1
|
Shen J, Pei Y, Bai S, Lei S, Xia S, Zhang J, Li X, Xu H, Zheng X, Shen X, Zhao H, Liu L, Yang X, Wang X. Magnesium-based implants accelerate femoral fracture healing through promoting histone lactylation-mediated osteoclastogenesis inhibition. Life Sci 2025; 372:123639. [PMID: 40252757 DOI: 10.1016/j.lfs.2025.123639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/06/2025] [Accepted: 04/09/2025] [Indexed: 04/21/2025]
Abstract
AIMS To investigate the molecular mechanisms by which magnesium (Mg)-based implants, specifically Mg-containing intramedullary nails (Mg-IMNs), promote femoral fracture healing. MATERIALS AND METHODS Rats with femoral fractures were treated with Mg-IMNs. In vitro experiments were conducted to assess the impact of Mg2+ on osteoclastogenesis and histone lactylation. Histological analysis, Western blotting, and qRT-PCR were employed to evaluate osteoclast maturation and the molecular pathways involved. In vivo, lactate was administered to replicate Mg-IMN effects, and lactate production was inhibited to observe potential reversal effects. KEY FINDINGS Mg-IMNs significantly enhanced fracture healing by inhibiting osteoclastogenesis. Mg2+ promoted intracellular lactate production, leading to histone lactylation, which suppressed osteoclast maturation by downregulating NFATc1. The P300/H3K18LA/HDAC1 pathway was identified as a key mediator in this process. Additionally, lactate administration mimicked the effects of Mg-IMNs, while blocking lactate reversed these effects. SIGNIFICANCE This study uncovers a novel mechanism by which Mg2+ promotes fracture healing through histone lactylation-mediated inhibition of osteoclastogenesis. These findings offer new therapeutic strategies for enhancing fracture repair via epigenetic regulation.
Collapse
Affiliation(s)
- Junyi Shen
- Department of Orthopaedic Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yilun Pei
- Department of Orthopaedic Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Shangying Bai
- China-America Institute of Neuroscience, Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Simeng Lei
- Department of Orthopaedic Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Suhang Xia
- Department of Joint Diseases, Zhengzhou Orthopaedics Hospital, Zhengzhou, Henan, China
| | - Jie Zhang
- Department of Orthopaedic Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Xingyu Li
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Hanchi Xu
- Department of Orthopaedic Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Xinyu Zheng
- Department of Orthopaedic Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Xuezhen Shen
- Department of Orthopaedic Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Huanjun Zhao
- Department of Burn Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Liang Liu
- Department of Orthopaedic Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China.
| | - Xinlin Yang
- Orthopaedic Research Lab, University of Virginia, Charlottesville, VA, USA.
| | - Xuefei Wang
- Department of Orthopaedic Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Sun S, Qin J, Zhuang Y, Cai P, Yu X, Wang H, Mo X, Wu J, El-Newehy M, Abdulhameed MM, Fan M, Qian W, Sun B. Development of MgO-loaded PLA/dECM antibacterial nanofibrous membranes for enhanced gingival regeneration. Biomater Sci 2025. [PMID: 40354093 DOI: 10.1039/d4bm01346h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Clinically, gingival tissue repair is challenging due to the complex oral microbial environment and inflammation. The development of gingival membranes using tissue engineering techniques offers a promising solution to this issue. This study focuses on developing a nanofibrous gingival membrane, combining polylactic acid (PLA), decellularized extracellular matrix (dECM), and magnesium oxide (MgO) nanoparticles. Electrospinning was used to fabricate membranes with varying ratios of PLA, dECM, and MgO, and their mechanical, antibacterial, and cell-proliferation properties were evaluated. NIH-3T3 and rat gingival fibroblast (RGF) cells were cultured on the membranes to assess biocompatibility. A rat model with gingival defects was used to test in vivo tissue regeneration. It was indicated that the antibacterial nanofibrous membranes with MgO showed enhanced antibacterial effects and reduced inflammation, and promoted gingival tissue repair.
Collapse
Affiliation(s)
- Shu Sun
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Jing Qin
- Shanghai Xuhui District Dental Center, Shanghai 200032, China.
| | - Yifu Zhuang
- Orthopaedic Traumatology, Trauma Center, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201620, China
| | - Pengfei Cai
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Xiao Yu
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Hongsheng Wang
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Xiumei Mo
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Jinglei Wu
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Mohamed El-Newehy
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Meera Moydeen Abdulhameed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mingyue Fan
- Shanghai Xuhui District Dental Center, Shanghai 200032, China.
| | - Wenhao Qian
- Shanghai Xuhui District Dental Center, Shanghai 200032, China.
| | - Binbin Sun
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
3
|
Feng H, Lian X, Lv S, Song Y, Yang B, Yan C, Kang J, Liu Z, Hao R, Jing X, Huang D. Bioinspired bilayer 3D printing periosteum scaffold with hierarchical structure based on silk fibroin and sodium alginate for bone regeneration. Int J Biol Macromol 2025; 310:143175. [PMID: 40250689 DOI: 10.1016/j.ijbiomac.2025.143175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/12/2025] [Accepted: 04/13/2025] [Indexed: 04/20/2025]
Abstract
The periosteum plays a vital role in fracture repair, particularly in supplying nutrients and facilitating neurovascularization during bone regeneration. Currently, some artificial periosteums exhibit weak mechanical strength, and a lack of neurogenic, angiogenic, and osteogenic functions. In this study, we fabricated a bilayer, bioinspired artificial periosteum composed of a fibrous layer and a cambium layer using 3D printing technique. Methacrylated silk fibroin with high molecular weight, sodium alginate and magenesium ions (SFHGMA/SA/Mg2+) were used to fabricate a double cross-linked network fibrous layer, which exhibits enhanced mechanical strength, low swelling ratio, neurogenesis and angiogenesis. Silk particles, sodium alginate, and mineralized collagen (SFP/SA/MCol) were used to fabricate the cambium layer with a microporous structure improves permeability and osteogenesis. Bilayer bioinspired artificial periosteum was implanted into a critical-size defect in the rat skull, and the results demonstrated this design enhanced angiogenesis, neurogenesis, osteogenesis and bone regeneration at 8 weeks postoperatively. These findings indicate that this bioinspired artificial periosteum could serve as an effective substitute to promote bone repair following periosteal injury.
