1
|
Doulidis PG, Kuropka B, Frizzo Ramos C, Rodríguez-Rojas A, Burgener IA. Characterization of the plasma proteome from healthy adult dogs. Front Vet Sci 2024; 11:1356318. [PMID: 38638644 PMCID: PMC11024428 DOI: 10.3389/fvets.2024.1356318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/04/2024] [Indexed: 04/20/2024] Open
Abstract
Introduction Bloodwork is a widely used diagnostic tool in veterinary medicine, as diagnosis and therapeutic interventions often rely on blood biomarkers. However, biomarkers available in veterinary medicine often lack sensitivity or specificity. Mass spectrometry-based proteomics technology has been extensively used in the analysis of biological fluids. It offers excellent potential for a more comprehensive characterization of the plasma proteome in veterinary medicine. Methods In this study, we aimed to identify and quantify plasma proteins in a cohort of healthy dogs and compare two techniques for depleting high-abundance plasma proteins to enable the detection of lower-abundance proteins via label-free quantification liquid chromatography-mass spectrometry. We utilized surplus lithium-heparin plasma from 30 healthy dogs, subdivided into five groups of pooled plasma from 6 randomly selected individuals each. Firstly, we used a commercial kit to deplete high-abundance plasma proteins. Secondly, we employed an in-house method to remove albumin using Blue-Sepharose. Results and discussion Among all the samples, some of the most abundant proteins identified were apolipoprotein A and B, albumin, alpha-2-macroglobulin, fibrinogen beta chain, fibronectin, complement C3, serotransferrin, and coagulation factor V. However, neither of the depletion techniques achieved significant depletion of highly abundant proteins. Despite this limitation, we could detect and quantify many clinically relevant proteins. Determining the healthy canine proteome is a crucial first step in establishing a reference proteome for canine plasma. After enrichment, this reference proteome can later be utilized to identify protein markers associated with different diseases, thereby contributing to the diagnosis and prognosis of various pathologies.
Collapse
Affiliation(s)
- Pavlos G. Doulidis
- Division for Small Animal Internal Medicine, Department for Small Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Benno Kuropka
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Carolina Frizzo Ramos
- The Interuniversity Messerli Research Institute, Medical University Vienna, Vienna, Austria
- Clinical Center for Small Animals, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Alexandro Rodríguez-Rojas
- Division for Small Animal Internal Medicine, Department for Small Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Iwan A. Burgener
- Division for Small Animal Internal Medicine, Department for Small Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
2
|
Cai T, Yang F. Strategies for Characterization of Low-Abundant Intact or Truncated Low-Molecular-Weight Proteins From Human Plasma. Enzymes 2017; 42:105-123. [PMID: 29054267 PMCID: PMC7102702 DOI: 10.1016/bs.enz.2017.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Low-molecular-weight region (LMW, MW≤30kDa) of human serum/plasma proteins, including small intact proteins, truncated fragments of larger proteins, along with some other small components, has been associated with the ongoing physiological and pathological events, and thereby represent a treasure trove of diagnostic molecules. Great progress in the mining of novel biomarkers from this diagnostic treasure trove for disease diagnosis and health monitoring has been achieved based on serum samples from healthy individuals and patients and powerful new approaches in biochemistry and systems biology. However, cumulative evidence indicates that many potential LMW protein biomarkers might still have escaped from detection due to their low abundance, the dynamic complexity of serum/plasma, and the limited efficiency of characterization approaches. Here, we provide an overview of the current state of knowledge with respect to strategies for the characterization of low-abundant LMW proteins (small intact or truncated proteins) from human serum/plasma, involving prefractionation or enrichment methods to reduce dynamic range and mass spectrometry-based characterization of low-abundant LMW proteins.
Collapse
Affiliation(s)
- Tanxi Cai
- Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| | - Fuquan Yang
- Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Ourradi K, Sharif M. Opportunities and challenges for the discovery and validation of proteomic biomarkers for common arthritic diseases. Biomark Med 2017; 11:877-892. [PMID: 28976778 DOI: 10.2217/bmm-2016-0374] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Osteoarthritis (OA) and rheumatoid arthritis (RA) are most prevalent among all the rheumatic diseases, and currently, there are no reliable biochemical measures for early diagnosis or for predicting who is likely to progress. Early diagnosis is important for making decisions on treatment options and for better management of patients. This narrative review highlights the first-generation biomarkers identified over the last two decades and focuses on the discovery and validation of candidate OA biomarkers from recent mass-spectrometry-based proteomic studies for diagnosis and monitoring disease outcomes in human. It discusses the challenges and opportunities for discovery of novel biomarkers and progress in the development of techniques for measuring biomarkers, and provides directions for future discovery and validation of biomarkers for OA and rheumatoid arthritis.
