1
|
Sahoo GP, Pattnaik A, Kumar V, Jena G. Low-dose bisphenol A plus arsenite: Continuous or intermittent exposures in Sprague-Dawley rats; Effects on kidney oxidative stress, DNA damage, ferroptosis, and fibrosis. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2025; 904:503871. [PMID: 40382190 DOI: 10.1016/j.mrgentox.2025.503871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/18/2025] [Accepted: 04/20/2025] [Indexed: 05/20/2025]
Abstract
Arsenic and bisphenol A (BPA) are widespread environmental pollutants. We have studied the nephrotoxicity of arsenite (ARS), 10 mg/L in drinking water, plus BPA, 50 µg/kg oral dose, in juvenile Sprague-Dawley rats. Animals were randomized into seven groups and exposed to the chemicals either continuously or intermittently, for 8 weeks. The parameters evaluated were urine biomarkers, histopathological and transmission electron microscopic (TEM) examinations, DNA damage (halo assay), and protein expressions. Continuous exposure to AS and BPA significantly increased urinary creatinine, albumin, and total protein, and decreased blood urea nitrogen (BUN). Histopathological and TEM data showed brush border detachment, iron accumulation, podocyte injury, increased slit diaphragm space, and collagen deposition in both exposure groups. Significantly greater DNA damage was seen in the combined-exposure group than in the other experimental groups. Combination exposure in the continuous and intermittent groups showed renal fibrosis and ferroptosis and gene expression analysis revealed a significant increase in Bax and decrease in SIRT 1. Combination exposure was more harmful than the individual exposures in causing kidney injury in these animals.
Collapse
Affiliation(s)
- Girija Prasanna Sahoo
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Mohali, Punjab 160062, India.
| | - Asutosh Pattnaik
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Mohali, Punjab 160062, India.
| | - Vinod Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Mohali, Punjab 160062, India.
| | - Gopabandhu Jena
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Mohali, Punjab 160062, India.
| |
Collapse
|
2
|
Sahu C, Jena G. Combination treatment of zinc and selenium intervention ameliorated BPA-exposed germ cell damage in SD rats: elucidation of molecular mechanisms. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6685-6704. [PMID: 38498059 DOI: 10.1007/s00210-024-03044-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 03/06/2024] [Indexed: 03/19/2024]
Abstract
Bisphenol A (BPA) is a commonly used environmental toxicant, is easily exposed to the human body and causes testicular damage, sperm abnormalities, DNA damage and apoptosis, and interferes in the process spermatogenesis and steroidal hormone production along with obstruction in testes and epididymis development. Zinc (Zn), a potent regulator of antioxidant balance, is responsible for cellular homeostasis, enzymes and proteins activities during spermatogenesis for cell defence mechanisms in the testes. Selenium (Se) is required for spermatogenesis, antioxidant action and in the activities of different selenoproteins. Both Zn and Se are essential simultaneously for the proper regulation of spermatogenesis and sperm maturation as well as protection against chemical and disease-associated germ cell toxicity. Thus, the study aimed to understand the importance and beneficial effect of Zn and Se co-treatment against BPA-exposed testicular damage in rats. BPA 100 and 200 mg/kg/day was exposed through an oral gavage. Zn (3 mg/kg/day) i.p. and Se (0.5 mg/kg/day) i.p. were injected for 8 weeks. The testicular toxicity was evaluated by measuring body and organs weight, biochemical investigations, sperm parameters, testicular and epididymal histopathology, quantification DNA damage by halo assay, DNA breaks (TUNEL assay), immunohistochemistry and western blot. Results revealed that Zn and Se co-treatment ameliorated BPA-associated male gonadal toxicity in rat as revealed by decreased SGPT, SGOT and BUN levels in serum, reduced testes and epididymis tissue injury, DNA breaks, apoptosis, expressions of 8-OHdG, γ-H2AX and NFκB with an increased serum testosterone and catalase levels. These findings suggest that Zn and Se co-treatment could be a beneficial and protective option against BPA-exposed testicular and epididymal toxicity.
Collapse
Affiliation(s)
- Chittaranjan Sahu
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S., Nagar, Punjab, 160062, India
| | - Gopabandhu Jena
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S., Nagar, Punjab, 160062, India.