Collapse
Affiliation(s)
- Haonan Feng
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, Shanxi Key Laboratory of Functional Proteins, College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Xiaojie Lian
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, Shanxi Key Laboratory of Functional Proteins, College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan 030024, PR China; Institute of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan 030024, PR China.
| | - Song Lv
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, Shanxi Key Laboratory of Functional Proteins, College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Yufan Song
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, Shanxi Key Laboratory of Functional Proteins, College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Bo Yang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, Shanxi Key Laboratory of Functional Proteins, College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Chao Yan
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, Shanxi Key Laboratory of Functional Proteins, College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Junjia Kang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, Shanxi Key Laboratory of Functional Proteins, College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Zehua Liu
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, Shanxi Key Laboratory of Functional Proteins, College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Ruizhi Hao
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, Shanxi Key Laboratory of Functional Proteins, College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Xuan Jing
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030600, PR China
| | - Di Huang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, Shanxi Key Laboratory of Functional Proteins, College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan 030024, PR China; Institute of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan 030024, PR China
| |
Collapse
|
4
|
Li S, Cai X, Guo J, Li X, Li W, Liu Y, Qi M. Cell communication and relevant signaling pathways in osteogenesis-angiogenesis coupling. Bone Res 2025; 13:45. [PMID: 40195313 PMCID: PMC11977258 DOI: 10.1038/s41413-025-00417-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 02/18/2025] [Accepted: 02/27/2025] [Indexed: 04/09/2025] Open
Abstract
Osteogenesis is the process of bone formation mediated by the osteoblasts, participating in various bone-related physiological processes including bone development, bone homeostasis and fracture healing. It exhibits temporal and spatial interconnectivity with angiogenesis, constructed by multiple forms of cell communication occurring between bone and vascular endothelial cells. Molecular regulation among different cell types is crucial for coordinating osteogenesis and angiogenesis to facilitate bone remodeling, fracture healing, and other bone-related processes. The transmission of signaling molecules and the activation of their corresponding signal pathways are indispensable for various forms of cell communication. This communication acts as a "bridge" in coupling osteogenesis to angiogenesis. This article reviews the modes and processes of cell communication in osteogenesis-angiogenesis coupling over the past decade, mainly focusing on interactions among bone-related cells and vascular endothelial cells to provide insights into the mechanism of cell communication of osteogenesis-angiogenesis coupling in different bone-related contexts. Moreover, clinical relevance and applications are also introduced in this review.
Collapse
Affiliation(s)
- Shuqing Li
- Department of Oral & Maxillofacial Surgery, College of Stomatology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Xinjia Cai
- Central Laboratory, Peking University School and Hospital for Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Jiahe Guo
- Department of Oral & Maxillofacial Surgery, College of Stomatology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Xiaolu Li
- Department of Oral & Maxillofacial Surgery, College of Stomatology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Wen Li
- Department of Oral & Maxillofacial Surgery, College of Stomatology, North China University of Science and Technology, Tangshan, Hebei, China
| | - Yan Liu
- Central Laboratory, Peking University School and Hospital for Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China.
| | - Mengchun Qi
- Department of Oral & Maxillofacial Surgery, College of Stomatology, North China University of Science and Technology, Tangshan, Hebei, China.
| |
Collapse
|
5
|
Tao M, Cui Y, Sun S, Zhang Y, Ge J, Yin W, Li P, Wang Y. Versatile application of magnesium-related bone implants in the treatment of bone defects. Mater Today Bio 2025; 31:101635. [PMID: 40124334 PMCID: PMC11930110 DOI: 10.1016/j.mtbio.2025.101635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/20/2025] [Accepted: 03/02/2025] [Indexed: 03/25/2025] Open
Abstract
Magnesium-related bone implants have garnered significant attention in the treatment of bone defects. The applications of magnesium in promoting bone repair mainly include degradable magnesium-based scaffolds owing to its special physical properties and composite materials modified by magnesium ions because of its biological activity. Although numerous studies have confirmed the unique application advantages and efficacy of magnesium in promoting bone repair, some obvious shortcomings persist, including the rapid degradation of magnesium-based scaffolds. In this review, the deficiencies of magnesium and its alloys in the construction of orthopedic implants and their key influencing factors were summarized; furthermore, some advanced improvement schemes were summarized and analyzed. Additionally, the application strategies of magnesium-modified bone implants are summarized and discussed. Lastly, this review incorporates the latest research and discoveries on magnesium in orthopedic science, comprehensively exploring the mechanism of magnesium's role in the complex microenvironment of bone defects from multiple dimensions. This paper provides a comprehensive summary and analysis of cutting-edge concepts in the design and development of magnesium-based bone implants, considering various perspectives such as the physical properties and biological functions of magnesium.
