1
|
Truchan K, Zagrajczuk B, Cholewa-Kowalska K, Osyczka AM. Rapid osteoinduction of human adipose-derived stem cells grown on bioactive surfaces and stimulated by chemically modified media flow. J Biol Eng 2025; 19:23. [PMID: 40087792 PMCID: PMC11908086 DOI: 10.1186/s13036-025-00491-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 02/26/2025] [Indexed: 03/17/2025] Open
Abstract
Adipose-derived stem cells (ASCs) provide an ample, easily accessible source of multipotent cells, an alternative to bone marrow-derived stromal cells (BMSCs), capable of differentiating into osteoblasts. However, the osteogenic potential of ASCs is reportedly lower than that of BMSCs and protocols to effectively differentiate ASCs into osteoblasts are in high demand. Here, we present novel strategies for effective osteogenic differentiation of human ASCs by combining their culture on bioactive growth surfaces with their treatment with specific supplements in osteogenic medium and application of fluid shear stress. Human ASCs were cultured on PLGA-based composites containing 50 wt% sol-gel bioactive glasses (SBGs) from the SiO2-CaO±P2O5 system, either unmodified or modified with 5 wt% ZnO or SrO. The osteogenic medium was supplemented with recombinant human bone morphogenetic protein 2 (BMP-2), MEK1/2 kinase inhibitor (PD98059) and indirect Smurf1 inhibitor (Phenamil). Fluid shear stress was applied with a standard horizontal rocker. ASC culture on SBG-PLGA composites along with the osteogenic medium supplements enhanced the expression of both early and late osteogenic markers. Modification of SBG with either SrO or ZnO further enhanced osteogenic gene expression compared to ASCs cultured on composites containing unmodified SBGs. Notably, the application of fluid shear stress synergistically strengthened the osteogenic effects of bioactive composites and medium supplements. We also show that the presented culture strategies can drive ASCs toward osteoblastic cells in a 3-day culture period and provide mineralizing osteoblasts through a short, 7-day ASC preculture on bioactive composites. Our results also indicate that the applied osteogenic treatment leads to the phosphorylation of β-catenin and CREB or the COX-2 expression. We believe the presented strategies are feasible for rapid ASC differentiation to early osteoblasts or mineralizing osteoblastic cells for various potential cell-based bone regeneration therapies.
Collapse
Affiliation(s)
- Karolina Truchan
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa St. 9, Krakow, 30-387, Poland
| | - Barbara Zagrajczuk
- Department of Glass Technology and Amorphous Coatings, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza Ave. 30, Krakow, 30-059, Poland
| | - Katarzyna Cholewa-Kowalska
- Department of Glass Technology and Amorphous Coatings, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza Ave. 30, Krakow, 30-059, Poland
| | - Anna Maria Osyczka
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa St. 9, Krakow, 30-387, Poland.
| |
Collapse
|
2
|
Milenin A, Niedźwiedzki Ł, Truchan K, Guzik G, Kąc S, Tylko G, Osyczka AM. Investigating the Anticancer Potential of Zinc and Magnesium Alloys: From Base Materials to Nanocoated Titanium Implants. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3365. [PMID: 38998445 PMCID: PMC11242978 DOI: 10.3390/ma17133365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/14/2024]
Abstract
In this work, we show the in vitro anticancer potential of surgical wires, obtained from zinc (ZnMg0.004) or magnesium (MgCa0.7) alloys by spatial technology comprising casting, extrusion, and final drawing processes. We also present the selective anticancer effects of applied soluble multilayer nanocoatings of zinc and magnesium onto titanium surfaces using the pulse laser deposition method. In the latter, the titanium samples were produced via 3D printing using the selective laser melting method and coated with various combinations of zinc and magnesium layers. For cytotoxicity studies, human dental pulp-derived stem cells (hDPSCs) and human osteosarcoma SaOS-2 cell line were used as representatives of healthy and cancer cells. Cells were examined against the 0.3-3.0 cm2/mL material extract ratios obtained from experimental and steel surgical wires, the latter being the current clinical industry standard. The MgCa0.7 alloy wires were approx. 1.5 times more toxic to cancer cells at all examined extract ratios vs. the extracts from steel surgical wires that exhibited comparable toxicity towards healthy and cancer cells. The ZnMg0.004 alloy wires displayed increased toxicity towards cancer cells with decreasing extract ratios. This was also reflected in the increased anticancer effectiveness, calculated based on the viability ratio of healthy cells to cancer cells, from 1.1 to 4.0 times. Healthy cell viability remained at 80-100%, whereas cancer cell survival fluctuated at 20-75%, depending on the extract ratio. Furthermore, the culture of normal or cancer cells on the surface of Zn/Mg-coated titanium allowed us to select combinations of specific coating layers that yielded a comparable anticancer effectiveness to that observed with the experimental wires that ranged between 2 and 3. Overall, this work not only demonstrates the substantial anticancer properties of the studied wires but also indicates that similar anticancer effects can be replicated with appropriate nanocoatings on titanium samples. We believe that this work lays the groundwork for the future potential development of the category of new implants endowed with anticancer properties.
