1
|
Brandão SR, Oliveira PF, Guerra-Carvalho B, Reis-Mendes A, Neuparth MJ, Carvalho F, Ferreira R, Costa VM. Enduring metabolic modulation in the cardiac tissue of elderly CD-1 mice two months post mitoxantrone treatment. Free Radic Biol Med 2024; 223:199-211. [PMID: 39059512 DOI: 10.1016/j.freeradbiomed.2024.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Mitoxantrone (MTX) is a therapeutic agent used in the treatment of solid tumors and multiple sclerosis, recognized for its cardiotoxicity, with underlying molecular mechanisms not fully disclosed. The cardiotoxicity is influenced by risk factors, including age. Our study intended to assess the molecular effect of MTX on the cardiac muscle of old male CD-1 mice. Mice aged 19 months received a total cumulative dose of 4.5 mg/kg of MTX (MTX group) or saline solution (CTRL group). Two months post treatment, blood was collected, animals sacrificed, and the heart removed. MTX caused structural cardiac changes, which were accompanied by extracellular matrix remodeling, as indicated by the increased ratio between matrix metallopeptidase 2 and metalloproteinase inhibitor 2. At the metabolic level, decreased glycerol levels were found, together with a trend towards increased content of the electron transfer flavoprotein dehydrogenase. In contrast, lower glycolysis, given by the decreased content of glucose transporter GLUT4 and phosphofructokinase, seemed to occur. The findings suggest higher reliance on fatty acids oxidation, despite no major remodeling occurring at the mitochondrial level. Furthermore, the levels of glutamine and other amino acids (although to a lesser extent) were decreased, which aligns with decreased content of the E3 ubiquitin-protein ligase Atrogin-1, suggesting a decrease in proteolysis. As far as we know, this was the first study made in old mice with a clinically relevant dose of MTX, evaluating its long-term cardiac effects. Even two months after MTX exposure, changes in metabolic fingerprint occurred, highlighting enduring cardiac effects that may require clinical vigilance.
Collapse
Affiliation(s)
- Sofia Reis Brandão
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; LAQV - REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Pedro Fontes Oliveira
- LAQV - REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Bárbara Guerra-Carvalho
- LAQV - REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; ICBAS - School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal.
| | - Ana Reis-Mendes
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Maria João Neuparth
- Laboratory for Integrative and Translational Research in Population Health (ITR), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal.
| | - Félix Carvalho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Rita Ferreira
- LAQV - REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Vera Marisa Costa
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
2
|
Colussi DM, Stathopulos PB. The mitochondrial calcium uniporter: Balancing tumourigenic and anti-tumourigenic responses. J Physiol 2024; 602:3315-3339. [PMID: 38857425 DOI: 10.1113/jp285515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/20/2024] [Indexed: 06/12/2024] Open
Abstract
Increased malignancy and poor treatability associated with solid tumour cancers have commonly been attributed to mitochondrial calcium (Ca2+) dysregulation. The mitochondrial Ca2+ uniporter complex (mtCU) is the predominant mode of Ca2+ uptake into the mitochondrial matrix. The main components of mtCU are the pore-forming mitochondrial Ca2+ uniporter (MCU) subunit, MCU dominant-negative beta (MCUb) subunit, essential MCU regulator (EMRE) and the gatekeeping mitochondrial Ca2+ uptake 1 and 2 (MICU1 and MICU2) proteins. In this review, we describe mtCU-mediated mitochondrial Ca2+ dysregulation in solid tumour cancer types, finding enhanced mtCU activity observed in colorectal cancer, breast cancer, oral squamous cell carcinoma, pancreatic cancer, hepatocellular carcinoma and embryonal rhabdomyosarcoma. By contrast, decreased mtCU activity is associated with melanoma, whereas the nature of mtCU dysregulation remains unclear in glioblastoma. Furthermore, we show that numerous polymorphisms associated with cancer may alter phosphorylation sites on the pore forming MCU and MCUb subunits, which cluster at interfaces with EMRE. We highlight downstream/upstream biomolecular modulators of MCU and MCUb that alter mtCU-mediated mitochondrial Ca2+ uptake and may be used as biomarkers or to aid in the development of novel cancer therapeutics. Additionally, we provide an overview of the current small molecule inhibitors of mtCU that interact with the Asp residue of the critical Asp-Ile-Met-Glu motif or through other allosteric regulatory mechanisms to block Ca2+ permeation. Finally, we describe the relationship between MCU- and MCUb-mediating microRNAs and mitochondrial Ca2+ uptake that should be considered in the discovery of new treatment approaches for cancer.
Collapse
Affiliation(s)
- Danielle M Colussi
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Peter B Stathopulos
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
3
|
Cestonaro LV, Crestani RP, Conte FM, Piton YV, Schmitz F, Ferreira FS, Wyse ATS, Garcia SC, Arbo MD. Immunomodulatory effect of imidacloprid on macrophage RAW 264.7 cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023:104190. [PMID: 37336278 DOI: 10.1016/j.etap.2023.104190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
The neonicotinoid imidacloprid was promoted in the market because of widespread resistance to other insecticides, plus its low mammalian impact and higher specific toxicity towards insects. This study aimed to evaluate the immunomodulatory effect of imidacloprid on macrophages. RAW 264.7 cells were incubated to 0-4000mg/L of imidacloprid for 24 and 96h. Imidacloprid presented a concentration-dependent cytotoxicity after 24h and 96h incubation for MTT reduction (3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide) (EC50 519.6 and 324.6mg/L, respectively) and Neutral Red (3-amino-7-dimethylamino-2-methylphenazine hydrochloride) assays (EC50 1139.0 and 324.2mg/L, respectively). Moreover, imidacloprid decreased the cells' inflammatory response and promoted a mitochondrial depolarization. The complex II and succinate dehydrogenase (SDH) activities in RAW 264.7 cells incubated with imidacloprid increased more at 24h. These results suggest that imidacloprid exerts an immunomodulatory effect and mitochondria can act as regulator of innate immune responses in the cytotoxicity mediated by the insecticide in RAW 264.7 cells.
Collapse
Affiliation(s)
- Larissa Vivan Cestonaro
- Laboratório de Toxicologia, Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre - RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas (PPGCF), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre - RS, Brazil
| | - Riciéli Pacheco Crestani
- Laboratório de Toxicologia, Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre - RS, Brazil
| | - Fernanda Mocelin Conte
- Laboratório de Toxicologia, Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre - RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas (PPGCF), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre - RS, Brazil
| | - Yasmin Vendruscolo Piton
- Laboratório de Toxicologia, Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre - RS, Brazil
| | - Felipe Schmitz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica (PPGBIOQ), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre - RS, Brazil; Laboratório de Neuroproteção e Doenças Metabólicas, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre - RS, Brazil
| | - Fernanda Silva Ferreira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica (PPGBIOQ), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre - RS, Brazil; Laboratório de Neuroproteção e Doenças Metabólicas, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre - RS, Brazil
| | - Angela T S Wyse
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica (PPGBIOQ), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre - RS, Brazil; Laboratório de Neuroproteção e Doenças Metabólicas, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre - RS, Brazil
| | - Solange Cristina Garcia
- Laboratório de Toxicologia, Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre - RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas (PPGCF), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre - RS, Brazil
| | - Marcelo Dutra Arbo
- Laboratório de Toxicologia, Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre - RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas (PPGCF), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre - RS, Brazil.
| |
Collapse
|
4
|
Brandão SR, Reis-Mendes A, Duarte-Araújo M, Neuparth MJ, Rocha H, Carvalho F, Ferreira R, Costa VM. Cardiac Molecular Remodeling by Anticancer Drugs: Doxorubicin Affects More Metabolism While Mitoxantrone Impacts More Autophagy in Adult CD-1 Male Mice. Biomolecules 2023; 13:921. [PMID: 37371499 PMCID: PMC10296231 DOI: 10.3390/biom13060921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/14/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Doxorubicin (DOX) and mitoxantrone (MTX) are classical chemotherapeutic agents used in cancer that induce similar clinical cardiotoxic effects, although it is not clear if they share similar underlying molecular mechanisms. We aimed to assess the effects of DOX and MTX on the cardiac remodeling, focusing mainly on metabolism and autophagy. Adult male CD-1 mice received pharmacologically relevant cumulative doses of DOX (18 mg/kg) and MTX (6 mg/kg). Both DOX and MTX disturbed cardiac metabolism, decreasing glycolysis, and increasing the dependency on fatty acids (FA) oxidation, namely, through decreased AMP-activated protein kinase (AMPK) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) content and decreased free carnitine (C0) and increased acetylcarnitine (C2) concentration. Additionally, DOX heavily influenced glycolysis, oxidative metabolism, and amino acids turnover by exclusively decreasing phosphofructokinase (PFKM) and electron transfer flavoprotein-ubiquinone oxidoreductase (ETFDH) content, and the concentration of several amino acids. Conversely, both drugs downregulated autophagy given by the decreased content of autophagy protein 5 (ATG5) and microtubule-associated protein light chain 3 (LC3B), with MTX having also an impact on Beclin1. These results emphasize that DOX and MTX modulate cardiac remodeling differently, despite their clinical similarities, which is of paramount importance for future treatments.