Collapse
Affiliation(s)
- Mijia Tao
- Traumatic Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, PR China
| | - Yutao Cui
- Traumatic Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, PR China
| | - Shicai Sun
- The Third Affiliated Hospital of Changchun University of Chinese Medicine, PR China
| | - Yan Zhang
- Traumatic Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, PR China
| | - Jianli Ge
- Traumatic Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, PR China
| | - Wen Yin
- Traumatic Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, PR China
| | - Peng Li
- Traumatic Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, PR China
| | - Yanbing Wang
- Traumatic Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, PR China
| |
Collapse
|
6
|
Zhang H, Qiao W, Liu Y, Yao X, Zhai Y, Du L. Addressing the challenges of infectious bone defects: a review of recent advances in bifunctional biomaterials. J Nanobiotechnology 2025; 23:257. [PMID: 40158189 PMCID: PMC11954225 DOI: 10.1186/s12951-025-03295-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/04/2025] [Indexed: 04/01/2025] Open
Abstract
Infectious bone defects present a substantial clinical challenge due to the complex interplay between infection control and bone regeneration. These defects often result from trauma, autoimmune diseases, infections, or tumors, requiring a nuanced approach that simultaneously addresses infection and promotes tissue repair. Recent advances in tissue engineering and materials science, particularly in nanomaterials and nano-drug formulations, have led to the development of bifunctional biomaterials with combined osteogenic and antibacterial properties. These materials offer an alternative to traditional bone grafts, minimizing complications such as multiple surgeries, high antibiotic dosages, and lengthy recovery periods. This review examines the repair mechanisms in the infectious microenvironment and highlights various bifunctional biomaterials that foster both anti-infective and osteogenic processes. Emerging design strategies are also discussed to provide a forward-looking perspective on treating infectious bone defects with clinically significant outcomes.
Collapse
Affiliation(s)
- Huaiyuan Zhang
- Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Wenyu Qiao
- Department of General Surgery, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Yu Liu
- Research Center for Clinical Medicine, Jinshan Hospital Affiliated to Fudan University, Shanghai, 201508, China
| | - Xizhou Yao
- Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Yonghua Zhai
- Department of Cardiovascular Medicine, Department of Hypertension, Ruijin Hospital and State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China.
| | - Longhai Du
- Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, 201508, China.
| |
Collapse
|
7
|
Qin S, Hu Y, Luo H, Chu W, Deng R, Ma J. Metal ions and nanomaterials for targeted bone cancer immunotherapy. Front Immunol 2025; 16:1513834. [PMID: 40165969 PMCID: PMC11955472 DOI: 10.3389/fimmu.2025.1513834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 02/24/2025] [Indexed: 04/02/2025] Open
Abstract
Bone cancer remains a significant challenge in oncology, with limited success in current therapeutic approaches, particularly immunotherapy. Emerging research highlights the potential of integrating metal ions and nanomaterials for targeted immunotherapy in bone cancer. Metal ions, including calcium, magnesium, and zinc, play a significant role in modulating immune responses within the tumor microenvironment, affecting essential pathways necessary for immune activation. Meanwhile, nanomaterials, particularly metallic nanoparticles, offer precise drug delivery and immune system modulation, improving the efficacy of immunotherapeutic agents. This review explores the synergistic effects of metal ion-nanomaterial conjugates, discussing their role in enhancing immune cell activation, particularly T-cells and macrophages, and their potential for controlled drug release. We highlight preclinical advancements in bone cancer treatment using metal ion-responsive nanoparticles, and address current challenges such as biocompatibility and toxicity. Finally, we discuss the future prospects of these technologies in personalized and precision medicine, aiming to revolutionize bone cancer immunotherapy.
Collapse
Affiliation(s)
- Sen Qin
- Department of Orthopedics, The First Affiliated Hospital of YangTze University, Jingzhou, Hubei, China
| | - YaoFeng Hu
- Department of Neurological Care Unit, The First Affiliated Hospital of YangTze University, Jingzhou, Hubei, China
| | - HuaSong Luo
- Department of Orthopedics, The First Affiliated Hospital of YangTze University, Jingzhou, Hubei, China
| | - Wei Chu
- Department of Orthopedics, The First Affiliated Hospital of YangTze University, Jingzhou, Hubei, China
| | - RuCui Deng
- Department of Neurological Care Unit, The First Affiliated Hospital of YangTze University, Jingzhou, Hubei, China
| | - JinLiang Ma
- Department of Orthopedics, The First Affiliated Hospital of YangTze University, Jingzhou, Hubei, China
| |
Collapse
|
8
|
Han H, Zhou Z, Shang T, Li S, Shen X, Fang J, Cui L. Silk Fibroin-Laponite Porous Microspheres as Cell Microcarriers for Osteogenic Differentiation. Tissue Eng Part A 2025; 31:255-266. [PMID: 38666700 DOI: 10.1089/ten.tea.2024.0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024] Open
Abstract
Silk fibroin (SF) has garnered significant attention as a natural polymer for fabricating porous scaffolds in various engineering applications. However, the limited osteoinductive property of SF has hindered its efficacy in bone repair applications. In this study, we constructed an SF-based injectable porous microcarrier that is doped with laponite (LAP), containing magnesium ions (Mg2+). The influence of freezing temperatures and concentrations of SF and LAP on the structural parameters of SF-LAP microcarriers was investigated. The SF-LAP microcarrier exhibited a porosity of 76.7 ± 1.2% and a controlled pore size of 24.6 ± 4.0 μm. At the 6 weeks of in vitro degradation test, a mild alkaline level in culture medium containing SF-LAP microcarriers was detected. The release of Mg2+ from the SF-LAP microcarrier was maintained at a concentration within the range of 1.2-2.3 mM during the 6 weeks. The seeded human adipose-derived stem cells in the SF-LAP microcarrier demonstrated a significant enhancement in osteogenic differentiation compared with cells seeded in the pure SF microcarrier, as evidenced by quantitative alkaline phosphatase activity and the expression of osteogenic marker genes. These findings underscore the potential of the SF-LAP microcarrier as an ideal cell carrier in the treatment of bone defects.