Collapse
Affiliation(s)
- Andrij Milenin
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, Mickiewicza 30 Ave., 30-059 Krakow, Poland
| | - Łukasz Niedźwiedzki
- Department of Orthopedics and Physiotherapy, Faculty of Health Sciences, Jagiellonian University Medical College, Medyczna 9 St., 30-688 Krakow, Poland
| | - Karolina Truchan
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9 St., 30-387 Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. St. Łojasiewicza 11 St., 30-348 Krakow, Poland
| | - Grzegorz Guzik
- Department of Orthopaedic Oncology, Specialist Hospital in Brzozów-Podkarpacie Oncology Center, Bielawskiego 18 St., 36-200 Brzozów, Poland
| | - Sławomir Kąc
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, Mickiewicza 30 Ave., 30-059 Krakow, Poland
| | - Grzegorz Tylko
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9 St., 30-387 Krakow, Poland
| | - Anna Maria Osyczka
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9 St., 30-387 Krakow, Poland
| |
Collapse
|
3
|
Verma R, Aggarwal P, Bischoff ME, Reigle J, Secic D, Wetzel C, VandenHeuvel K, Biesiada J, Ehmer B, Landero Figueroa JA, Plas DR, Medvedovic M, Meller J, Czyzyk-Krzeska MF. Microtubule-associated protein MAP1LC3C regulates lysosomal exocytosis and induces zinc reprogramming in renal cancer cells. J Biol Chem 2023; 299:104663. [PMID: 37003503 PMCID: PMC10173779 DOI: 10.1016/j.jbc.2023.104663] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
Microtubule-associated protein 1 light chain 3 gamma (MAP1LC3C or LC3C) is a member of the microtubule-associated family of proteins that are essential in the formation of autophagosomes and lysosomal degradation of cargo. LC3C has tumor-suppressing activity, and its expression is dependent on kidney cancer tumor suppressors, such as von Hippel-Lindau protein and folliculin. Recently, we demonstrated that LC3C autophagy is regulated by noncanonical upstream regulatory complexes and targets for degradation postdivision midbody rings associated with cancer cell stemness. Here, we show that loss of LC3C leads to peripheral positioning of the lysosomes and lysosomal exocytosis (LE). This process is independent of the autophagic activity of LC3C. Analysis of isogenic cells with low and high LE shows substantial transcriptomic reprogramming with altered expression of zinc (Zn)-related genes and activity of polycomb repressor complex 2, accompanied by a robust decrease in intracellular Zn. In addition, metabolomic analysis revealed alterations in amino acid steady-state levels. Cells with augmented LE show increased tumor initiation properties and form aggressive tumors in xenograft models. Immunocytochemistry identified high levels of lysosomal-associated membrane protein 1 on the plasma membrane of cancer cells in human clear cell renal cell carcinoma and reduced levels of Zn, suggesting that LE occurs in clear cell renal cell carcinoma, potentially contributing to the loss of Zn. These data indicate that the reprogramming of lysosomal localization and Zn metabolism with implication for epigenetic remodeling in a subpopulation of tumor-propagating cancer cells is an important aspect of tumor-suppressing activity of LC3C.