Collapse
Affiliation(s)
- Sofia Reis Brandão
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.R.-M.); (F.C.)
- Laboratory of Toxicology, UCIBIO-Applied Molecular Biosciences Unit, REQUIMTE, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Ana Reis-Mendes
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.R.-M.); (F.C.)
- Laboratory of Toxicology, UCIBIO-Applied Molecular Biosciences Unit, REQUIMTE, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Margarida Duarte-Araújo
- LAQV-REQUIMTE, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- Department of Imuno-Physiology and Pharmacology, Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - Maria João Neuparth
- Laboratory for Integrative and Translational Research in Population Health (ITR), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal;
- TOXRUN—Toxicology Research Unit, University Institute of Health Sciences, CESPU, 4585-116 Gandra, Portugal
| | - Hugo Rocha
- Newborn Screening, Metabolism and Genetics Unit, Human Genetics Department, National Institute of Health Doutor Ricardo Jorge, 4000-053 Porto, Portugal;
- Department of Pathological, Cytological and Thanatological Anatomy, School of Health, Polytechnic Institute of Porto, 4200-072 Porto, Portugal
| | - Félix Carvalho
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.R.-M.); (F.C.)
- Laboratory of Toxicology, UCIBIO-Applied Molecular Biosciences Unit, REQUIMTE, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Rita Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Vera Marisa Costa
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.R.-M.); (F.C.)
- Laboratory of Toxicology, UCIBIO-Applied Molecular Biosciences Unit, REQUIMTE, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
5
|
Costa VM, Capela JP, Bastos ML, Remião F, Varner KJ, Duarte JA, Carvalho F. Study of the potential toxicity of adrenaline to neurons, using the SH-SY5Y human cellular model. BRAZ J PHARM SCI 2023; 59. [DOI: 10.1590/s2175-97902023e20467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Affiliation(s)
| | - João Paulo Capela
- University of Porto, Portugal; Universidade Fernando Pessoa, Portugal
| | | | | | | | | | | |
Collapse
|
6
|
Reis-Mendes A, Carvalho F, Remião F, Sousa E, de Lourdes Bastos M, Costa VM. Autophagy (but not metabolism) is a key event in mitoxantrone-induced cytotoxicity in differentiated AC16 cardiac cells. Arch Toxicol 2023; 97:201-216. [PMID: 36216988 DOI: 10.1007/s00204-022-03363-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/11/2022] [Indexed: 01/19/2023]
Abstract
Mitoxantrone (MTX) is an antineoplastic agent used to treat advanced breast cancer, prostate cancer, acute leukemia, lymphoma and multiple sclerosis. Although it is known to cause cumulative dose-related cardiotoxicity, the underlying mechanisms are still poorly understood. This study aims to compare the cardiotoxicity of MTX and its' pharmacologically active metabolite naphthoquinoxaline (NAPHT) in an in vitro cardiac model, human-differentiated AC16 cells, and determine the role of metabolism in the cardiotoxic effects. Concentration-dependent cytotoxicity was observed after MTX exposure, affecting mitochondrial function and lysosome uptake. On the other hand, the metabolite NAPHT only caused concentration-dependent cytotoxicity in the MTT reduction assay. When assessing the effect of different inhibitors/inducers of metabolism, it was observed that metyrapone (a cytochrome P450 inhibitor) and phenobarbital (a cytochrome P450 inducer) slightly increased MTX cytotoxicity, while 1-aminobenzotriazole (a suicide cytochrome P450 inhibitor) decreased fairly the MTX-triggered cytotoxicity in differentiated AC16 cells. When focusing in autophagy, the mTOR inhibitor rapamycin and the autophagy inhibitor 3-methyladenine exacerbated the cytotoxicity caused by MTX and NAPHT, while the autophagy blocker, chloroquine, partially reduced the cytotoxicity of MTX. In addition, we observed a decrease in p62, beclin-1, and ATG5 levels and an increase in LC3-II levels in MTX-incubated cells. In conclusion, in our in vitro model, neither metabolism nor exogenously given NAPHT are major contributors to MTX toxicity as seen by the residual influence of metabolism modulators used on the observed cytotoxicity and by NAPHT's low cytotoxicity profile. Conversely, autophagy is involved in MTX-induced cytotoxicity and MTX seems to act as an autophagy inducer, possibly through p62/LC3-II involvement.
Collapse
Affiliation(s)
- Ana Reis-Mendes
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
- Department of Biological Sciences, UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Félix Carvalho
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
- Department of Biological Sciences, UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Fernando Remião
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
- Department of Biological Sciences, UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Chemistry Department, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, 4450-208, Porto, Portugal
| | - Maria de Lourdes Bastos
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
- Department of Biological Sciences, UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Vera Marisa Costa
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
- Department of Biological Sciences, UCIBIO - Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| |
Collapse
|
7
|
Conte FM, Cestonaro LV, Piton YV, Guimarães N, Garcia SC, Dias da Silva D, Arbo MD. Toxicity of pesticides widely applied on soybean cultivation: Synergistic effects of fipronil, glyphosate and imidacloprid in HepG2 cells. Toxicol In Vitro 2022; 84:105446. [PMID: 35850439 DOI: 10.1016/j.tiv.2022.105446] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/14/2022] [Accepted: 07/13/2022] [Indexed: 11/29/2022]
Abstract
The transgenic soy monoculture demands supplementation with pesticides. The aim of this study was to evaluate the individual and mixture effects of fipronil, glyphosate and imidacloprid in human HepG2 cells. Cytotoxicity was evaluated after 48-h incubations through MTT reduction and neutral red uptake assays. Free radicals production, mitochondrial membrane potential, DNA damage, and release of liver enzymes were also evaluated. Data obtained for individual agents were used to compute the additivity expectations for two mixtures of definite composition (one equipotent mixture, based in the EC50 values achieved in the MTT assay; the other one based in the acceptable daily intake of each pesticide), using the models of concentration addition and independent action. The EC50 values for fipronil, glyphosate and imidacloprid were 37.59, 41.13, and 663.66 mg/L, respectively. The mixtures of pesticides elicited significant synergistic effects (p < 0.05), which were greater than the expected by both addictive predictions. Decreased in mitochondrial membrane potential and increased in the transaminases enzymatic activities were observed. As they occur simultaneously, interactions between pesticides, even at non-effective single levels, can reverberate in significant deleterious effects, justifying the need for a more realistic approach in safety evaluations to better predict the effects to human health.
Collapse
Affiliation(s)
- Fernanda Mocellin Conte
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Larissa V Cestonaro
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Yasmin V Piton
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Nicolas Guimarães
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Solange C Garcia
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Diana Dias da Silva
- UCIBIO, REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; TOXRUN-Toxicology Research Unit, Instituto Universitário de Ciências da Saúde, IUCS-CESPU, Gandra, PRD, Portugal; School of Health Sciences, Polytechnic of Leiria (ESSLei-IPL), 2411-901 Leiria, Portugal.
| | - Marcelo Dutra Arbo
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
8
|
Morciano G, Rimessi A, Patergnani S, Vitto VAM, Danese A, Kahsay A, Palumbo L, Bonora M, Wieckowski MR, Giorgi C, Pinton P. Calcium dysregulation in heart diseases: Targeting calcium channels to achieve a correct calcium homeostasis. Pharmacol Res 2022; 177:106119. [PMID: 35131483 DOI: 10.1016/j.phrs.2022.106119] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 12/16/2022]
Abstract
Intracellular calcium signaling is a universal language source shared by the most part of biological entities inside cells that, all together, give rise to physiological and functional anatomical units, the organ. Although preferentially recognized as signaling between cell life and death processes, in the heart it assumes additional relevance considered the importance of calcium cycling coupled to ATP consumption in excitation-contraction coupling. The concerted action of a plethora of exchangers, channels and pumps inward and outward calcium fluxes where needed, to convert energy and electric impulses in muscle contraction. All this without realizing it, thousands of times, every day. An improper function of those proteins (i.e., variation in expression, mutations onset, dysregulated channeling, differential protein-protein interactions) being part of this signaling network triggers a short circuit with severe acute and chronic pathological consequences reported as arrhythmias, cardiac remodeling, heart failure, reperfusion injury and cardiomyopathies. By acting with chemical, peptide-based and pharmacological modulators of these players, a correction of calcium homeostasis can be achieved accompanied by an amelioration of clinical symptoms. This review will focus on all those defects in calcium homeostasis which occur in the most common cardiac diseases, including myocardial infarction, arrhythmia, hypertrophy, heart failure and cardiomyopathies. This part will be introduced by the state of the art on the proteins involved in calcium homeostasis in cardiomyocytes and followed by the therapeutic treatments that to date, are able to target them and to revert the pathological phenotype.