Collapse
Affiliation(s)
- Haotian Han
- Department of Plastic and Cosmetic Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Zhihua Zhou
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of the Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Ting Shang
- Department of Plastic and Cosmetic Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Shuaijun Li
- Department of Reconstructive and Regenerative Surgery, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Stem Cells and Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Xiang Shen
- Department of Orthopedics, The Fourth Hospital of Changsha, Changsha, China
| | - Jianjun Fang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of the Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Lei Cui
- Department of Plastic and Cosmetic Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of Reconstructive and Regenerative Surgery, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Stem Cells and Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Mei S, Jiang F, Liu N, Feng Z, Zheng Y, Yang W, Zhang W, Cui Y, Wang W, Xie J, Zhang N. Sol-gel synthesis of magnesium oxide nanoparticles and their evaluation as a therapeutic agent for the treatment of osteoarthritis. Nanomedicine (Lond) 2024; 19:1867-1878. [PMID: 39109508 PMCID: PMC11457622 DOI: 10.1080/17435889.2024.2382421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/16/2024] [Indexed: 10/05/2024] Open
Abstract
Aim: We synthesized MgO NPs via sol-gel reaction and investigated them as carriers to deliver Mg2+ to the affected joint for osteoarthritis (OA).Materials & methods: The physicochemical properties of samples were characterized by transmission electron microscope (TEM), dynamic light scattering (DLS) and x-ray diffraction (XRD). The release of Mg2+ was monitored by ICP-MS. The potential cytotoxicity was evaluated using MTT assay. The efficacy and biosafety were evaluated in a rabbit OA model.Results: MgO NPs can prolong the Mg2+ release time from 0.5 h to 12 h. No significant cytotoxicity was observed when concentrations below 250 μg/ml. Intra-articular samples could effectively alleviate the degeneration and destruction of the cartilage.Conclusion: this study demonstrates the potential of MgO NPs as a safe and effective treatment of OA. Simultaneously, the size of the particles may play a significant role in influencing the therapeutic outcome.
Collapse
Affiliation(s)
- Sen Mei
- Department of Orthopedics, Affiliated Xinhua Hospital of Dalian University, Dalian, Liaoning, 116000, China
| | - Fangchao Jiang
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Na Liu
- Department of Orthopedics, Affiliated Xinhua Hospital of Dalian University, Dalian, Liaoning, 116000, China
| | - Zhizi Feng
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Yu Zheng
- Department of Orthopedics, Affiliated Xinhua Hospital of Dalian University, Dalian, Liaoning, 116000, China
| | - Wei Yang
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Weizhong Zhang
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Yingna Cui
- Department of Chemistry, Dalian University, Dalian, Liaoning, 116000, China
| | - Weiming Wang
- Department of Orthopedics, Affiliated Xinhua Hospital of Dalian University, Dalian, Liaoning, 116000, China
| | - Jin Xie
- Department of Chemistry, University of Georgia, Athens, GA 30602, USA
| | - Nan Zhang
- Department of Orthopedics, Affiliated Xinhua Hospital of Dalian University, Dalian, Liaoning, 116000, China
| |
Collapse
|
10
|
Sun Y, Shi M, Niu B, Xu X, Xia W, Deng C. Mg-Sr-Ca containing bioactive glass nanoparticles hydrogel modified mineralized collagen scaffold for bone repair. J Biomater Appl 2024; 39:117-128. [PMID: 38775351 DOI: 10.1177/08853282241254741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
The aim of this study is to explore the therapeutic effects of Mg-Sr-Ca containing bioactive glass nanoparticles sodium alginate hydrogel modified mineralized collagen scaffold (Mg-Sr-Ca-BGNs-SA-MC) on the repair of osteoporotic bone defect. During the study, Mg-Sr-Ca containing bioactive glass nanoparticles (Mg-Sr-Ca-BGNs) were synthesized using the sol-gel method, and the Mg-Sr-Ca-BGNs-SA-MC scaffold was synthesized by a simple method. The Mg-Sr-Ca-BGNs and the Mg-Sr-Ca-BGNs-SA-MC scaffold were observed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The elements of Mg, Sr, Ca and Si were effectively integrated into Mg-Sr-Ca-BGNs. SEM analysis revealed the presence of Mg-Sr-Ca-BGNs on the scaffold's surface. Furthermore, the cytotoxicity of the scaffolds were assessed using a live/dead assay. The result of the live/dead assay demonstrated that the scaffold materials were non-toxic to cell growth. More importantly, the in vivo study indicated that implanted scaffold promoted tissue regeneration and integration with newly formed bone. Overall, the Mg-Sr-Ca-BGNs-SA-MC scaffold is suitable for guided bone regeneration and beneficial to repair of osteoporotic bone defects.
