell damage and compensatory upregulation of CHST and UST genes.
Collapse
Affiliation(s)
- Huan Deng
- School of Public Health, Health Science
Center, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Mumba Mulutula Chilufya
- School of Public Health, Health Science
Center, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Jiaxin Liu
- School of Public Health, Health Science
Center, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Lichun Qiao
- School of Public Health, Health Science
Center, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Xiang Xiao
- School of Public Health, Health Science
Center, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Yan Zhao
- School of Public Health, Health Science
Center, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Ziwei Guo
- School of Public Health, Health Science
Center, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Yizhen Lv
- School of Public Health, Health Science
Center, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Wenyue Wang
- School of Public Health, Health Science
Center, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Jiaheng Zhang
- School of Public Health, Health Science
Center, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Jing Han
- School of Public Health, Health Science
Center, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China,Jing Han, College of Public Health, Xi’an
Jiaotong University Health Science Center, No. 76 West Yanta Road, Xi’an,
Shaanxi Province, 710061, People’s Republic of China.
| |
Collapse
|
7
|
Wang J, Xia X, Tao X, Zhao P, Deng C. Knockdown of carbohydrate sulfotransferase 12 decreases the proliferation and mobility of glioblastoma cells via the WNT/β-catenin pathway. Bioengineered 2021; 12:3934-3946. [PMID: 34288811 PMCID: PMC8806823 DOI: 10.1080/21655979.2021.1944455] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Glioblastoma (GBM) is a common malignant tumor of the brain. Members of the carbohydrate sulfotransferase (CHST) family are deregulated in various cancer types. However, limited data are available on the role of the members of the CHST family in the development of GBM. The present study aimed to identify the role of significant members of the CHST family in GBM and explore the effects and molecular mechanisms of these significant members on GBM cell proliferation and mobility. In the current study, we demonstrated that CHST12 is the only member of CHST family that is upregulated in GBM tissues and associated with a lower survival rate according to the data obtained from The Cancer Genome Atlas. Similarly, the expression of CHST12 increased in GBM tissues than in adjacent tissues and had an important diagnostic value in distinguishing tumor tissues from adjacent tissues. The high expression of CHST12 indicated a lower overall survival rate, was negatively associated with the Karnofsky Performance Scale score, was positively associated with the KI67 expression rate, and was an independent risk factor for GBM. Knockdown of CHST12 significantly decreased GBM cell proliferation and mobility and inhibited the Wnt/β-catenin pathway. Restoration of β-catenin expression in GBM cells reversed the inhibitory effects of CHST12 knockdown on GBM cell proliferation and mobility. In conclusion, the present study demonstrated that CHST12 may be a novel biomarker for GBM; it regulates GBM cell proliferation and mobility via the WNT/β-catenin pathway.
Collapse
Affiliation(s)
- Juan Wang
- Department of Neurology, Changle People's Hospital, Weifang Shandong, China
| | - Xiaoning Xia
- Department of Neurology, Changle People's Hospital, Weifang Shandong, China
| | - Xiuqin Tao
- Department of Neurology, Changle People's Hospital, Weifang Shandong, China
| | - Pingping Zhao
- Department of Oncology, Changle People's Hospital, Weifang Shandong, China
| | - Chuanyu Deng
- Department of Neurology, Changle People's Hospital, Weifang Shandong, China
| |
Collapse
|
8
|
Qiao L, Amhare AF, Deng H, Lv Y, Zhao Y, Liu J, Lei J, Wang L, Chilufya MM, Han J. Protective effect of chondroitin sulfate nano-selenium on chondrocyte of patients with Kashin-Beck disease. J Biomater Appl 2021; 35:1347-1354. [PMID: 33487067 DOI: 10.1177/0885328220988427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To investigate the protective effect of chondroitin sulfate nano-selenium (SeCS) on chondrocyte of Kashin-Beck disease (KBD). METHODS Chondrocyte samples were isolated from the cartilage of three male KBD patients (54-57 years old). The chondrocytes were respectively divided into four groups: (a) control group, (b) SeCS supplement group (100 ng/mL SeCS), (c) T-2 + SeCS supplement group (20 ng/mL T-2 + 100 ng/mL SeCS), and (d) T-2 group (20 ng/mL T-2). Live/dead staining and transmission electron microscopy (TEM) were used to observe cell viability and ultrastructural changes in chondrocytes respectively. Expressions of Caspase-9, cytochrome C (Cyt-C), and chondroitin sulfate (CS) structure-modifying sulfotransferases including carbohydrate sulfotransferase 3, 15 (CHST-3, CHST-15), and uronyl 2-O-sulfotransferase (UST) were examined by quantitative real-time polymerase chain reaction. RESULTS After one- or three-days intervention, the number of living chondrocytes in the SeCS supplement group was higher than that in the control group, while it is opposite in the T-2 + SeCS supplement group and T-2 group. The cellular villi number in the surface increased in the SeCS supplement group compared with the control group. Mitochondrial morphology density was improved in the T-2 + SeCS supplement group compared with the T-2 group. Expressions of CHST-3, CHST-15, UST, Caspase-9, and Cyt-C on the mRNA level significantly increased in the T-2 + SeCS supplement group and T-2 group compared with the control group. CONCLUSIONS SeCS supplement increased the number of living chondrocytes, improved the ultrastructure, and altered the expressions of CS structure-modifying sulfotransferases, Caspase-9, and Cyt-C.