Collapse
Affiliation(s)
- Giampaolo Morciano
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, RA, Italy.
| | - Alessandro Rimessi
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Simone Patergnani
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Veronica A M Vitto
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Alberto Danese
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Asrat Kahsay
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Laura Palumbo
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Massimo Bonora
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Mariusz R Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism. Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Carlotta Giorgi
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Paolo Pinton
- Laboratory for Technologies of Advanced Therapies (LTTA), Section of Experimental Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; Maria Cecilia Hospital, GVM Care & Research, 48033 Cotignola, RA, Italy.
| |
Collapse
|
9
|
Brandão SR, Reis-Mendes A, Domingues P, Duarte JA, Bastos ML, Carvalho F, Ferreira R, Costa VM. Exploring the aging effect of the anticancer drugs doxorubicin and mitoxantrone on cardiac mitochondrial proteome using a murine model. Toxicology 2021; 459:152852. [PMID: 34246718 DOI: 10.1016/j.tox.2021.152852] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 12/31/2022]
Abstract
Current cancer therapies are successfully increasing the lifespan of cancer patients. Nevertheless, cardiotoxicity is a serious chemotherapy-induced adverse side effect. Doxorubicin (DOX) and mitoxantrone (MTX) are cardiotoxic anticancer agents, whose toxicological mechanisms are still to be identified. This study focused on DOX and MTX's cardiac mitochondrial damage and their molecular mechanisms. As a hypothesis, we also sought to compare the cardiac modulation caused by 9 mg/kg of DOX or 6 mg/kg of MTX in young adult mice (3 months old) with old control mice (aged control, 18-20 months old) to determine if DOX- and MTX-induced damage had common links with the aging process. Cardiac homogenates and enriched mitochondrial fractions were prepared from treated and control animals and analyzed by immunoblotting and enzymatic assays. Enriched mitochondrial fractions were also characterized by mass spectrometry-based proteomics. Data obtained showed a decrease in mitochondrial density in young adults treated with DOX or MTX and aged control, as assessed by citrate synthase (CS) activity. Furthermore, aged control had increased expression of the peroxisome proliferator-activated receptor γ coactivator 1 α (PGC1α) and manganese superoxide dismutase (MnSOD). Regarding the enriched mitochondrial fractions, DOX and MTX led to downregulation of proteins related to oxidative phosphorylation, fatty acid oxidation, amino acid metabolic process, and tricarboxylic acid cycle. MTX had a greater impact on malate dehydrogenase (MDH2) and pyruvate dehydrogenase E1 component subunit α (PDHA1). No significant proteomic changes were observed in the enriched mitochondrial fractions of aged control when compared to young control. To conclude, DOX and MTX promoted changes in several mitochondrial-related proteins in young adult mice, but none resembling the aged phenotype.
Collapse
Affiliation(s)
- Sofia Reis Brandão
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Portugal; LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Portugal
| | - Ana Reis-Mendes
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Portugal
| | - Pedro Domingues
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Portugal
| | - José Alberto Duarte
- CIAFEL, Faculty of Sports, University of Porto, Portugal; TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
| | - Maria Lourdes Bastos
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Portugal
| | - Félix Carvalho
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Portugal
| | - Rita Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Portugal
| | - Vera Marisa Costa
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Portugal.
| |
Collapse
|
10
|
Freddo N, Soares SM, Fortuna M, Pompermaier A, Varela ACC, Maffi VC, Mozzato MT, de Alcantara Barcellos HH, Koakoski G, Barcellos LJG, Rossato-Grando LG. Stimulants cocktail: Methylphenidate plus caffeine impairs memory and cognition and alters mitochondrial and oxidative status. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110069. [PMID: 32800866 DOI: 10.1016/j.pnpbp.2020.110069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 11/28/2022]
Abstract
Methylphenidate (MPH) is a psychostimulant widely misused to increase wakefulness by drivers and students. Also, MPH can be found in dietary supplements in a clandestine manner aiming to burst performance of physical exercise practitioners. The abusive use of high doses of caffeine (CAF) in these contexts is equally already known. Here, we demonstrate the behavioral, oxidative and mitochondrial effects after acute exposure to high doses of MPH (80 mg/L) and CAF (150 mg/L), alone or associated (80 mg/L + 150 mg/L, respectively). We used zebrafish as animal model due to its high translational relevance. We evaluated the behavioral effects using the Novel Tank Test (NTT), Social Preference Test (SPT) and Y-maze Task and analyzed biomarkers of oxidative stress and activity of mitochondrial respiratory chain complexes. MPH alone induced antisocial behavior. MPH inhibited lipid peroxidation. The association of MPH + CAF presented memory impairment and anxiogenic behavior. In oxidative status, it inhibited lipid peroxidation, increased protein carbonylation and mitochondrial complex II, III and IV activity. Our results demonstrate that MPH and CAF alone negatively impact the typical behavioral of zebrafish. When associated, changes in cognition, memory, oxidative and mitochondrial status are more relevant.
Collapse
Affiliation(s)
- Natália Freddo
- Programa de Pós-graduação em Bioexperimentação, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Suelen Mendonça Soares
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Milena Fortuna
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Aline Pompermaier
- Programa de Pós-graduação em Bioexperimentação, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | | | - Victoria Costa Maffi
- Curso de Medicina Veterinária, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Mateus Timbola Mozzato
- Curso de Medicina Veterinária, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Heloísa Helena de Alcantara Barcellos
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil; Curso de Medicina Veterinária, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Gessi Koakoski
- Curso de Medicina Veterinária, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | - Leonardo José Gil Barcellos
- Programa de Pós-graduação em Bioexperimentação, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil; Curso de Medicina Veterinária, Universidade de Passo Fundo, Passo Fundo, Rio Grande do Sul, Brazil
| | | |
Collapse
|
11
|
Costa VM, Capela JP, Sousa JR, Eleutério RP, Rodrigues PRS, Dores-Sousa JL, Carvalho RA, Lourdes Bastos M, Duarte JA, Remião F, Almeida MG, Varner KJ, Carvalho F. Mitoxantrone impairs proteasome activity and prompts early energetic and proteomic changes in HL-1 cardiomyocytes at clinically relevant concentrations. Arch Toxicol 2020; 94:4067-4084. [DOI: 10.1007/s00204-020-02874-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/12/2020] [Indexed: 11/24/2022]
|
12
|
Ma W, Wei S, Zhang B, Li W. Molecular Mechanisms of Cardiomyocyte Death in Drug-Induced Cardiotoxicity. Front Cell Dev Biol 2020; 8:434. [PMID: 32582710 PMCID: PMC7283551 DOI: 10.3389/fcell.2020.00434] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 05/08/2020] [Indexed: 01/08/2023] Open
Abstract
Homeostatic regulation of cardiomyocytes plays a crucial role in maintaining the normal physiological activity of cardiac tissue. Severe cardiotoxicity results in cardiac diseases including but not limited to arrhythmia, myocardial infarction and myocardial hypertrophy. Drug-induced cardiotoxicity limits or forbids further use of the implicated drugs. Such drugs that are currently available in the clinic include anti-tumor drugs (doxorubicin, cisplatin, trastuzumab, etc.), antidiabetic drugs (rosiglitazone and pioglitazone), and an antiviral drug (zidovudine). This review focused on cardiomyocyte death forms and related mechanisms underlying clinical drug-induced cardiotoxicity, including apoptosis, autophagy, necrosis, necroptosis, pryoptosis, and ferroptosis. The key proteins involved in cardiomyocyte death signaling were discussed and evaluated, aiming to provide a theoretical basis and target for the prevention and treatment of drug-induced cardiotoxicity in the clinical practice.