Collapse
Affiliation(s)
- Yi Sun
- Anhui Provincial Engineering Research Center for Dental Materials and Application, Wannan Medical College, Wuhu, China
- School of Stomatology, Wannan Medical College, Wuhu, China
| | - Min Shi
- Anhui Provincial Engineering Research Center for Dental Materials and Application, Wannan Medical College, Wuhu, China
- School of Stomatology, Wannan Medical College, Wuhu, China
| | - Bowen Niu
- Anhui Provincial Engineering Research Center for Dental Materials and Application, Wannan Medical College, Wuhu, China
- School of Stomatology, Wannan Medical College, Wuhu, China
| | - Xiangyang Xu
- Anhui Provincial Engineering Research Center for Dental Materials and Application, Wannan Medical College, Wuhu, China
- School of Stomatology, Wannan Medical College, Wuhu, China
| | - Wen Xia
- Anhui Provincial Engineering Research Center for Dental Materials and Application, Wannan Medical College, Wuhu, China
- School of Stomatology, Wannan Medical College, Wuhu, China
| | - Chao Deng
- Anhui Provincial Engineering Research Center for Dental Materials and Application, Wannan Medical College, Wuhu, China
- School of Stomatology, Wannan Medical College, Wuhu, China
| |
Collapse
|
11
|
Zhu X, Liu H, Mei C, Chen F, Guo M, Wei C, Wang D, Luo M, Hu X, Zhao Y, Hao F, Shi C, Li W. A composite hydrogel loaded with the processed pyritum promotes bone repair via stimulate the osteogenic differentiation of BMSCs. BIOMATERIALS ADVANCES 2024; 160:213848. [PMID: 38581745 DOI: 10.1016/j.bioadv.2024.213848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
Tissue engineering shows promise in repairing extensive bone defects. The promotion of proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) by biological scaffolds has a significant impact on bone regeneration outcomes. In this study we used an injectable hydrogel, known as aminated mesoporous silica gel composite hydrogel (MSNs-NH2@GelMA), loaded with a natural drug, processed pyritum (PP), to promote healing of bone defects. The mechanical properties of the composite hydrogel were significantly superior to those of the blank hydrogel. In vitro experiments revealed that the composite hydrogel stimulated the osteogenic differentiation of BMSCs, and significantly increased the expression of type I collagen (Col 1), runt-related transcription factor 2 (Runx 2), alkaline phosphatase (ALP), osteocalcin (OCN). In vivo experiments showed that the composite hydrogel promoted the generation of new bones. These findings provide evidence that the composite hydrogel pyritum-loaded holds promise as a biomaterial for bone repair.
Collapse
Affiliation(s)
- Xingyu Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, China; Nanjing University of Chinese Medicine, Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Jiangsu, Nanjing 210023, China; Jiangsu College of Nursing, Huai'an 223001, China
| | - Huanjin Liu
- Changzhou Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu, Changzhou 213003, China
| | - Chunmei Mei
- School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, China; Nanjing University of Chinese Medicine, Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Jiangsu, Nanjing 210023, China
| | - Fugui Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, China; Nanjing University of Chinese Medicine, Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Jiangsu, Nanjing 210023, China
| | - Mengyu Guo
- School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, China; Nanjing University of Chinese Medicine, Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Jiangsu, Nanjing 210023, China
| | - Chenxu Wei
- Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangsu, Jiangyin, 214400, China
| | - Dan Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100000, China
| | - Meimei Luo
- School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, China; Nanjing University of Chinese Medicine, Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Jiangsu, Nanjing 210023, China
| | - Xiaofang Hu
- School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, China; Nanjing University of Chinese Medicine, Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Jiangsu, Nanjing 210023, China
| | - Yuwei Zhao
- School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, China; Nanjing University of Chinese Medicine, Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Jiangsu, Nanjing 210023, China
| | - Fangyu Hao
- School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, China; Nanjing University of Chinese Medicine, Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Jiangsu, Nanjing 210023, China
| | - Changcan Shi
- School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, China; Nanjing University of Chinese Medicine, Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Jiangsu, Nanjing 210023, China.
| | - Weidong Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Jiangsu, Nanjing 210023, China; Nanjing University of Chinese Medicine, Jiangsu Key Laboratory of Chinese Medicine Processing, Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, Jiangsu, Nanjing 210023, China.
| |
Collapse
|
12
|
Zheng M, Li R, Wang J, Huang Y, Han M, Li Z. Application of metal–organic frameworks in stomatology. AIP ADVANCES 2024; 14. [DOI: 10.1063/5.0206476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Metal–organic frameworks (MOFs), a new class of porous organic–organic hybrid materials controlled by self-assembly of metal atoms and organic pillars, are attracting considerable interest because of their specific properties. More recently, the advantages of different types of nanoscale metal–organic frameworks for the use of MOF nanoparticles in stomatology have been reported in the literature. This article covers the treatment of oral cancer, surface modification of implants, antibacterial dressings, and treatment of periodontitis and periodontal regeneration. It presents recent applications, future challenges, and prospects for MOFs in stomatology in four areas. It provides an overview of recent advances in the design and application of MOFs in stomatology from their intrinsic properties to different syntheses and their use as smart drug delivery systems or a combination of these.