Collapse
Affiliation(s)
- Lichun Qiao
- School of Public Health, Health Science Center, 12480Xi'an Jiaotong University, Xi'an, China
| | - Abebe F Amhare
- School of Public Health, Health Science Center, 12480Xi'an Jiaotong University, Xi'an, China
| | - Huan Deng
- School of Public Health, Health Science Center, 12480Xi'an Jiaotong University, Xi'an, China
| | - Yizhen Lv
- School of Public Health, Health Science Center, 12480Xi'an Jiaotong University, Xi'an, China
| | - Yan Zhao
- School of Public Health, Health Science Center, 12480Xi'an Jiaotong University, Xi'an, China
| | - Jiaxin Liu
- School of Public Health, Health Science Center, 12480Xi'an Jiaotong University, Xi'an, China
| | - Jian Lei
- School of Public Health, Health Science Center, 12480Xi'an Jiaotong University, Xi'an, China
| | - Liyun Wang
- School of Public Health, Health Science Center, 12480Xi'an Jiaotong University, Xi'an, China
| | - Mumba M Chilufya
- School of Public Health, Health Science Center, 12480Xi'an Jiaotong University, Xi'an, China
| | - Jing Han
- School of Public Health, Health Science Center, 12480Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
9
|
Wang L, Yin J, Yang B, Qu C, Lei J, Han J, Guo X. Serious Selenium Deficiency in the Serum of Patients with Kashin-Beck Disease and the Effect of Nano-Selenium on Their Chondrocytes. Biol Trace Elem Res 2020; 194:96-104. [PMID: 31175635 DOI: 10.1007/s12011-019-01759-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/22/2019] [Indexed: 01/12/2023]
Abstract
To investigate selenium (Se) concentrations in serum of patients with rheumatoid arthritis (RA), osteoarthritis (OA), and Kashin-Beck disease (KBD), together with the effect of Se supplement (chondroitin sulfate [CS] nano-Se [SeCS]) on CS structure-modifying sulfotransferases in KBD chondrocyte. Fifty serum samples from each group with aged-matched (40-60 years), normal control (N), RA, OA, and KBD (25 males and females, respectively) were collected to determine Se concentrations. Furthermore, the KBD chondrocytes were divided into two groups following the intervention for 24 h: (a) non-treated KBD group and (b) SeCS-treated KBD group (100 ng/mL SeCS). The ultrastructural changes in chondrocytes were observed by transmission electron microscopy (TEM). Live/dead staining was used to observe cell viability. The expression of CS-modifying sulfotransferases including carbohydrate sulfotransferase 12, 13, and 15 (CHST-12, CHST-13, and CHST-15, respectively), and uronyl 2-O-sulfotransferase (UST) were examined by quantitative real-time polymerase chain reaction and western blotting analysis after SeCS intervention. The Se concentrations in serum of KBD, OA, and RA patients were lower than those in control. In OA, RA, and control, Se concentrations were higher in male than in female, while it is opposite in KBD. In the cell experiment, cell survival rate and mitochondrial density were increased in SeCS-treated KBD groups. Expressions of CHST-15, or CHST-12, and CHST-15 on the mRNA or protein level were significantly increased. Expression of UST slightly increased on the mRNA level, but no change was visible on the protein level. Se deficiency in serum of RA, OA, and KBD was observed. SeCS supplemented in KBD chondrocytes improved their survival rate, ameliorated their ultrastructure, and increased the expression of CS structure-modifying sulfotransferases.