Collapse
Affiliation(s)
- Wanjun Ma
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Shanshan Wei
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Wenqun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|
13
|
Bøtker HE, Cabrera-Fuentes HA, Ruiz-Meana M, Heusch G, Ovize M. Translational issues for mitoprotective agents as adjunct to reperfusion therapy in patients with ST-segment elevation myocardial infarction. J Cell Mol Med 2020; 24:2717-2729. [PMID: 31967733 PMCID: PMC7077531 DOI: 10.1111/jcmm.14953] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 12/16/2022] Open
Abstract
Pre‐clinical studies have indicated that mitoprotective drugs may add cardioprotection beyond rapid revascularization, antiplatelet therapy and risk modification. We review the clinical efficacy of mitoprotective drugs that have progressed to clinical testing comprising cyclosporine A, KAI‐9803, MTP131 and TRO 40303. Whereas cyclosporine may reduce infarct size in patients undergoing primary angioplasty as evaluated by release of myocardial ischaemic biomarkers and infarct size imaging, the other drugs were not capable of demonstrating this effect in the clinical setting. The absent effect leaves the role of the mitochondrial permeability transition pore for reperfusion injury in humans unanswered and indicates that targeting one single mechanism to provide mitoprotection may not be efficient. Moreover, the lack of effect may relate to favourable outcome with current optimal therapy, but conditions such as age, sex, diabetes, dyslipidaemia and concurrent medications may also alter mitochondrial function. However, as long as the molecular structure of the pore remains unknown and specific inhibitors of its opening are lacking, the mitochondrial permeability transition pore remains a target for alleviation of reperfusion injury. Nevertheless, taking conditions such as ageing, sex, comorbidities and co‐medication into account may be of paramount importance during the design of pre‐clinical and clinical studies testing mitoprotective drugs.
Collapse
Affiliation(s)
- Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark
| | - Hector Alejandro Cabrera-Fuentes
- SingHealth Duke-NUS Cardiovascular Sciences Academic Clinical Programme and Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore.,National Heart Research Institute Singapore, National Heart Centre, Singapore, Singapore.,Institute of Biochemistry, Medical School, Justus-Liebig University, Giessen, Germany.,Tecnologico de Monterrey, Centro de Biotecnologia-FEMSA, Monterrey, Mexico.,Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russian Federation
| | - Marisol Ruiz-Meana
- Vall d'Hebron Institut de Recerca, University Hospital Vall d'Hebron-Universitat Autònoma, Barcelona, Spain.,Centro de Investigación Biomédica en Red-CV, CIBER-CV, Spain
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen. Medical School, Essen, Germany
| | - Michel Ovize
- CarMeN Laboratory, Hôpital Louis Pradel, Hospices Civils de Lyon, Université de Lyon and Explorations Fonctionnelles Cardiovasculaires, INSERM U1060, Lyon, France
| |
Collapse
|
14
|
Yamashita A, Deguchi J, Honda Y, Yamada T, Miyawaki I, Nishimura Y, Tanaka T. Increased susceptibility to oxidative stress-induced toxicological evaluation by genetically modified nrf2a-deficient zebrafish. J Pharmacol Toxicol Methods 2018; 96:34-45. [PMID: 30594530 DOI: 10.1016/j.vascn.2018.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 10/10/2018] [Accepted: 12/26/2018] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Oxidative stress plays an important role in drug-induced toxicity. Oxidative stress-mediated toxicities can be detected using conventional animal models but their sensitivity is insufficient, and novel models to improve susceptibility to oxidative stress have been researched. In recent years, gene targeting methods in zebrafish have been developed, making it possible to generate homozygous null mutants. In this study, we established zebrafish deficient in the nuclear factor erythroid 2-related factor 2a (nrf2a), a key antioxidant-responsive gene, and its potential to detect oxidative stress-mediated toxicity was examined. METHODS Nrf2a-deficient zebrafish were generated using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 technique. The loss of nrf2a function was confirmed by the tolerability to hydrogen peroxide and hydrogen peroxide-induced gene expression profiles being related to antioxidant response element (ARE)-dependent signaling. Subsequently, vulnerability of nrf2a-deficient zebrafish to acetaminophen (APAP)- or doxorubicin (DOX)-induced toxicity was investigated. RESULTS Nrf2a-deficient zebrafish showed higher mortality than wild type accompanied by less induction of ARE-dependent genes with hydrogen peroxide treatment. Subsequently, this model showed increased severity and incidence of APAP-induced hepatotoxicity or DOX-induced cardiotoxicity than wild type. DISCUSSION Our results demonstrated that anti-oxidative response might not fully function in this model, and resulted in higher sensitivity to drug-induced oxidative stress. Our data support the usefulness of nrf2a-deficient model as a tool for evaluation of oxidative stress-related toxicity in drug discovery research.
Collapse
Affiliation(s)
- Akihito Yamashita
- Department of Systems Pharmacology, Mie University Graduate School of Medicine, Mie, Japan; Preclinical Research Unit, Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan.
| | - Jiro Deguchi
- Preclinical Research Unit, Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan
| | - Yayoi Honda
- Preclinical Research Unit, Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan
| | - Toru Yamada
- Preclinical Research Unit, Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan
| | - Izuru Miyawaki
- Preclinical Research Unit, Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan
| | - Yuhei Nishimura
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Mie, Japan
| | - Toshio Tanaka
- Department of Systems Pharmacology, Mie University Graduate School of Medicine, Mie, Japan; Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, Mie, Japan; Mie University Medical Zebrafish Research Center, Mie, Japan; Department of Bioinformatics, Mie University Life Science Research Center, Mie, Japan; Department of Omics Medicine, Mie University Industrial Technology Innovation Institute, Mie, Japan
| |
Collapse
|
15
|
Toxicity Evaluation and Biomarker Selection with Validated Reference Gene in Embryonic Zebrafish Exposed to Mitoxantrone. Int J Mol Sci 2018; 19:ijms19113516. [PMID: 30413070 PMCID: PMC6274943 DOI: 10.3390/ijms19113516] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/03/2018] [Accepted: 11/06/2018] [Indexed: 12/20/2022] Open
Abstract
Notwithstanding the widespread use and promising clinical value of chemotherapy, the pharmacokinetics, toxicology, and mechanism of mitoxantrone remains unclear. To promote the clinical value in the treatment of human diseases and the exploration of potential subtle effects of mitoxantrone, zebrafish embryos were employed to evaluate toxicity with validated reference genes based on independent stability evaluation programs. The most stable and recommended reference gene was gapdh, followed by tubα1b, for the 48 h post fertilization (hpf) zebrafish embryo mitoxantrone test, while both eef1a1l1 and rpl13α were recommended as reference genes for the 96 hpf zebrafish embryo mitoxantrone test. With gapdh as an internal control, we analyzed the mRNA levels of representative hepatotoxicity biomarkers, including fabp10a, gclc, gsr, nqo1, cardiotoxicity biomarker erg, and neurotoxicity biomarker gfap in the 48 hpf embryo mitoxantrone test. The mRNA levels of gclc, gsr, and gfap increased significantly in 10 and 50 μg/L mitoxantrone-treated 48 hpf embryos, while the transcript levels of fabp10a decreased in a dose-dependent manner, indicating that mitoxantrone induced hepatotoxicity and neurotoxicity. Liver hematoxylin–eosin staining and the spontaneous movement of embryos confirmed the results. Thus, the present research suggests that mitoxantrone induces toxicity during the development of the liver and nervous system in zebrafish embryos and that fabp10a is recommended as a potential biomarker for hepatotoxicity in zebrafish embryos. Additionally, gapdh is proposed as a reference gene for the 48 hpf zebrafish embryo mitoxantrone toxicity test, while eef1a1l1 and rpl13α are proposed as that for the 96 hpf test.
Collapse
|
16
|
Pixantrone, a new anticancer drug with the same old cardiac problems? An in vitro study with differentiated and non-differentiated H9c2 cells. Interdiscip Toxicol 2018; 11:13-21. [PMID: 30181708 PMCID: PMC6117818 DOI: 10.2478/intox-2018-0002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/14/2018] [Indexed: 02/01/2023] Open
Abstract
Pixantrone (PIX) is an anticancer drug approved for the treatment of multiple relapsed or refractory aggressive B-cell non-Hodgkin's lymphoma. It is an aza-anthracenedione synthesized to have the same anticancer activity as its predecessors, anthracyclines (e.g. doxorubicin) and anthracenediones (e.g. mitoxantrone), with lower cardiotoxicity. However, published data regarding its possible cardiotoxicity are scarce. Therefore, this work aimed to assess the potential cytotoxicity of PIX, at clinically relevant concentrations (0.1; 1; and 10 μM) in both non-differentiated and 7-day differentiated H9c2 cells. Cells were exposed to PIX for 48 h and cytotoxicity was evaluated through phase contrast microscopy, Hoescht staining and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) reduction and neutral red (NR) uptake assays. Cytotoxicity was observed in differentiated and non-differentiated H9c2 cells, with detached cells and round cells evidenced by phase contrast microscopy, mainly at the highest concentration tested (10 μM). In the Hoechst staining, PIX 10 μM showed a marked decrease in the number of cells when compared to control but with no signs of nuclear condensation. Furthermore, significant concentration-dependent mitochondrial dysfunction was observed through the MTT reduction assay. The NR assay showed similar results to those obtained in the MTT reduction assay in both differentiated and non-differentiated H9c2 cells. The differentiation state of the cells was not crucial to PIX effects, although PIX toxicity was slightly higher in differentiated H9c2 cells. To the best of our knowledge, this was the first in vitro study performed with PIX in H9c2 cells and it discloses worrying cytotoxicity at clinically relevant concentrations.