Collapse
Affiliation(s)
- Minghe Zheng
- Stomatology Center of Hangzhou Normal University Affiliated Hospital, The Chinese Hospital of China 1 , Hangzhou 310015, Zhejiang Province, People’s Republic of China
- Hangzhou Normal University, The Chinese University of China 2 , Hangzhou 310015, Zhejiang Province, People’s Republic of China
| | - Ru Li
- Stomatology Center of Hangzhou Normal University Affiliated Hospital, The Chinese Hospital of China 1 , Hangzhou 310015, Zhejiang Province, People’s Republic of China
- Hangzhou Normal University, The Chinese University of China 2 , Hangzhou 310015, Zhejiang Province, People’s Republic of China
| | - Jiaye Wang
- Stomatology Center of Hangzhou Normal University Affiliated Hospital, The Chinese Hospital of China 1 , Hangzhou 310015, Zhejiang Province, People’s Republic of China
- Hangzhou Normal University, The Chinese University of China 2 , Hangzhou 310015, Zhejiang Province, People’s Republic of China
| | - Yanlin Huang
- Stomatology Center of Hangzhou Normal University Affiliated Hospital, The Chinese Hospital of China 1 , Hangzhou 310015, Zhejiang Province, People’s Republic of China
- Hangzhou Normal University, The Chinese University of China 2 , Hangzhou 310015, Zhejiang Province, People’s Republic of China
| | - Mingfang Han
- Stomatology Center of Hangzhou Normal University Affiliated Hospital, The Chinese Hospital of China 1 , Hangzhou 310015, Zhejiang Province, People’s Republic of China
- Hangzhou Normal University, The Chinese University of China 2 , Hangzhou 310015, Zhejiang Province, People’s Republic of China
| | - Zehui Li
- Stomatology Center of Hangzhou Normal University Affiliated Hospital, The Chinese Hospital of China 1 , Hangzhou 310015, Zhejiang Province, People’s Republic of China
- Hangzhou Normal University, The Chinese University of China 2 , Hangzhou 310015, Zhejiang Province, People’s Republic of China
| |
Collapse
|
13
|
Xiang S, Zhang C, Guan Z, Li X, Liu Y, Feng G, Luo X, Zhang B, Weng J, Xiao D. Preparation of a novel antibacterial magnesium carbonate coating on a titanium surface and its in vitro biocompatibility. RSC Adv 2024; 14:10516-10525. [PMID: 38567331 PMCID: PMC10985587 DOI: 10.1039/d4ra00399c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024] Open
Abstract
Magnesium-based coatings have attracted great attention in surface modification of titanium implants due to their superior angiogenic and osteogenic properties. However, their biological effects as a carbonate-based constituent remain unrevealed. In this study, magnesium carbonate coatings were prepared on titanium surfaces under hydrothermal conditions and subsequently treated with hydrogen peroxide. Also, their antibacterial activity and in vitro cell biocompatibility were evaluated. The obtained coatings consisted of nanoparticles without cracks and exhibited excellent adhesion to the substrate. X-ray diffraction (XRD) results indicated pure magnesium carbonate coatings formed on the Ti surface after hydrothermal treatment. After hydrogen peroxide treatment, the phase composition of the coatings had no obvious change. Compared to the untreated coatings, the hydrogen peroxide-treated coatings showed increased surface roughness and hydrophilicity. Co-culture with Staphylococcus aureus (S. aureus) demonstrated that the obtained coatings had good antibacterial activity. In vitro cell culture results showed that the hydrogen peroxide-treated coatings enhanced the viability, proliferation, and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). These findings suggest that this MgCO3-based coating exhibits excellent antibacterial performance and osteogenic potential. Based on the above, this study provides a simple method for preparing titanium implants with dual antibacterial and osteogenic capabilities, holding great promise in clinical applications.
Collapse
Affiliation(s)
- Shougang Xiang
- Department of Orthopaedics, Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital (Beijing Anzhen Hospital Nanchong Hospital), The Second Clinical College of North Sichuan Medical College Nanchong Sichuan 637000 China
| | - Chengdong Zhang
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, Southwest Jiaotong University Chengdu Sichuan 610031 China
| | - Zhenju Guan
- Department of Orthopaedics, Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital (Beijing Anzhen Hospital Nanchong Hospital), The Second Clinical College of North Sichuan Medical College Nanchong Sichuan 637000 China
| | - Xingping Li
- Department of Orthopaedics, Chengfei Hospital Chengdu Sichuan 610091 China
| | - Yumei Liu
- Collaboration Innovation Center for Tissue Repair Material Engineering Technology, China West Normal University Nanchong Sichuan 637002 China
| | - Gang Feng
- Department of Orthopaedics, Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital (Beijing Anzhen Hospital Nanchong Hospital), The Second Clinical College of North Sichuan Medical College Nanchong Sichuan 637000 China
| | - Xuwei Luo
- Department of Orthopaedics, Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital (Beijing Anzhen Hospital Nanchong Hospital), The Second Clinical College of North Sichuan Medical College Nanchong Sichuan 637000 China
| | - Bo Zhang
- Department of Orthopaedics, Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital (Beijing Anzhen Hospital Nanchong Hospital), The Second Clinical College of North Sichuan Medical College Nanchong Sichuan 637000 China
| | - Jie Weng
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, Southwest Jiaotong University Chengdu Sichuan 610031 China
| | - Dongqin Xiao
- Department of Orthopaedics, Research Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital (Beijing Anzhen Hospital Nanchong Hospital), The Second Clinical College of North Sichuan Medical College Nanchong Sichuan 637000 China
| |
Collapse