Collapse
Affiliation(s)
- Rita Verma
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Parul Aggarwal
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Megan E Bischoff
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - James Reigle
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Department of Biomedical Informatics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Dina Secic
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Collin Wetzel
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Katherine VandenHeuvel
- Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jacek Biesiada
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Birgit Ehmer
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Julio A Landero Figueroa
- Department of Chemistry, Agilent Metallomics Center of the Americas, University of Cincinnati College of Arts and Science, Cincinnati, Ohio, USA; Department of Pharmacology and System Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - David R Plas
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Mario Medvedovic
- Department of Biomedical Informatics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jarek Meller
- Department of Biomedical Informatics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA; Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Department of Pharmacology and System Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Department of Electrical Engineering and Computer Science, University of Cincinnati College of Engineering and Applied Sciences, Cincinnati, Ohio, USA
| | - Maria F Czyzyk-Krzeska
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Department of Pharmacology and System Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA; Department of Veterans Affairss, Veteran Affairs Medical Center, Cincinnati, Ohio, USA.
| |
Collapse
|
4
|
Zinc(II) Carboxylate Coordination Polymers with Versatile Applications. Molecules 2023; 28:molecules28031132. [PMID: 36770799 PMCID: PMC9918918 DOI: 10.3390/molecules28031132] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
This review considers the applications of Zn(II) carboxylate-based coordination polymers (Zn-CBCPs), such as sensors, catalysts, species with potential in infections and cancers treatment, as well as storage and drug-carrier materials. The nature of organic luminophores, especially both the rigid carboxylate and the ancillary N-donor bridging ligand, together with the alignment in Zn-CBCPs and their intermolecular interaction modulate the luminescence properties and allow the sensing of a variety of inorganic and organic pollutants. The ability of Zn(II) to act as a good Lewis acid allowed the involvement of Zn-CBCPs either in dye elimination from wastewater through photocatalysis or in pathogenic microorganism or tumor inhibition. In addition, the pores developed inside of the network provided the possibility for some species to store gaseous or liquid molecules, as well as to deliver some drugs for improved treatment.
Collapse
|
5
|
Li H, Shen X, Ma M, Liu W, Yang W, Wang P, Cai Z, Mi R, Lu Y, Zhuang J, Jiang Y, Song Y, Wu Y, Shen H. ZIP10 drives osteosarcoma proliferation and chemoresistance through ITGA10-mediated activation of the PI3K/AKT pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:340. [PMID: 34706747 PMCID: PMC8549349 DOI: 10.1186/s13046-021-02146-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/18/2021] [Indexed: 12/27/2022]
Abstract
Background The zinc transporters Zrt- and Irt-related protein (ZIP/SLC39) are overexpressed in human tumors and correlate with poor prognosis; however, their contributions to carcinogenesis and chemoresistance in osteosarcoma (OS) remain unclear. Methods We collected 64 OS patient tissues with (n = 12) or without (n = 52) chemotherapy. The expression levels of ZIP10 were measured by immunohistochemistry and applied to prognostic analysis. ZIP10 was knocked down or overexpressed in OS cell lines to explore its effect on proliferation and chemoresistance. RNA sequencing, quantitative real-time PCR, and western blotting analysis were performed to explore ZIP10-regulated downstream target genes. A xenograft mouse model was established to evaluate the mechanisms by which ZIP10 modulates chemoresistance in OS cells. Results The expression of ZIP10 was significantly induced by chemotherapy and highly associated with the clinical outcomes of OS. Knockdown of ZIP10 suppressed OS cell proliferation and chemoresistance. In addition, ZIP10 promoted Zn content-induced cAMP-response element binding protein (CREB) phosphorylation and activation, which are required for integrin α10 (ITGA10) transcription and ITGA10-mediated PI3K/AKT pathway activation. Importantly, ITGA10 stimulated PI3K/AKT signaling but not the classical FAK or SRC pathway. Moreover, overexpression of ZIP10 promoted ITGA10 expression and conferred chemoresistance. Treatment with the CREB inhibitor 666–15 or the PI3K/AKT inhibitor GSK690693 impaired tumor chemoresistance in ZIP10-overexpressing cells. Finally, a xenograft mouse model established by subcutaneous injection of 143B cells confirmed that ZIP10 mediates chemotherapy resistance in OS cells via the ZIP10-ITGA10-PI3K/AKT axis. Conclusions We demonstrate that ZIP10 drives OS proliferation and chemoresistance through ITGA10-mediated activation of the PI3K/AKT pathway, which might serve as a target for OS treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02146-8.