Collapse
|
17
|
Govender J, Loos B, Marais E, Engelbrecht AM. Melatonin improves cardiac and mitochondrial function during doxorubicin-induced cardiotoxicity: A possible role for peroxisome proliferator-activated receptor gamma coactivator 1-alpha and sirtuin activity? Toxicol Appl Pharmacol 2018; 358:86-101. [PMID: 29966675 DOI: 10.1016/j.taap.2018.06.031] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 06/27/2018] [Accepted: 06/28/2018] [Indexed: 01/02/2023]
Abstract
Mitochondrial dysfunction is a central element in the development of doxorubicin (DXR)-induced cardiotoxicity. In this context, melatonin is known to influence mitochondrial homeostasis and function. This study aimed to investigate the effects of melatonin on cardiac function, tumor growth, mitochondrial fission and fusion, PGC1-α and sirtuin activity in an acute model of DXR-induced cardiotoxicity. During the in vitro study, H9c2 rat cardiomyoblasts were pre-treated with melatonin (10 μM, 24 h) followed by DXR exposure (3 μM, 24 h). Following treatment, cellular ATP levels and mitochondrial morphology were assessed. In the in vivo study, female Sprague Dawley rats (16 weeks old), were inoculated with a LA7 rat mammary tumor cell line and tumors were measure daily. Animals were injected with DXR (3 × 4 mg/kg) and/or received melatonin (6 mg/kg) for 14 days in their drinking water. Rat hearts were used to conduct isolated heart perfusions to assess cardiac function and thereafter, heart tissue was used for immunoblot analysis. DXR treatment increased cell death and mitochondrial fission which were reduced with melatonin treatment. Cardiac output increased in rats treated with DXR + melatonin compared to DXR-treated rats. Tumor volumes was significantly reduced in DXR + melatonin-treated rats on Day 8 in comparison to DXR-treated rats. Furthermore, DXR + melatonin treatment increased cellular ATP levels, PGC1-α and SIRT1 expression which was attenuated by DXR treatment. These results indicate that melatonin treatment confers a dual cardio-protective and oncostatic effect by improving mitochondrial function and cardiac function whilst simultaneously retarding tumor growth during DXR-induced cardiotoxicity.
Collapse
Affiliation(s)
- Jenelle Govender
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch 7600, South Africa.
| | - Ben Loos
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Erna Marais
- Department of Medical Physiology, Faculty of Medicine, Stellenbosch University, Tygerberg Campus, 7505, South Africa
| | - Anna-Mart Engelbrecht
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
18
|
Damiani RM, Moura DJ, Viau CM, Brito V, Morás AM, Henriques JAP, Saffi J. Influence of PARP-1 inhibition in the cardiotoxicity of the topoisomerase 2 inhibitors doxorubicin and mitoxantrone. Toxicol In Vitro 2018; 52:203-213. [PMID: 29913208 DOI: 10.1016/j.tiv.2018.06.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/17/2018] [Accepted: 06/12/2018] [Indexed: 02/07/2023]
Abstract
Doxorubicin (DOX) and Mitoxantrone (MTX) are very effective drugs for a range of tumors despite being highly cardiotoxic. DNA topoisomerase 2 beta (Top2ß) was revealed as key mediator of DOX-induced cardiotoxicity, although ROS generation is also an important mechanism. Oxidative stress is also an important issue in MTX-induced cardiotoxicity that is manifested by mitochondrial dysfunction. Studies have demonstrated the relationship between PARP-1 overactivation and cell viability in DOX-treated cardiomyocytes. In reference of MTX, data regarding PARP-1 overactivation as the mechanism responsible for cardiotoxicity is difficult to find. The aim of this study was to evaluate the influence of PARP-1 inhibitor DPQ on DOX- and MTX-mediated cardiotoxicity. Cells were exposed for 24 h to DOX or MTX in the presence or absence of DPQ. Viability, apoptosis, and genotoxicity assays were carried out. Immunofluorescence of phosphorylated histone H2AX was analyzed in H9c2 cells and cardiomyocytes from neonatal rats. Results demonstrated that DPQ co-treatment increases DOX-induced apoptosis in H9c2 cells. DPQ also prevents DOX and MTX-ROS generation in part by increasing SOD and CAT activities. Furthermore, DPQ co-treatment increased the generation of DNA strand breaks by DOX and MTX whilst also inducing phosphorylation of H2AX, MRE11, and ATM in H9c2 cells. Our results demonstrated that as well as increasing DNA damage and inducing apoptotic cell death, DPQ enhances DOX- and MTX-mediated cytotoxicity in H9c2.
Collapse
Affiliation(s)
- Roberto Marques Damiani
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Sarmento Leite st., 245, Porto Alegre, RS, Brazil; Graduate Program in Cellular and Molecular Biology, Federal University of Rio Grande do Sul (UFRGS), Bento Gonçalves av., 9500, Porto Alegre, RS, Brazil; Centro Universitário Ritter dos Reis (UniRitter), Orfanotrófio st, 555, Porto Alegre, RS, Brazil.
| | - Dinara Jaqueline Moura
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Sarmento Leite st., 245, Porto Alegre, RS, Brazil
| | - Cassiana Macagnan Viau
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Sarmento Leite st., 245, Porto Alegre, RS, Brazil
| | - Verônica Brito
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Sarmento Leite st., 245, Porto Alegre, RS, Brazil
| | - Ana Moira Morás
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Sarmento Leite st., 245, Porto Alegre, RS, Brazil
| | - João Antonio Pêgas Henriques
- Graduate Program in Cellular and Molecular Biology, Federal University of Rio Grande do Sul (UFRGS), Bento Gonçalves av., 9500, Porto Alegre, RS, Brazil; Department of Biophysics and Center of Biotechnology, Federal University of Rio Grande do Sul (UFRGS), Bento Gonçalves av., 9500, Porto Alegre, RS, Brazil
| | - Jenifer Saffi
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Sarmento Leite st., 245, Porto Alegre, RS, Brazil; Graduate Program in Cellular and Molecular Biology, Federal University of Rio Grande do Sul (UFRGS), Bento Gonçalves av., 9500, Porto Alegre, RS, Brazil
| |
Collapse
|
19
|
Almeida D, Pinho R, Correia V, Soares J, Bastos MDL, Carvalho F, Capela JP, Costa VM. Mitoxantrone is More Toxic than Doxorubicin in SH-SY5Y Human Cells: A 'Chemobrain' In Vitro Study. Pharmaceuticals (Basel) 2018; 11:41. [PMID: 29734752 PMCID: PMC6027466 DOI: 10.3390/ph11020041] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/28/2018] [Accepted: 04/29/2018] [Indexed: 12/20/2022] Open
Abstract
The potential neurotoxic effects of anticancer drugs, like doxorubicin (DOX) and mitoxantrone (MTX; also used in multiple sclerosis), are presently important reasons for concern, following epidemiological data indicating that cancer survivors submitted to chemotherapy may suffer cognitive deficits. We evaluated the in vitro neurotoxicity of two commonly used chemotherapeutic drugs, DOX and MTX, and study their underlying mechanisms in the SH-SY5Y human neuronal cell model. Undifferentiated human SH-SY5Y cells were exposed to DOX or MTX (0.13, 0.2 and 0.5 μM) for 48 h and two cytotoxicity assays were performed, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) reduction and the neutral red (NR) incorporation assays. Phase contrast microphotographs, Hoechst, and acridine orange/ethidium bromide stains were performed. Mitochondrial membrane potential was also assessed. Moreover, putative protective drugs, namely the antioxidants N-acetyl-l-cysteine (NAC; 1 mM) and 100 μM tiron, the inhibitor of caspase-3/7, Ac-DEVD-CHO (100 μM), and a protein synthesis inhibitor, cycloheximide (CHX; 10 nM), were tested to prevent DOX- or MTX-induced toxicity. The MTT reduction assay was also done in differentiated SH-SY5Y cells following exposure to 0.2 μM DOX or MTX. MTX was more toxic than DOX in both cytotoxicity assays and according to the morphological analyses. MTX also evoked a higher number of apoptotic nuclei than DOX. Both drugs, at the 0.13 μM concentration, caused mitochondrial membrane potential depolarization after a 48-h exposure. Regarding the putative neuroprotectors, 1 mM NAC was not able to prevent the cytotoxicity caused by either drug. Notwithstanding, 100 μM tiron was capable of partially reverting MTX-induced cytotoxicity in the NR uptake assay. One hundred μM Ac-DEVD-CHO and 10 nM cycloheximide (CHX) also partially prevented the toxicity induced by DOX in the NR uptake assay. MTX was more toxic than DOX in differentiated SH-SY5Y cells, while MTX had similar toxicity in differentiated and undifferentiated SH-SY5Y cells. In fact, MTX was the most neurotoxic drug tested and the mechanisms involved seem dissimilar among drugs. Thus, its toxicity mechanisms need to be further investigated as to determine the putative neurotoxicity for multiple sclerosis and cancer patients.