|
14
|
Qi L, Fang X, Yan J, Pan C, Ge W, Wang J, Shen SG, Lin K, Zhang L. Magnesium-containing bioceramics stimulate exosomal miR-196a-5p secretion to promote senescent osteogenesis through targeting Hoxa7/MAPK signaling axis. Bioact Mater 2024; 33:14-29. [PMID: 38024235 PMCID: PMC10661166 DOI: 10.1016/j.bioactmat.2023.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/19/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Stem cell senescence is characterized by progressive functional dysfunction and secretory phenotypic changes including decreased proliferation, dysfunction of osteogenic and angiogenic differentiation, increased secretion of the senescence-associated secretory phenotype (SASP), which bring difficulties for bone repair. Rescuing or delaying senescence of aged bone marrow mesenchymal stem cells (O-BMSCs) was considered as effective strategy for bone regeneration in aging microenvironment. Magnesium (Mg) ion released from bioceramics was reported to facilitate bone regeneration via enhancing osteogenesis and alleviating senescence. In this study, Akermanite biocreamics (Akt) containing Mg ion as a model was demonstrated to promote osteogenesis and angiogenesis effects of O-BMSCs by activating the MAPK signaling pathway in vitro. Moreover, the enhanced osteogenesis effects might be attributed to enhanced Mg-containing Akt-mediated exosomal miR-196a-5p cargo targeting Hoxa7 and activation of MAPK signaling pathway. Furthermore, the in vivo study confirmed that 3D-printed porous Mg-containing Akt scaffolds effectively increased bone regeneration in cranial defects of aged rats. The current results indicated that the exosomal-miR-196a-5p/Hoxa7/MAPK signaling axis might be the potential mechanism underlying Akt-mediated osteogenesis. The exosome-meditaed therapy stimulated by the released Mg ion contained in Akt biocreamics or other biomaterials might serve as a candidate strategy for bone repair in aged individuals.
Collapse
Affiliation(s)
- Lei Qi
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, 200011, PR China
- National Clinical Research Center for Oral Diseases, 200011, PR China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China
| | - Xin Fang
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, 200011, PR China
- National Clinical Research Center for Oral Diseases, 200011, PR China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China
| | - Jinge Yan
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, 200011, PR China
- National Clinical Research Center for Oral Diseases, 200011, PR China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China
| | - Cancan Pan
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, 200011, PR China
- National Clinical Research Center for Oral Diseases, 200011, PR China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China
| | - Weiwen Ge
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, 200011, PR China
- National Clinical Research Center for Oral Diseases, 200011, PR China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China
| | - Jing Wang
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, 200011, PR China
- National Clinical Research Center for Oral Diseases, 200011, PR China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China
| | - Steve Gf Shen
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, PR China
- National Clinical Research Center for Oral Diseases, PR China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China
- Shanghai University of Medicine and Health Sciences, Shanghai, 201318, PR China
| | - Kaili Lin
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, PR China
- National Clinical Research Center for Oral Diseases, PR China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China
| | - Lei Zhang
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, PR China
- National Clinical Research Center for Oral Diseases, PR China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China
| |
Collapse
|
15
|
Wu H, Yu M, Zhang S, You M, Xiong A, Feng B, Niu J, Yuan G, Yue B, Pei J. Mg-based implants with a sandwiched composite coating simultaneously facilitate antibacterial and osteogenic properties. J Mater Chem B 2024; 12:2015-2027. [PMID: 38304935 DOI: 10.1039/d3tb02744a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Insufficient antibacterial effects and over-fast degradation are the main limitations of magnesium (Mg)-based orthopedic implants. In this study, a sandwiched composite coating containing a triclosan (TCS)-loaded poly(lactic acid) (PLA) layer inside and brushite (DCPD) layer outside was prepared on the surface of the Mg-Nd-Zn-Zr (denoted as JDBM) implant. In vitro degradation tests revealed a remarkable improvement in the corrosion resistance and moderate degradation rate. The drug release profile demonstrated a controllable and sustained TCS release for at least two weeks in vitro. The antibacterial rates of the implant were all over 99.8% for S. aureus, S. epidermidis, and E. coli, demonstrating superior antibacterial effects. Additionally, this coated JDBM implant exhibited no cytotoxicity but improved cell adhesion and proliferation, indicating excellent cytocompatibility. In vivo assays were conducted by implant-related femur osteomyelitis and osseointegration models in rats. Few bacteria were attached to the implant surface and the surrounding bone tissue. Furthermore, the coated JDBM implant exhibited more new bone formation than other groups due to the synergistic biological effects of released TCS and Mg2+, revealing excellent osteogenic ability. In summary, the JDBM implant with the sandwiched composite coating could significantly enhance the antibacterial activities and osteogenic properties simultaneously by the controllable release of TCS and Mg2+, presenting great potential for clinical transformation.