Collapse
Affiliation(s)
- Hongyu Li
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, No. 3025 Shennan Zhong Road, Shenzhen, Guangdong, 518033, China
| | - Xin Shen
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, No. 3025 Shennan Zhong Road, Shenzhen, Guangdong, 518033, China
| | - Mengjun Ma
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, No. 3025 Shennan Zhong Road, Shenzhen, Guangdong, 518033, China
| | - Wenzhou Liu
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510000, China
| | - Wen Yang
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, No. 3025 Shennan Zhong Road, Shenzhen, Guangdong, 518033, China
| | - Peng Wang
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, No. 3025 Shennan Zhong Road, Shenzhen, Guangdong, 518033, China
| | - Zhaopeng Cai
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, No. 3025 Shennan Zhong Road, Shenzhen, Guangdong, 518033, China
| | - Rujia Mi
- Center for Biotherapy, The Eighth Affiliated Hospital, Sun Yat-sen University, No. 3025 Shennan Zhong Road, Shenzhen, 518033, Guangdong, China
| | - Yixuan Lu
- Center for Biotherapy, The Eighth Affiliated Hospital, Sun Yat-sen University, No. 3025 Shennan Zhong Road, Shenzhen, 518033, Guangdong, China
| | - Jiahao Zhuang
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, No. 3025 Shennan Zhong Road, Shenzhen, Guangdong, 518033, China
| | - Yuhang Jiang
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, No. 3025 Shennan Zhong Road, Shenzhen, Guangdong, 518033, China
| | - Yihui Song
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, No. 3025 Shennan Zhong Road, Shenzhen, Guangdong, 518033, China
| | - Yanfeng Wu
- Center for Biotherapy, The Eighth Affiliated Hospital, Sun Yat-sen University, No. 3025 Shennan Zhong Road, Shenzhen, 518033, Guangdong, China.
| | - Huiyong Shen
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, No. 3025 Shennan Zhong Road, Shenzhen, Guangdong, 518033, China.
| |
Collapse
|
6
|
Effects of Extracellular Osteoanabolic Agents on the Endogenous Response of Osteoblastic Cells. Cells 2021; 10:cells10092383. [PMID: 34572032 PMCID: PMC8471159 DOI: 10.3390/cells10092383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/31/2021] [Accepted: 09/07/2021] [Indexed: 12/27/2022] Open
Abstract
The complex multidimensional skeletal organization can adapt its structure in accordance with external contexts, demonstrating excellent self-renewal capacity. Thus, optimal extracellular environmental properties are critical for bone regeneration and inextricably linked to the mechanical and biological states of bone. It is interesting to note that the microstructure of bone depends not only on genetic determinants (which control the bone remodeling loop through autocrine and paracrine signals) but also, more importantly, on the continuous response of cells to external mechanical cues. In particular, bone cells sense mechanical signals such as shear, tensile, loading and vibration, and once activated, they react by regulating bone anabolism. Although several specific surrounding conditions needed for osteoblast cells to specifically augment bone formation have been empirically discovered, most of the underlying biomechanical cellular processes underneath remain largely unknown. Nevertheless, exogenous stimuli of endogenous osteogenesis can be applied to promote the mineral apposition rate, bone formation, bone mass and bone strength, as well as expediting fracture repair and bone regeneration. The following review summarizes the latest studies related to the proliferation and differentiation of osteoblastic cells, enhanced by mechanical forces or supplemental signaling factors (such as trace metals, nutraceuticals, vitamins and exosomes), providing a thorough overview of the exogenous osteogenic agents which can be exploited to modulate and influence the mechanically induced anabolism of bone. Furthermore, this review aims to discuss the emerging role of extracellular stimuli in skeletal metabolism as well as their potential roles and provide new perspectives for the treatment of bone disorders.
Collapse
|