1
|
In vitro vascular toxicity assessment of NitDOX, a novel NO-releasing doxorubicin. Eur J Pharmacol 2020; 880:173164. [PMID: 32437742 DOI: 10.1016/j.ejphar.2020.173164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/23/2020] [Accepted: 05/04/2020] [Indexed: 12/16/2022]
Abstract
The conjugation of doxorubicin (DOX) with nitric oxide (NO)-releasing groups gave rise to novel anthracyclines, such as nitrooxy-DOX (NitDOX), capable to overcome multidrug resistance. The widely described anthracycline cardiovascular toxicity, however, might limit their clinical use. This study aimed to investigate NitDOX-induced effects, as potential hazard, on vascular smooth muscle A7r5 and endothelial EA.hy926 cell viability, on the mechanical activity of freshly and cultured rat aorta rings, as well as on Cav1.2 channels of A7r5 cells. DOX was used as a reference compound. Although an increase in intracellular radicals and a reduction in mitochondrial potential occurred upon treatment with both drugs, A7r5 and EA.hy926 cells proved to be more sensitive to DOX than to NitDOX. Both compounds promoted comparable effects in A7r5 cells, whereas NitDOX was less active than DOX in inducing DNA damage and in eliciting apoptotic-mediated cell death revealed as an increase in sub-diploid-, DAPI- and annexin V-positive- EA.hy926 cell percentage. Moreover, in EA.hy926 cells, NitDOX doubled basal NO content, while preincubation with the NO-scavenger PTIO increased NitDOX-induced cytotoxicity. DOX exhibited a negligible contracturing effect in endothelium-intact rings, while NitDOX induced a significant ODQ-sensible, vasodilation in endothelium-denuded rings. In arteries cultured with both drugs for 7 days, NitDOX prevented either phenylephrine- or KCl-induced contraction at a concentration 10-fold higher than that of DOX. These results demonstrate that NitDOX displays a more favourable vascular toxicity profile than DOX. Taking into account its greater efficacy against drug-resistant cells, NitDOX is worth of further investigations in preclinical and clinical settings.
Collapse
|
2
|
Marques-Aleixo I, Santos-Alves E, Oliveira PJ, Moreira PI, Magalhães J, Ascensão A. The beneficial role of exercise in mitigating doxorubicin-induced Mitochondrionopathy. Biochim Biophys Acta Rev Cancer 2018; 1869:189-199. [PMID: 29408395 DOI: 10.1016/j.bbcan.2018.01.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 01/07/2023]
Abstract
Doxorubicin (DOX) is a widely used antineoplastic agent for a wide range of cancers, including hematological malignancies, soft tissue sarcomas and solid tumors. However, DOX exhibits a dose-related toxicity that results in life-threatening cardiomyopathy. In addition to the heart, there is evidence that DOX toxicity extends to other organs. This general toxicity seems to be related to mitochondrial network structural, molecular and functional impairments. Several countermeasures for these negative effects have been proposed, being physical exercise, not only one of the most effective non-pharmacologic strategy but also widely recommended as booster against cancer-related fatigue. It is widely accepted that mitochondria are critical sensors of tissue functionality, both modulated by DOX and exercise. Therefore, this review focuses on the current understanding of the mitochondrial-mediated mechanisms underlying the protective effect of exercise against DOX-induced toxicity, not only limited to the cardiac tissue, but also in other tissues such as skeletal muscle, liver and brain. We here analyze recent developments regarding the beneficial effects of exercise targeting mitochondrial responsive phenotypes against redox changes, mitochondrial bioenergetics, apoptotic, dynamics and quality control signalling affected by DOX treatment.
Collapse
Affiliation(s)
- I Marques-Aleixo
- CIAFEL - Research Centre in Physical Activity, Health and Leisure, Portugal; LAMETEX - Laboratory of Exercise and Metabolism; Faculty of Psychology, Education and Sport, University Lusófona of Porto, Portugal.