Collapse
Affiliation(s)
- Daniela Almeida
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Rita Pinho
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Verónica Correia
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Jorge Soares
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Maria de Lourdes Bastos
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Félix Carvalho
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - João Paulo Capela
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- FP-ENAS (Unidade de Investigação UFP em Energia, Ambiente e Saúde), CEBIMED (Centro de Estudos em Biomedicina), Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, 4249-004 Porto, Portugal.
| | - Vera Marisa Costa
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
20
|
Tapeinou A, Giannopoulou E, Simal C, Hansen BE, Kalofonos H, Apostolopoulos V, Vlamis-Gardikas A, Tselios T. Design, synthesis and evaluation of an anthraquinone derivative conjugated to myelin basic protein immunodominant (MBP 85-99) epitope: Towards selective immunosuppression. Eur J Med Chem 2017; 143:621-631. [PMID: 29216561 DOI: 10.1016/j.ejmech.2017.11.063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/14/2017] [Accepted: 11/22/2017] [Indexed: 02/09/2023]
Abstract
Anthraquinone type compounds, especially di-substituted amino alkylamino anthraquinones have been widely studied as immunosuppressants. The anthraquinone ring is part of mitoxandrone that has been used for the treatment of multiple sclerosis (MS) and several types of tumors. A desired approach for the treatment of MS would be the immunosuppression and elimination of specific T cells that are responsible for the induction of the disease. Herein, the development of a peptide compound bearing an anthraquinone derivative with the potential to specifically destroy the encephalitogenic T cells responsible for the onset of MS is described. The compound consists of the myelin basic protein (MBP) 85-99 immunodominant epitope (MBP85-99) coupled to an anthraquinone type molecule (AQ) via a disulfide (S-S) and 6 amino hexanoic acid (Ahx) residues (AQ-S-S-(Ahx)6MBP85-99). AQ-S-S-(Ahx)6MBP85-99 could bind to HLA II DRB1*-1501 antigen with reasonable affinity (IC50 of 56 nM) The compound was localized to the nucleus of Jurkat cells (an immortalized line of human T lymphocytes) 10 min after its addition to the medium and resulted in lowered Bcl-2 levels (apoptosis). Entrance of the compound was abolished when cells were pre-treated with cisplatin, an inhibitor of thioredoxin reductase. Accordingly, levels of free thiols were elevated in the culture supernatants of Jurkat cells exposed to N-succinimidyl 3-(2-pyridyldithio) propionate coupled to (Ahx)6MBP85-99 via a disulphide (SPDP-S-S-(Ahx)6MBP85-99) but returned to normal after exposure to cisplatin. These results raise the possibility of AQ-S-S-(Ahx)6MBP85-99 being used as an eliminator of encephalitogenic T cells via implication of the thioredoxin system for the generation of the toxic, thiol-containing moiety (AQ-SH). Future experiments would ideally determine whether SPDP-S-S-(Ahx)6MBP85-99 could incorporate into HLA II DRB1*-1501 tetramers and neutralize encephalitogenic T cell lines sensitized to MBP85-99.
Collapse
Affiliation(s)
- Anthi Tapeinou
- Department of Chemistry, University of Patras, GR-26504, Rion, Greece
| | - Efstathia Giannopoulou
- Clinical Oncology Laboratory, University Hospital of Patras, Patras Medical School, GR-26504, Rion, Greece
| | - Carmen Simal
- Department of Chemistry, University of Patras, GR-26504, Rion, Greece
| | - Bjarke E Hansen
- Institute for Inflammation Research, Department of Infectious Diseases and Rheumatology, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
| | - Haralabos Kalofonos
- Clinical Oncology Laboratory, University Hospital of Patras, Patras Medical School, GR-26504, Rion, Greece
| | - Vasso Apostolopoulos
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, VIC, Australia
| | | | - Theodore Tselios
- Department of Chemistry, University of Patras, GR-26504, Rion, Greece.
| |
Collapse
|
21
|
Reis-Mendes A, Gomes AS, Carvalho RA, Carvalho F, Remião F, Pinto M, Bastos ML, Sousa E, Costa VM. Naphthoquinoxaline metabolite of mitoxantrone is less cardiotoxic than the parent compound and it can be a more cardiosafe drug in anticancer therapy. Arch Toxicol 2017; 91:1871-1890. [PMID: 27629428 DOI: 10.1007/s00204-016-1839-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 08/24/2016] [Indexed: 12/15/2022]
Abstract
Mitoxantrone (MTX) is an antineoplastic agent used to treat several types of cancers and on multiple sclerosis, which shows a high incidence of cardiotoxicity. Still, the underlying mechanisms of MTX cardiotoxicity are poorly understood and the potential toxicity of its metabolites scarcely investigated. Therefore, this work aimed to synthesize the MTX-naphthoquinoxaline metabolite (NAPHT) and to compare its cytotoxicity to the parent compound in 7-day differentiated H9c2 cells using pharmacological relevant concentrations (0.01-5 µM). MTX was more toxic in equivalent concentrations in all cytotoxicity tests performed [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide reduction, neutral red uptake, and lactate dehydrogenase release assays] and times tested (24 and 48 h). Both MTX and NAPHT significantly decreased mitochondrial membrane potential in 7-day differentiated H9c2 cells after a 12-h incubation. However, energetic pathways were affected in a different manner after MTX or NAPHT incubation. ATP increased and lactate levels decreased after a 24-h incubation with MTX, whereas for the same incubation time and concentrations, NAPHT did not cause any significant effect. The increased activity of ATP synthase seems responsible for MTX-induced increases in ATP levels, as oligomycin (an inhibitor of ATP synthase) abrogated this effect on 5 µM MTX-incubated cells. 3-Methyladenine (an autophagy inhibitor) was the only molecule to give a partial protection against the cytotoxicity produced by MTX or NAPHT. To the best of our knowledge, this was the first broad study on NAPHT cardiotoxicity, and it revealed that the parent drug, MTX, caused a higher disruption in the energetic pathways in a cardiac model in vitro, whereas autophagy is involved in the toxicity of both compounds. In conclusion, NAPHT is claimed to largely contribute to MTX-anticancer properties; therefore, this metabolite should be regarded as a good option for a safer anticancer therapy since it is less cardiotoxic than MTX.
Collapse
Affiliation(s)
- A Reis-Mendes
- UCIBIO-REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| | - A S Gomes
- UCIBIO-REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
- Lab. Química Orgânica e Farmacêutica, Dep. Química, Faculdade de Farmácia, U. Porto, Porto, Portugal
| | - R A Carvalho
- Centre for Functional Ecology, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - F Carvalho
- UCIBIO-REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - F Remião
- UCIBIO-REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - M Pinto
- Lab. Química Orgânica e Farmacêutica, Dep. Química, Faculdade de Farmácia, U. Porto, Porto, Portugal
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Porto, Portugal
| | - M L Bastos
- UCIBIO-REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - E Sousa
- Lab. Química Orgânica e Farmacêutica, Dep. Química, Faculdade de Farmácia, U. Porto, Porto, Portugal
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Porto, Portugal
| | - V M Costa
- UCIBIO-REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| |
Collapse
|
22
|
Fu HY, Mukai M, Awata N, Sakata Y, Hori M, Minamino T. Protein Quality Control Dysfunction in Cardiovascular Complications Induced by Anti-Cancer Drugs. Cardiovasc Drugs Ther 2017; 31:109-117. [PMID: 28120277 DOI: 10.1007/s10557-016-6709-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cardiovascular complications, including heart failure, hypertension, ischemic syndromes and venous thromboembolism, have been identified in patients treated with anti-cancer drugs. Oxidative stress, mitochondrial dysfunction and DNA synthesis inhibition are considered to be responsible for the cardiotoxicity induced by these agents. Protein quality control (PQC) has 3 major components, including the endoplasmic reticulum (ER), the ubiquitin-proteasome system (UPS) and the autophagy-lysosome system, and participates in protein folding and degradation to maintain protein homeostasis. We have demonstrated that PQC dysfunction is a new causal mechanism for the development of cardiac hypertrophy and failure. Increasing evidence shows that anti-cancer drugs, such as tyrosine kinase inhibitors, proteasome inhibitors, anthracyclines and autophagy inhibitors, cause PQC dysfunction. Here, we provide an overview of the potential role of PQC dysfunction in the development of cardiovascular complications induced by anti-cancer drugs.