Collapse
Affiliation(s)
- Liyun Wang
- School of Public Health, Health Science Center, Key Laboratory of Environment and Gene Related Diseases of Ministry Education, Key Laboratory of Trace Elements and Endemic Diseases, Ministry of Health, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, People's Republic of China
- Shenzhen Institute, Xi'an Jiaotong University, Shenzhen, 518057, Guangzhou, People's Republic of China
| | - Jiafeng Yin
- Department of Laboratory Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Bo Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Chengjuan Qu
- Department of Integrative Medical Biology, Umeå University, 90187, Umeå, Sweden
| | - Jian Lei
- School of Public Health, Health Science Center, Key Laboratory of Environment and Gene Related Diseases of Ministry Education, Key Laboratory of Trace Elements and Endemic Diseases, Ministry of Health, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, People's Republic of China
- Shenzhen Institute, Xi'an Jiaotong University, Shenzhen, 518057, Guangzhou, People's Republic of China
| | - Jing Han
- School of Public Health, Health Science Center, Key Laboratory of Environment and Gene Related Diseases of Ministry Education, Key Laboratory of Trace Elements and Endemic Diseases, Ministry of Health, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, People's Republic of China.
- Shenzhen Institute, Xi'an Jiaotong University, Shenzhen, 518057, Guangzhou, People's Republic of China.
| | - Xiong Guo
- School of Public Health, Health Science Center, Key Laboratory of Environment and Gene Related Diseases of Ministry Education, Key Laboratory of Trace Elements and Endemic Diseases, Ministry of Health, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, People's Republic of China
| |
Collapse
|
10
|
Lei J, Yan S, Zhou Y, Wang L, Zhang J, Guo X, Lammi MJ, Han J, Qu C. Abnormal expression of chondroitin sulfate sulfotransferases in the articular cartilage of pediatric patients with Kashin-Beck disease. Histochem Cell Biol 2020; 153:153-164. [PMID: 31845005 DOI: 10.1007/s00418-019-01833-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2019] [Indexed: 12/31/2022]
Abstract
The objective of this study is to investigate the expression of enzymes involved in the sulfation of articular cartilage from proximal metacarpophalangeal (PMC) joint cartilage and distal metacarpophalangeal (DMC) joint cartilage in children with Kashin-Beck disease (KBD). The finger cartilage samples of PMC and DMC were collected from KBD and normal children aged 5-14 years old. Hematoxylin and eosin staining as well as immunohistochemical staining were used to observe the morphology and quantitate the expression of carbohydrate sulfotransferase 3 (CHST-3), carbohydrate sulfotransferase 12 (CHST-12), carbohydrate sulfotransferase 13 (CHST-13), uronyl 2-O-sulfotransferase (UST), and aggrecan. In the results, the numbers of chondrocyte decreased in all three zones of PMC and DMC in the KBD group. Less positive staining cells for CHST-3, CHST-12, CHST-13, UST, and aggrecan were observed in almost all three zones of PMC and DMC in KBD. The positive staining cell rates of CHST-12 were higher in superficial and middle zones of PMC and DMC in KBD, and a significantly higher rate of CHST-13 was observed only in superficial zone of PMC in KBD. In conclusion, the abnormal expression of chondroitin sulfate sulfotransferases in chondrocytes of KBD children may provide an explanation for the cartilage damage, and provide therapeutic targets for the treatment.
Collapse
Affiliation(s)
- Jian Lei
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, P. R. China
| | - Siqi Yan
- Shenzhen Institute, Xi'an Jiaotong University, Shenzhen, 518057, P. R. China
- Department of Ophthalmology, The First Affiliated Hospital, Health Science Center of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Yuan Zhou
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, P. R. China
| | - Liyun Wang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, P. R. China
- Shenzhen Institute, Xi'an Jiaotong University, Shenzhen, 518057, P. R. China
| | - Jinghua Zhang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, P. R. China
| | - Xiong Guo
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, P. R. China
| | - Mikko J Lammi
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, P. R. China
- Department of Integrative Medical Biology, Umeå University, 90187, Umeå, Sweden
| | - Jing Han
- Shenzhen Institute, Xi'an Jiaotong University, Shenzhen, 518057, P. R. China.
| | - Chengjuan Qu
- Department of Integrative Medical Biology, Umeå University, 90187, Umeå, Sweden
| |
Collapse
|