Collapse
Affiliation(s)
- Han Wu
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Mengjiao Yu
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Shutao Zhang
- Department of Bone and Joint Surgery, Department of Orthopaedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mingyu You
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Ao Xiong
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Boxuan Feng
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Jialin Niu
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Guangyin Yuan
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Bing Yue
- Department of Bone and Joint Surgery, Department of Orthopaedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jia Pei
- National Engineering Research Center of Light Alloy Net Forming and State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
16
|
Hong X, Tian G, Zhu Y, Ren T. Exogeneous metal ions as therapeutic agents in cardiovascular disease and their delivery strategies. Regen Biomater 2023; 11:rbad103. [PMID: 38173776 PMCID: PMC10761210 DOI: 10.1093/rb/rbad103] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/26/2023] [Accepted: 11/11/2023] [Indexed: 01/05/2024] Open
Abstract
Metal ions participate in many metabolic processes in the human body, and their homeostasis is crucial for life. In cardiovascular diseases (CVDs), the equilibriums of metal ions are frequently interrupted, which are related to a variety of disturbances of physiological processes leading to abnormal cardiac functions. Exogenous supplement of metal ions has the potential to work as therapeutic strategies for the treatment of CVDs. Compared with other therapeutic drugs, metal ions possess broad availability, good stability and safety and diverse drug delivery strategies. The delivery strategies of metal ions are important to exert their therapeutic effects and reduce the potential toxic side effects for cardiovascular applications, which are also receiving increasing attention. Controllable local delivery strategies for metal ions based on various biomaterials are constantly being designed. In this review, we comprehensively summarized the positive roles of metal ions in the treatment of CVDs from three aspects: protecting cells from oxidative stress, inducing angiogenesis, and adjusting the functions of ion channels. In addition, we introduced the transferability of metal ions in vascular reconstruction and cardiac tissue repair, as well as the currently available engineered strategies for the precise delivery of metal ions, such as integrated with nanoparticles, hydrogels and scaffolds.
Collapse
Affiliation(s)
- Xiaoqian Hong
- Department of Cardiology of the Second Affiliated Hospital and State Key Laboratory of Transvascular Implantation Devices, Cardiovascular Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Geer Tian
- Department of Cardiology of the Second Affiliated Hospital and State Key Laboratory of Transvascular Implantation Devices, Cardiovascular Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310009, China
- Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| | - Yang Zhu
- Binjiang Institute of Zhejiang University, Hangzhou 310053, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Tanchen Ren
- Department of Cardiology of the Second Affiliated Hospital and State Key Laboratory of Transvascular Implantation Devices, Cardiovascular Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
17
|
Luo Y, Liu H, Zhang Y, Liu Y, Liu S, Liu X, Luo E. Metal ions: the unfading stars of bone regeneration-from bone metabolism regulation to biomaterial applications. Biomater Sci 2023; 11:7268-7295. [PMID: 37800407 DOI: 10.1039/d3bm01146a] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
In recent years, bone regeneration has emerged as a remarkable field that offers promising guidance for treating bone-related diseases, such as bone defects, bone infections, and osteosarcoma. Among various bone regeneration approaches, the metal ion-based strategy has surfaced as a prospective candidate approach owing to the extensive regulatory role of metal ions in bone metabolism and the diversity of corresponding delivery strategies. Various metal ions can promote bone regeneration through three primary strategies: balancing the effects of osteoblasts and osteoclasts, regulating the immune microenvironment, and promoting bone angiogenesis. In the meantime, the complex molecular mechanisms behind these strategies are being consistently explored. Moreover, the accelerated development of biomaterials broadens the prospect of metal ions applied to bone regeneration. This review highlights the potential of metal ions for bone regeneration and their underlying mechanisms. We propose that future investigations focus on refining the clinical utilization of metal ions using both mechanistic inquiry and materials engineering to bolster the clinical effectiveness of metal ion-based approaches for bone regeneration.
Collapse
Affiliation(s)
- Yankun Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hanghang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Emergency, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, Renmin Nanlu, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yaowen Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yao Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Shibo Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xian Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - En Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
- Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| |
Collapse
|
18
|
Zhu Y, Jia G, Yang Y, Weng J, Liu S, Zhang M, Zhang G, Qin H, Chen Y, Yang Q, Yuan G, Yu F, Zeng H. Biomimetic Porous Magnesium Alloy Scaffolds Promote the Repair of Osteoporotic Bone Defects in Rats through Activating the Wnt/β-Catenin Signaling Pathway. ACS Biomater Sci Eng 2023. [PMID: 37200162 DOI: 10.1021/acsbiomaterials.2c01097] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In this study, biomimetic porous magnesium alloy scaffolds were prepared to repair femoral bone defects in ovariectomized osteoporotic rats. The purpose of the study was to investigate the effect of biomimetic porous magnesium alloy scaffolds on repairing osteoporotic bone defects and possible mechanisms. The animal model of osteoporosis was established in female SD rats. Three months later, a bone defect of 3 mm in diameter and 3 mm in depth was created in the lateral condyle of the right femur. The rats were then randomly divided into two groups: an experimental group and a control group. Four weeks after surgery, gross specimens were observed and micro-CT scans were performed. The repair of osteoporotic femoral defects in rats was studied histologically using HE staining, Masson staining, and Goldner staining. The expression of Wnt5a, β-catenin, and BMP-2 was measured between groups by immunohistochemical staining. The bone defect was repaired better after the application of biomimetic porous magnesium alloy scaffolds. Immunohistochemical results showed significantly higher expression of Wnt5a, β-catenin, and BMP-2. To conclude, the biomimetic porous magnesium alloy scaffolds proposed in this paper might promote the repair of osteoporotic femoral bone defects in rats possibly through activating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Yuanchao Zhu
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Gaozhi Jia
- School of Intelligent Manufacturing and Equipment, Shenzhen Institute of Information Technology, Shenzhen 518172, China
| | - Yifei Yang
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Jian Weng
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Su Liu
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Mengwei Zhang
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Geng Zhang
- Zunyi Medical University, Zunyi 563000, China
| | - Haotian Qin
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Yixiao Chen
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Qi Yang
- Department of Medical Ultrasound, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Guangyin Yuan
- Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fei Yu
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Hui Zeng
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| |
Collapse
|