Collapse
Affiliation(s)
- Hai Ying Fu
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of Clinical Research and Development, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Mikio Mukai
- Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Nobuhisa Awata
- Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masatsugu Hori
- Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Tetsuo Minamino
- Department of Cardiorenal and Cerebrovascular Medicine, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Mikicho, Kita-gun, Kagawa Prefecture, 761-0793, Japan.
| |
Collapse
|
23
|
Guissi NEI, Li H, Xu Y, Semcheddine F, Chen M, Su Z, Ping Q. Mitoxantrone- and Folate-TPGS2k Conjugate Hybrid Micellar Aggregates To Circumvent Toxicity and Enhance Efficiency for Breast Cancer Therapy. Mol Pharm 2017; 14:1082-1094. [DOI: 10.1021/acs.molpharmaceut.6b01009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Nida El Islem Guissi
- State
Key Laboratory of Natural Medicines, Department of Pharmaceutics,
and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, China
- Department
of Pharmacy, Faculty of Medicine, Ferhat Abbas University, Setif 19000, Algeria
| | - Huipeng Li
- State
Key Laboratory of Natural Medicines, Department of Pharmaceutics,
and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, China
| | - Yurui Xu
- State
Key Laboratory of Natural Medicines, Department of Pharmaceutics,
and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, China
| | - Farouk Semcheddine
- State
Key Laboratory of Bioelectronics, School of Biological Science and
Medical Engineering, Southeast University, Nanjing, China
| | - Minglei Chen
- State
Key Laboratory of Natural Medicines, Department of Pharmaceutics,
and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, China
| | - Zhigui Su
- State
Key Laboratory of Natural Medicines, Department of Pharmaceutics,
and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, China
| | - Qineng Ping
- State
Key Laboratory of Natural Medicines, Department of Pharmaceutics,
and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
24
|
Pathways of cardiac toxicity: comparison between chemotherapeutic drugs doxorubicin and mitoxantrone. Arch Toxicol 2016; 90:2063-2076. [PMID: 27342245 DOI: 10.1007/s00204-016-1759-y] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/13/2016] [Indexed: 01/25/2023]
Abstract
Anthracyclines, e.g., doxorubicin (DOX), and anthracenediones, e.g., mitoxantrone (MTX), are drugs used in the chemotherapy of several cancer types, including solid and non-solid malignancies such as breast cancer, leukemia, lymphomas, and sarcomas. Although they are effective in tumor therapy, treatment with these two drugs may lead to side effects such as arrhythmia and heart failure. At the same clinically equivalent dose, MTX causes slightly reduced cardiotoxicity compared with DOX. These drugs interact with iron to generate reactive oxygen species (ROS), target topoisomerase 2 (Top2), and impair mitochondria. These are some of the mechanisms through which these drugs induce late cardiomyopathy. In this review, we compare the cardiotoxicities of these two chemotherapeutic drugs, DOX and MTX. As described here, even though they share similarities in their modes of toxicant action, DOX and MTX seem to differ in a key aspect. DOX is a more redox-interfering drug, while MTX induces energy imbalance. In addition, DOX toxicity can be explained by underlying mechanisms that include targeting of Top2 beta, mitochondrial impairment, and increases in ROS generation. These modes of action have not yet been demonstrated for MTX, and this knowledge gap needs to be filled.
Collapse
|
25
|
Madeddu C, Deidda M, Piras A, Cadeddu C, Demurtas L, Puzzoni M, Piscopo G, Scartozzi M, Mercuro G. Pathophysiology of cardiotoxicity induced by nonanthracycline chemotherapy. J Cardiovasc Med (Hagerstown) 2016; 17 Suppl 1:e12-e18. [PMID: 27183520 DOI: 10.2459/jcm.0000000000000376] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The risk and mechanism of chemotherapy-induced cardiotoxicity (CTX) vary depending on the type and intensity of the anticancer regimen. Myriad chemotherapeutic drugs produce adverse cardiovascular effects such as arterial hypertension, heart failure, and thromboembolic events. Among the numerous classes of these drugs, anthracyclines have been studied most extensively because of their overt cardiovascular effects and the high associated incidence of heart failure. However, CTX might also be caused by other types of chemotherapeutic agents, including alkylating agents (cyclophosphamide, ifosfamide), platinum agents, antimetabolites (5-fluorouracil, capecitabine), antibiotics (mitoxantrone, mitomycin, bleomycin), and antimicrotubule agents (taxanes). Here, we review the incidence, clinical impact, and potential mechanisms of CTX associated with nonanthracycline chemotherapy used for cancer patients. The published data support a marked increase in CTX risk, particularly with certain drugs such as 5-fluorouracil and cisplatin. Each anticancer regimen is associated with distinct modes of heart damage, both symptomatic and asymptomatic. However, the underlying mechanisms of CTX have been established only in a few cases, and only few nonanthracycline chemotherapeutics (mitoxantrone, mitomycin, ifosfamide) act through a recognizable mechanism and show a predictable dose dependence. Lastly, nonanthracycline chemotherapy can induce both chronic lesions, such as systolic dysfunction, and acute lesions, such as the ischemia that occurs within hours or days after treatment. An increased understanding of the incidence, mechanisms, and potential therapeutic targets of CTX induced by various nonanthracycline chemotherapeutic agents is clearly required.
Collapse
Affiliation(s)
- Clelia Madeddu
- aDepartment of Medical Sciences Mario Aresu, Unit of Medical Oncology bDepartment of Medical Sciences Mario Aresu, Unit of Cardiology and Angiology, University Hospital Cagliari, University of Cagliari, Cagliari cDivision of Cardiology, Istituto Nazionale per lo Studio e la Cura dei Tumori 'Fondazione Giovanni Pascale' - IRCCS, Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Varga ZV, Ferdinandy P, Liaudet L, Pacher P. Drug-induced mitochondrial dysfunction and cardiotoxicity. Am J Physiol Heart Circ Physiol 2015; 309:H1453-H1467. [PMID: 26386112 PMCID: PMC4666974 DOI: 10.1152/ajpheart.00554.2015] [Citation(s) in RCA: 354] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 09/15/2015] [Indexed: 12/14/2022]
Abstract
Mitochondria has an essential role in myocardial tissue homeostasis; thus deterioration in mitochondrial function eventually leads to cardiomyocyte and endothelial cell death and consequent cardiovascular dysfunction. Several chemical compounds and drugs have been known to directly or indirectly modulate cardiac mitochondrial function, which can account both for the toxicological and pharmacological properties of these substances. In many cases, toxicity problems appear only in the presence of additional cardiovascular disease conditions or develop months/years following the exposure, making the diagnosis difficult. Cardiotoxic agents affecting mitochondria include several widely used anticancer drugs [anthracyclines (Doxorubicin/Adriamycin), cisplatin, trastuzumab (Herceptin), arsenic trioxide (Trisenox), mitoxantrone (Novantrone), imatinib (Gleevec), bevacizumab (Avastin), sunitinib (Sutent), and sorafenib (Nevaxar)], antiviral compound azidothymidine (AZT, Zidovudine) and several oral antidiabetics [e.g., rosiglitazone (Avandia)]. Illicit drugs such as alcohol, cocaine, methamphetamine, ecstasy, and synthetic cannabinoids (spice, K2) may also induce mitochondria-related cardiotoxicity. Mitochondrial toxicity develops due to various mechanisms involving interference with the mitochondrial respiratory chain (e.g., uncoupling) or inhibition of the important mitochondrial enzymes (oxidative phosphorylation, Szent-Györgyi-Krebs cycle, mitochondrial DNA replication, ADP/ATP translocator). The final phase of mitochondrial dysfunction induces loss of mitochondrial membrane potential and an increase in mitochondrial oxidative/nitrative stress, eventually culminating into cell death. This review aims to discuss the mechanisms of mitochondrion-mediated cardiotoxicity of commonly used drugs and some potential cardioprotective strategies to prevent these toxicities.