| | - E Santos-Alves
- CIAFEL - Research Centre in Physical Activity, Health and Leisure, Portugal; LAMETEX - Laboratory of Exercise and Metabolism; Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Spain
| | - P J Oliveira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, UC Biotech Building, Biocant Park, Cantanhede, Portugal
| | - P I Moreira
- CNC - Centre for Neuroscience and Cell Biology, University of Coimbra, Portugal; Institute of Physiology, Faculty of Medicine, University of Coimbra, Portugal
| | - J Magalhães
- CIAFEL - Research Centre in Physical Activity, Health and Leisure, Portugal; LAMETEX - Laboratory of Exercise and Metabolism; Faculty of Sport, University of Porto, Portugal
| | - A Ascensão
- CIAFEL - Research Centre in Physical Activity, Health and Leisure, Portugal; LAMETEX - Laboratory of Exercise and Metabolism; Faculty of Sport, University of Porto, Portugal
| |
Collapse
|
3
|
Ajithkumar GS, Vinitha A, Binil Raj SS, Kartha CC. Drug Resistance of Endocardial Endothelial Cells is Related to Higher Endogenous ABCG2. Cardiovasc Toxicol 2015; 16:390-405. [PMID: 26661076 DOI: 10.1007/s12012-015-9351-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Endocardial endothelial cells (EECs), when compared with endothelial cells of arteries and veins, possess higher resistance to apoptosis-inducing anticancer agents. The mechanism of this resistance property is unknown. We have investigated the molecular mechanism, which contributes to increased cell survival capacity in EECs. We explored whether the resistance to apoptosis is associated with the cellular expression of ATP-binding cassette transporters such as P-glycoprotein, MRP-1, and ABCG2. We used primary and immortalized porcine endocardial endothelial cells (PEECs and hTERT PEECs) and compared the results with that in porcine aortic endothelial cells (PAECs), left atrioventricular valve endothelial cells (PVECs), and human umbilical vein endothelial cell line (EA.hy926). FACS and immunoblot analysis revealed a significantly higher expression of ABCG2 in PEECs and hTERT PEECs compared to PAECs, PVECs, and EA.hy926. Using apoptosis-inducing anticancer agents such as doxorubicin and camptothecin, through chromatin condensation assay and immunoblot analysis, we demonstrated a higher resistance to apoptosis in EECs compared to PAECs, PVECs, and EA.hy926. Interestingly, resistance in EECs reversed in presence of ABCG2 specific inhibitor, fumitremorgin C. Our observations suggest that an inherently high expression of ABCG2 in EECs protects them against apoptosis in presence of anticancer agents.
Collapse
Affiliation(s)
- G S Ajithkumar
- Cardiovascular Disease Biology Division, Rajiv Gandhi Centre for Biotechnology, Thycaud. P.O, Trivandrum, Kerala, 695014, India.
| | - A Vinitha
- Cardiovascular Disease Biology Division, Rajiv Gandhi Centre for Biotechnology, Thycaud. P.O, Trivandrum, Kerala, 695014, India
| | - S S Binil Raj
- Cardiovascular Disease Biology Division, Rajiv Gandhi Centre for Biotechnology, Thycaud. P.O, Trivandrum, Kerala, 695014, India
| | - C C Kartha
- Cardiovascular Disease Biology Division, Rajiv Gandhi Centre for Biotechnology, Thycaud. P.O, Trivandrum, Kerala, 695014, India.
| |
Collapse
|
4
|
Sereno M, Montoro FJ, Casanova C, Gutiérrez-Gutiérrez G, Ojeda J, Casado ES. An unusual cause of respiratory failure in a colon cancer patient. Mol Clin Oncol 2015; 3:1152-1154. [PMID: 26623068 DOI: 10.3892/mco.2015.608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/22/2015] [Indexed: 11/06/2022] Open
Abstract
Permanent central venous catheters (CVC), such as Port-a-Cath®, Hickmann® or PICC®, are widely used in oncology patients for cancer treatment. Thrombosis is a frequent complication that should be ruled out, as it is associated with potentially severe infection and hemodynamic consequences. This is the case report of a male patient who was undergoing chemotherapy for colon cancer. The patient presented with an atrial mass secondary to a CVC-related organized thrombus located inside the atrial cavity. The mass was inducing a massive right-to-left intracardial shunt due to a persistent foramen ovale and signs of respiratory failure that required surgical intervention to remove the intracardial mass.