| |
Collapse
|
3
|
Singla S, Jena G. Studies on the mechanism of local and extra-intestinal tissue manifestations in AOM-DSS-induced carcinogenesis in BALB/c mice: role of PARP-1, NLRP3, and autophagy. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4321-4337. [PMID: 38091080 DOI: 10.1007/s00210-023-02878-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/28/2023] [Indexed: 05/23/2024]
Abstract
Colitis-associated colorectal cancer (CACC) is one of the devastating complications of long-term inflammatory bowel disease and is associated with substantial morbidity and mortality. Combination of azoxymethane (AOM) and dextran sulfate sodium (DSS) has been extensively used for inflammation-mediated colon tumor development due to its reproducibility, potency, histological and molecular changes, and resemblance to human CACC. In the tumor microenvironment and extra-intestinal tissues, PARP-1, NLRP3 inflammasome, and autophagy's biological functions are complicated and encompass intricate interactions between these molecular components. The focus of the present investigation is to determine the colonic and extra-intestinal tissue damage induced by AOM-DSS and related molecular mechanisms. Azoxymethane (10 mg/kg, i.p.; single injection) followed by DSS (3 cycles, 7 days per cycle) over a period of 10 weeks induced colitis-associated colon cancer in male BALB/c mice. By initiating carcinogenesis with a single injection of azoxymethane (AOM) and then establishing inflammation with dextran sulfate sodium (DSS), a two-stage murine model for CACC was developed. Biochemical parameters, ELISA, histopathological and immunohistochemical analysis, and western blotting have been performed to evaluate the colonic, hepatic, testicular and pancreatic damage. In addition, the AOM/DSS-induced damage has been assessed by analyzing the expression of a variety of molecular targets, including proliferating cell nuclear antigen (PCNA), interleukin-10 (IL-10), AMP-activated protein kinase (AMPK), poly (ADP-ribose) polymerase-1 (PARP-1), cysteine-associated protein kinase-1 (caspase-1), NLR family pyrin domain containing 3 (NLRP3), beclin-1, and interleukin-1β (IL-1β). Present findings revealed that AOM/DSS developed tumors in colon tissue followed by extra-intestinal hepatic, testicular, and pancreatic damages.
Collapse
Affiliation(s)
- Shivani Singla
- Facility for Risk Assessment and Intervention Studies, Dept. of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S, Nagar, Punjab, 160062, India
| | - Gopabandhu Jena
- Facility for Risk Assessment and Intervention Studies, Dept. of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S, Nagar, Punjab, 160062, India.
| |
Collapse
|
4
|
Charles DA, Prince SE. Deciphering the molecular mechanism of NLRP3 in BPA-mediated toxicity: Implications for targeted therapies. Heliyon 2024; 10:e28917. [PMID: 38596095 PMCID: PMC11002687 DOI: 10.1016/j.heliyon.2024.e28917] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/11/2024] Open
Abstract
Bisphenol-A (BPA), a pervasive industrial chemical used in polymer synthesis, is found in numerous consumer products including food packaging, medical devices, and resins. Detectable in a majority of the global population, BPA exposure occurs via ingestion, inhalation, and dermal routes. Extensive research has demonstrated the adverse health effects of BPA, particularly its disruption of immune and endocrine systems, along with genotoxic potential. This review focuses on the complex relationship between BPA exposure and the NOD-like receptor protein 3 (NLRP3) inflammasome, a multiprotein complex central to inflammatory disease processes. We examine how BPA induces oxidative stress through the generation of intracellular free radicals, subsequently activating NLRP3 signaling. The mechanistic details of this process are explored, including the involvement of signaling cascades such as PI3K/AKT, JAK/STAT, AMPK/mTOR, and ERK/MAPK, which are implicated in NLRP3 inflammasome activation. A key focus of this review is the wide-ranging organ toxicities associated with BPA exposure, including hepatic, renal, gastrointestinal, and cardiovascular dysfunction. We investigate the immunopathogenesis and molecular pathways driving these injuries, highlighting the interplay among BPA, oxidative stress, and the NLRP3 inflammasome. Finally, this review explores the emerging concept of targeting NLRP3 as a potential therapeutic strategy to mitigate the organ toxicities stemming from BPA exposure. This work integrates current knowledge, emphasizes complex molecular mechanisms, and promotes further research into NLRP3-targeted interventions.
Collapse
Affiliation(s)
- Doveit Antony Charles
- Department of Biotechnology, School of Biosciences and Technology, VIT, Vellore, Tamil Nadu, India
| | - Sabina Evan Prince
- Department of Biotechnology, School of Biosciences and Technology, VIT, Vellore, Tamil Nadu, India
| |
Collapse
|
5
|
Zhang X, Flaws JA, Spinella MJ, Irudayaraj J. The Relationship between Typical Environmental Endocrine Disruptors and Kidney Disease. TOXICS 2022; 11:32. [PMID: 36668758 PMCID: PMC9863798 DOI: 10.3390/toxics11010032] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/17/2022] [Accepted: 12/27/2022] [Indexed: 05/12/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are exogenous substances that alter the endocrine function of an organism, to result in adverse effects on growth and development, metabolism, and reproductive function. The kidney is one of the most important organs in the urinary system and an accumulation point. Studies have shown that EDCs can cause proteinuria, affect glomeruli and renal tubules, and even lead to diabetes and renal fibrosis in animal and human studies. In this review, we discuss renal accumulation of select EDCs such as dioxins, per- and polyfluoroalkyl substances (PFAS), bisphenol A (BPA), and phthalates, and delineate how exposures to such EDCs cause renal lesions and diseases, including cancer. The regulation of typical EDCs with specific target genes and the activation of related pathways are summarized.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Jodi A. Flaws
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Michael J. Spinella
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Joseph Irudayaraj
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute of Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|