Collapse
Affiliation(s)
- Zoltán V Varga
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland; Cardiometabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Peter Ferdinandy
- Cardiometabolic Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary; and
| | - Lucas Liaudet
- Department of Intensive Care Medicine BH 08-621-University Hospital Medical Center, Lausanne, Switzerland
| | - Pál Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland;
| |
Collapse
|
27
|
Arbo MD, Silva R, Barbosa DJ, Dias da Silva D, Silva SP, Teixeira JP, Bastos ML, Carmo H. In vitro neurotoxicity evaluation of piperazine designer drugs in differentiated human neuroblastoma SH-SY5Y cells. J Appl Toxicol 2015; 36:121-30. [PMID: 25900438 DOI: 10.1002/jat.3153] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 02/13/2015] [Accepted: 02/23/2015] [Indexed: 12/12/2022]
Abstract
Abuse of synthetic drugs is widespread worldwide. Studies indicate that piperazine designer drugs act as substrates at dopaminergic and serotonergic receptors and/or transporters in the brain. This work aimed to investigate the cytotoxicity of N-benzylpiperazine, 1-(3-trifluoromethylphenyl)piperazine, 1-(4-methoxyphenyl)piperazine and 1-(3,4-methylenedioxybenzyl)piperazine in the differentiated human neuroblastoma SH-SY5Y cell line. Cytotoxicity was evaluated after 24 h incubations through the MTT reduction and neutral red uptake assays. Oxidative stress (reactive oxygen and nitrogen species production and glutathione content) and energetic (ATP content) parameters, as well as intracellular Ca(2+), mitochondrial membrane potential, DNA damage (comet assay) and cell death mode were also evaluated. Complete cytotoxicity curves were obtained after 24 h incubations with each drug. A significant decrease in intracellular total glutathione content was noted for all the tested drugs. All drugs caused a significant increase of intracellular free Ca(2+) levels, accompanied by mitochondrial hyperpolarization. However, ATP levels remained unchanged. The investigation of cell death mode revealed a predominance of early apoptotic cells. No genotoxicity was found in the comet assay. Among the tested drugs, 1-(3-trifluoromethylphenyl)piperazine was the most cytotoxic. Overall, piperazine designer drugs are potentially neurotoxic, supporting concerns on risks associated with the abuse of these drugs.
Collapse
Affiliation(s)
- M D Arbo
- REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - R Silva
- REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - D J Barbosa
- REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.,Cell Division Mechanisms Group, Institute for Molecular and Cell Biology - IBMC, Porto, Portugal
| | - D Dias da Silva
- REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - S P Silva
- Instituto Nacional de Saúde Dr. Ricardo Jorge (INSA), Porto, Portugal
| | - J P Teixeira
- Instituto Nacional de Saúde Dr. Ricardo Jorge (INSA), Porto, Portugal
| | - M L Bastos
- REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - H Carmo
- REQUIMTE, Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
28
|
Mitochondrial cumulative damage induced by mitoxantrone: late onset cardiac energetic impairment. Cardiovasc Toxicol 2014; 14:30-40. [PMID: 24096626 DOI: 10.1007/s12012-013-9230-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mitoxantrone (MTX) is a chemotherapeutic agent, which presents late irreversible cardiotoxicity. This work aims to highlight the mechanisms involved in the MTX-induced cardiotoxicity, namely the effects toward mitochondria using in vivo and in vitro studies. Male Wistar rats were treated with 3 cycles of 2.5 mg/kg MTX at day 0, 10, and 20. One treated group was euthanized on day 22 (MTX22) to evaluate the early MTX cardiac toxic effects, while the other was euthanized on day 48 (MTX48), to allow the evaluation of MTX late cardiac effects. Cardiac mitochondria isolated from 4 adult untreated rats were also used to evaluate in vitro the MTX (10 nM, 100 nM, and 1 μM) direct effects upon mitochondria functionality. Two rats of MTX48 died on day 35, and MTX treatment caused a reduction in relative body weight gain in both treated groups with no significant changes in water and food intake. Decreased levels of plasma total creatine kinase and CK-MB were detected in the MTX22 group, and increased plasma levels of lactate were seen in MTX48. Increased cardiac relative mass and microscopic changes were evident in both treated groups. Considering mitochondrial effects, for the first time, it was evidenced that MTX induced an increase in the complex IV and complex V activities in MTX22 group, while a decrease in the complex V activity was accompanied by the reduction in ATP content in the MTX48 rats. No alterations in mitochondria transmembrane potential were found in isolated mitochondria from MTX48 rats or in isolated mitochondria directly incubated with MTX. This study highlights the relevance of the cumulative MTX-induced in vivo mitochondriopathy to the MTX cardiotoxicity.
Collapse
|
29
|
Piperazine designer drugs induce toxicity in cardiomyoblast h9c2 cells through mitochondrial impairment. Toxicol Lett 2014; 229:178-89. [PMID: 24968061 DOI: 10.1016/j.toxlet.2014.06.031] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 06/18/2014] [Accepted: 06/20/2014] [Indexed: 12/28/2022]
Abstract
Abuse of synthetic drugs is widespread among young people worldwide. In this context, piperazine derived drugs recently appeared in the recreational drug market. Clinical studies and case-reports describe sympathomimetic effects including hypertension, tachycardia, and increased heart rate. Our aim was to investigate the cytotoxicity of N-benzylpiperazine (BZP), 1-(3-trifluoromethylphenyl) piperazine (TFMPP), 1-(4-methoxyphenyl) piperazine (MeOPP), and 1-(3,4-methylenedioxybenzyl) piperazine (MDBP) in the H9c2 rat cardiac cell line. Complete cytotoxicity curves were obtained at a 0-20 mM concentration range after 24 h incubations with each drug. The EC50 values (μM) were 343.9, 59.6, 570.1, and 702.5 for BZP, TFMPP, MeOPP, and MDBP, respectively. There was no change in oxidative stress markers. However, a decrease in total GSH content was noted for MDBP, probably due to metabolic conjugation reactions. All drugs caused significant decreases in intracellular ATP, accompanied by increased intracellular calcium levels and a decrease in mitochondrial membrane potential that seems to involve the mitochondrial permeability transition pore. The cell death mode revealed early apoptotic cells and high number of cells undergoing secondary necrosis. Among the tested drugs, TFMPP seems to be the most potent cytotoxic compound. Overall, piperazine designer drugs are potentially cardiotoxic and support concerns on risks associated with the intake of these drugs.
Collapse
|
30
|
Rossato LG, Costa VM, Dallegrave E, Arbo M, Dinis-Oliveira RJ, Santos-Silva A, Duarte JA, de Lourdes Bastos M, Palmeira C, Remião F. Cumulative mitoxantrone-induced haematological and hepatic adverse effects in a subchronic in vivo study. Basic Clin Pharmacol Toxicol 2013; 114:254-62. [PMID: 24119282 DOI: 10.1111/bcpt.12143] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 09/10/2013] [Indexed: 01/16/2023]
Abstract
Mitoxantrone (MTX) is an antineoplastic agent that can induce hepato- and haematotoxicity. This work aimed to investigate the occurrence of cumulative early and late MTX-induced hepatic and haematological disturbances in an vivo model. A control group and two groups treated with three cycles of 2.5 mg/kg MTX at days 0, 10 and 20 were formed. One of the treated groups suffered euthanasia on day 22 (MTX22) to evaluate early MTX toxic effects, while the other suffered euthanasia on day 48 (MTX48), to allow the evaluation of MTX late effects. An early immunosuppression with a drop in the IgG levels was observed, causing a slight decrease in the plasma total protein content. The early bone marrow depression was followed by signs of recovery in MTX48. The genotoxic potential of MTX was demonstrated by the presence of several micronuclei in MTX22 leucocytes. Increases in plasma iron and cholesterol levels in the MTX22 rats were observed, while in both groups increases in the unconjugated bilirubin, C4 complement, and decreases in the triglycerides, alanine aminotransferase, alkaline phosphatase and transferrin were found in plasma samples. On MTX 48, the liver histology showed more hepatotoxic signs, the hepatic levels of reduced and oxidized glutathione were increased, and ATP hepatic levels were decreased. However, the hepatic total protein levels were decreased only in the livers of MTX22 group. Results demonstrated the MTX genotoxic effects, haemato- and direct hepatotoxicity. While the haematological toxicity is ameliorated with time, the same was not observed in the hepatic injury.
Collapse
Affiliation(s)
- Luciana G Rossato
- REQUIMTE, Toxicology Laboratory, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|