Collapse
Affiliation(s)
- María Sereno
- Department of Medical Oncology, Infanta Sofía University Hospital, San Sebastián de los Reyes, 28702 Madrid, Spain
| | - Francisco Javier Montoro
- Department of Pulmonology, Infanta Sofía University Hospital, San Sebastián de los Reyes, 28702 Madrid, Spain
| | - Carlos Casanova
- Department of Cardiology, Infanta Sofía University Hospital, San Sebastián de los Reyes, 28702 Madrid, Spain
| | | | - Joaquín Ojeda
- Department of Neurology, Infanta Sofía University Hospital, San Sebastián de los Reyes, 28702 Madrid, Spain
| | - Enrique Sáenz Casado
- Department of Medical Oncology, Infanta Sofía University Hospital, San Sebastián de los Reyes, 28702 Madrid, Spain
| |
Collapse
|
5
|
Botelho G, Bernardini C, Zannoni A, Ventrella V, Bacci ML, Forni M. Effect of tributyltin on mammalian endothelial cell integrity. Comp Biochem Physiol C Toxicol Pharmacol 2015; 176-177:79-86. [PMID: 26256121 DOI: 10.1016/j.cbpc.2015.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/22/2015] [Accepted: 07/29/2015] [Indexed: 12/19/2022]
Abstract
Tributyltin (TBT), is a man-made pollutants, known to accumulate along the food chain, acting as an endocrine disruptor in marine organisms, with toxic and adverse effects in many tissues including vascular system. Based on the absence of specific studies of TBT effects on endothelial cells, we aimed to evaluate the toxicity of TBT on primary culture of porcine aortic endothelial cells (pAECs), pig being an excellent model to study human cardiovascular disease. pAECs were exposed for 24h to TBT (100, 250, 500, 750 and 1000nM) showing a dose dependent decrease in cell viability through both apoptosis and necrosis. Moreover the ability of TBT (100 and 500nM) to influence endothelial gene expression was investigated at 1, 7 and 15h of treatment. Gene expression of tight junction molecules, occludin (OCLN) and tight junction protein-1 (ZO-1) was reduced while monocyte adhesion and adhesion molecules ICAM-1 and VCAM-1 (intercellular adhesion molecule-1 and vascular cell adhesion molecule-1) levels increased significantly at 1h. IL-6 and estrogen receptors 1 and 2 (ESR-1 and ESR-2) mRNAs, after a transient decrease, reached the maximum levels after 15h of exposure. Finally, we demonstrated that TBT altered endothelial functionality greatly increasing monocyte adhesion. These findings indicate that TBT deeply alters endothelial profile, disrupting their structure and interfering with their ability to interact with molecules and other cells.
Collapse
Affiliation(s)
- G Botelho
- Department of Veterinary Medical Sciences - DEVET, UNICENTRO - Universidade Estadual do Centro, Oeste do Paraná, Brazil.
| | - C Bernardini
- Department of Veterinary Medical Sciences - DIMEVET, University of Bologna, Ozzano Emilia, Bologna, Italy.
| | - A Zannoni
- Department of Veterinary Medical Sciences - DIMEVET, University of Bologna, Ozzano Emilia, Bologna, Italy.
| | - V Ventrella
- Department of Veterinary Medical Sciences - DIMEVET, University of Bologna, Ozzano Emilia, Bologna, Italy.
| | - M L Bacci
- Department of Veterinary Medical Sciences - DIMEVET, University of Bologna, Ozzano Emilia, Bologna, Italy.
| | - M Forni
- Department of Veterinary Medical Sciences - DIMEVET, University of Bologna, Ozzano Emilia, Bologna, Italy.
| |
Collapse
|
6
|
Kachamakova-Trojanowska N, Bukowska-Strakova K, Zukowska M, Dulak J, Jozkowicz A. The real face of endothelial progenitor cells - Circulating angiogenic cells as endothelial prognostic marker? Pharmacol Rep 2015; 67:793-802. [PMID: 26321283 DOI: 10.1016/j.pharep.2015.05.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 02/08/2023]
Abstract
Endothelial progenitor cells (EPCs) have been extensively studied for almost 19 years now and were considered as a potential marker for endothelial regeneration ability. On the other hand, circulating endothelial cells (CEC) were studied as biomarker for endothelial injury. Yet, in the literature, there is also huge incoherency in regards to terminology and protocols used. This results in misleading conclusions on the role of so called "EPCs", especially in the clinical field. The discrepancies are mainly due to strong phenotypic overlap between EPCs and circulating angiogenic cells (CAC), therefore changes in "EPC" terminology have been suggested. Other factors leading to inconsistent results are varied definitions of the studied populations and the lack of universal data reporting, which could strongly affect data interpretation. The current review is focused on controversies concerning the use of "EPCs"/CAC and CEC as putative endothelial diagnostic markers.
Collapse
Affiliation(s)
- Neli Kachamakova-Trojanowska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Karolina Bukowska-Strakova
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Monika Zukowska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Jozef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
7
|
Uhm JS, Chung WB, Yoon JS, Oh YS, Youn HJ. Effects of adriamycin and candesartan on the collagen and elastin of the aorta in rats. Clin Hypertens 2014; 20:8. [PMID: 26909195 PMCID: PMC4763430 DOI: 10.1186/2056-5909-1-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 09/10/2014] [Indexed: 01/31/2023] Open
Abstract
Introduction It has been reported that the chemotherapeutic agent, adriamycin, not only has an effect on the myocardium but also on the arteries. The aim of this study is to elucidate effects of adriamycin and an angiotensin receptor blocker, candesartan, on collagen and elastin of the aorta in rats. Methods Twenty four male 8-week-old Wistar-Kyoto rats were divided into four groups: control (C) group, adriamycin-treated (AD) group, candesartan-treated (CA) group, and adriamycin- and candesartan-treated (AD + CA) group. Adriamycin of 2.5 mg/kg/wk was administered intraperitoneally one time per week for 6 weeks, and candesartan of 10 mg/kg/day was administered orally everyday for 6 weeks. After 6 weeks, the rats were sacrificed and the aortas were harvested. Hematoxylin-eosin staining, Verhoff’s elastic, and Goldner’s trichrome staining were performed for histopathologic analyses. Tunica media thickness, collagen, and elastic area fractions were measured quantitatively with a computerized digital image analyzer. Results Tunica media thickness in the CA and AD + CA groups was significantly lesser than that in the C and AD groups, respectively. The AD and AD + CA groups had a tendency of lower elastin area fraction than the C and CA groups, respectively. Collagen area fraction in the AD + CA group was significantly lower than that in the AD group. There were no significant differences of collagen/elastin ratio between groups. Conclusions These findings suggest that adriamycin has a tendency of decreasing the quantity of elastin fibers and candesartan cannot mitigate the effects of adriamycin on elastin fibers. Electronic supplementary material The online version of this article (doi:10.1186/2056-5909-1-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jae-Sun Uhm
- Department of Cardiology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Woo-Baek Chung
- Department of Cardiology, Catholic University of Korea College of Medicine, Seoul, Korea
| | - Jung-Sook Yoon
- Clinical Research Center, Yeouido St Mary's Hospital, Seoul, Korea
| | - Yong-Seog Oh
- Department of Cardiology, Catholic University of Korea College of Medicine, Seoul, Korea
| | - Ho-Joong Youn
- Department of Cardiology, Catholic University of Korea College of Medicine, Seoul, Korea
| |
Collapse
|
8
|
Farber-Katz SE, Dippold HC, Buschman MD, Peterman MC, Xing M, Noakes CJ, Tat J, Ng MM, Rahajeng J, Cowan DM, Fuchs GJ, Zhou H, Field SJ. DNA damage triggers Golgi dispersal via DNA-PK and GOLPH3. Cell 2014; 156:413-27. [PMID: 24485452 DOI: 10.1016/j.cell.2013.12.023] [Citation(s) in RCA: 185] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 09/04/2013] [Accepted: 11/14/2013] [Indexed: 01/29/2023]
Abstract
The response to DNA damage, which regulates nuclear processes such as DNA repair, transcription, and cell cycle, has been studied thoroughly. However, the cytoplasmic response to DNA damage is poorly understood. Here, we demonstrate that DNA damage triggers dramatic reorganization of the Golgi, resulting in its dispersal throughout the cytoplasm. We further show that DNA-damage-induced Golgi dispersal requires GOLPH3/MYO18A/F-actin and the DNA damage protein kinase, DNA-PK. In response to DNA damage, DNA-PK phosphorylates GOLPH3, resulting in increased interaction with MYO18A, which applies a tensile force to the Golgi. Interference with the Golgi DNA damage response by depletion of DNA-PK, GOLPH3, or MYO18A reduces survival after DNA damage, whereas overexpression of GOLPH3, as is observed frequently in human cancers, confers resistance to killing by DNA-damaging agents. Identification of the DNA-damage-induced Golgi response reveals an unexpected pathway through DNA-PK, GOLPH3, and MYO18A that regulates cell survival following DNA damage.
Collapse
Affiliation(s)
- Suzette E Farber-Katz
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0707, USA
| | - Holly C Dippold
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0707, USA
| | - Matthew D Buschman
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0707, USA
| | - Marshall C Peterman
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0707, USA
| | - Mengke Xing
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0707, USA
| | - Christopher J Noakes
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0707, USA
| | - John Tat
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0707, USA
| | - Michelle M Ng
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0707, USA
| | - Juliati Rahajeng
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0707, USA
| | - David M Cowan
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0707, USA
| | - Greg J Fuchs
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093-0653, USA
| | - Huilin Zhou
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093-0653, USA
| | - Seth J Field
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0707, USA.
| |
Collapse
|
9
|
Uhm JS, Chung WB, Yoon JS, Oh YS, Youn HJ. Effects of adriamycin and candesartan on the collagen and elastin of the aorta in rats. Clin Hypertens 2014. [DOI: 10.1186/2056-5909-20-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
10
|
Gajalakshmi P, Priya MK, Pradeep T, Behera J, Muthumani K, Madhuwanti S, Saran U, Chatterjee S. Breast cancer drugs dampen vascular functions by interfering with nitric oxide signaling in endothelium. Toxicol Appl Pharmacol 2013; 269:121-31. [PMID: 23531514 DOI: 10.1016/j.taap.2013.03.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 01/24/2013] [Accepted: 03/01/2013] [Indexed: 01/05/2023]
Abstract
Widely used chemotherapeutic breast cancer drugs such as Tamoxifen citrate (TC), Capecitabine (CP) and Epirubicin (EP) are known to cause various cardiovascular side-effects among long term cancer survivors. Vascular modulation warrants nitric oxide (NO) signal transduction, which targets the vascular endothelium. We hypothesize that TC, CP and EP interference with the nitric oxide downstream signaling specifically, could lead to cardiovascular dysfunctions. The results demonstrate that while all three drugs attenuate NO and cyclic guanosine mono-phosphate (cGMP) production in endothelial cells, they caused elevated levels of NO in the plasma and RBC. However, PBMC and platelets did not show any significant changes under treatment. This implies that the drug effects are specific to the endothelium. Altered eNOS and phosphorylated eNOS (Ser-1177) localization patterns in endothelial cells were observed following drug treatments. Similarly, the expression of phosphorylated eNOS (Ser-1177) protein was decreased under the treatment of drugs. Altered actin polymerization was also observed following drug treatment, while addition of SpNO and 8Br-cGMP reversed this effect. Incubation with the drugs decreased endothelial cell migration whereas addition of YC-1, SC and 8Br-cGMP recovered the effect. Additionally molecular docking studies showed that all three drugs exhibited a strong binding affinity with the catalytic domain of human sGC. In conclusion, results indicate that TC, CP and EP cause endothelial dysfunctions via the NO-sGC-cGMP pathway and these effects could be recovered using pharmaceutical agonists of NO signaling pathway. Further, the study proposes a combination therapy of chemotherapeutic drugs and cGMP analogs, which would confer protection against chemotherapy mediated vascular dysfunctions in cancer patients.
Collapse
|
11
|
|
12
|
Alpsoy S, Uygur R, Aktas C, Topcu B, Kanter M, Erboga M, Karakaya O, Gedikbasi A. The effects of onion (Allium cepa) extract on doxorubicin-induced apoptosis in aortic endothelial cells. J Appl Toxicol 2011; 33:364-9. [DOI: 10.1002/jat.1750] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2011] [Revised: 09/03/2011] [Accepted: 09/03/2011] [Indexed: 01/28/2023]
Affiliation(s)
- Seref Alpsoy
- Department of Cardiology, Faculty of Medicine; Namik Kemal University; Tekirdag; Turkey
| | - Ramazan Uygur
- Department of Anatomy, Faculty of Medicine; Namik Kemal University; Tekirdag; Turkey
| | - Cevat Aktas
- Department of Histology and Embryology, Faculty of Medicine; Namik Kemal University; Tekirdag; Turkey
| | - Birol Topcu
- Department of Biostatistics, Faculty of Medicine; Namik Kemal University; Tekirdag; Turkey
| | - Mehmet Kanter
- Department of Histology and Embryology, Faculty of Medicine; Trakya University; Edirne; Turkey
| | - Mustafa Erboga
- Department of Histology and Embryology, Faculty of Medicine; Trakya University; Edirne; Turkey
| | - Osman Karakaya
- Department of Cardiology; Bakirkoy Dr. Sadi Konuk Training and Research Hospital; Istanbul; Turkey
| | - Asuman Gedikbasi
- Department of Biochemistry; Bakirkoy Dr. Sadi Konuk Training and Research Hospital; Istanbul; Turkey
| |
Collapse
|