Collapse
Affiliation(s)
- Khadija Ourradi
- Musculoskeletal Research Unit, Translational Health Sciences Bristol Medical School, University of Bristol, Learning & Research Building, Southmead Hospital, Bristol BS10 5NB, UK
| | - Mohammed Sharif
- Musculoskeletal Research Unit, Translational Health Sciences Bristol Medical School, University of Bristol, Learning & Research Building, Southmead Hospital, Bristol BS10 5NB, UK
| |
Collapse
|
4
|
Wang Y, Zheng C, Wang X, Zuo K, Liu Z. Proteomic profile-based screening of potential protein biomarkers in the urine of patients with nephrotic syndrome. Mol Med Rep 2017; 16:6276-6284. [DOI: 10.3892/mmr.2017.7329] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 05/23/2017] [Indexed: 11/06/2022] Open
|
5
|
QIU FANGHUA, HOU TIEYING, HUANG DEHONG, XUE ZHIFENG, LIANG DONGYAN, LI QIUMING, LIN WEIMIAO. Evaluation of two high-abundance protein depletion kits and optimization of downstream isoelectric focusing. Mol Med Rep 2015; 12:7749-55. [DOI: 10.3892/mmr.2015.4417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 08/14/2015] [Indexed: 11/06/2022] Open
|
6
|
Bennike T, Ayturk U, Haslauer CM, Froehlich JW, Proffen B, Barnaby O, Birkelund S, Murray MM, Warman ML, Stensballe A, Steen H. A normative study of the synovial fluid proteome from healthy porcine knee joints. J Proteome Res 2014; 13:4377-87. [PMID: 25160569 PMCID: PMC4184458 DOI: 10.1021/pr500587x] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Indexed: 12/13/2022]
Abstract
Synovial fluid in an articulating joint contains proteins derived from the blood plasma and proteins that are produced by cells within the joint tissues, such as synovium, cartilage, ligament, and meniscus. The proteome composition of healthy synovial fluid and the cellular origins of many synovial fluid components are not fully understood. Here, we present a normative proteomics study using porcine synovial fluid. Using our optimized method, we identified 267 proteins with high confidence in healthy synovial fluid. We also evaluated mRNA expression data from tissues that can contribute to the synovial fluid proteome, including synovium, cartilage, blood, and liver, to better estimate the relative contributions from these sources to specific synovial fluid components. We identified 113 proteins in healthy synovial fluid that appear to be primarily derived from plasma transudates, 37 proteins primarily derived from synovium, and 11 proteins primarily derived from cartilage. Finally, we compared the identified synovial fluid proteome to the proteome of human plasma, and we found that the two body fluids share many similarities, underlining the detected plasma derived nature of many synovial fluid components. Knowing the synovial fluid proteome of a healthy joint will help to identify mechanisms that cause joint disease and pathways involved in disease progression.
Collapse
Affiliation(s)
- Tue Bennike
- Department of Pathology and Proteomics
Center, Department of Orthopaedic Surgery, Department of Urology, and Howard Hughes
Medical Institute, Boston Children’s
Hospital, Boston, Massachusetts 02115, United States
- Department
of Health Science and Technology, Aalborg
University, Aalborg DK-9220, Denmark
| | - Ugur Ayturk
- Department of Pathology and Proteomics
Center, Department of Orthopaedic Surgery, Department of Urology, and Howard Hughes
Medical Institute, Boston Children’s
Hospital, Boston, Massachusetts 02115, United States
- Department
of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Carla M. Haslauer
- Department of Pathology and Proteomics
Center, Department of Orthopaedic Surgery, Department of Urology, and Howard Hughes
Medical Institute, Boston Children’s
Hospital, Boston, Massachusetts 02115, United States
| | - John W. Froehlich
- Department of Pathology and Proteomics
Center, Department of Orthopaedic Surgery, Department of Urology, and Howard Hughes
Medical Institute, Boston Children’s
Hospital, Boston, Massachusetts 02115, United States
| | - Benedikt
L. Proffen
- Department of Pathology and Proteomics
Center, Department of Orthopaedic Surgery, Department of Urology, and Howard Hughes
Medical Institute, Boston Children’s
Hospital, Boston, Massachusetts 02115, United States
| | - Omar Barnaby
- Department of Pathology and Proteomics
Center, Department of Orthopaedic Surgery, Department of Urology, and Howard Hughes
Medical Institute, Boston Children’s
Hospital, Boston, Massachusetts 02115, United States
| | - Svend Birkelund
- Department
of Health Science and Technology, Aalborg
University, Aalborg DK-9220, Denmark
| | - Martha M. Murray
- Department of Pathology and Proteomics
Center, Department of Orthopaedic Surgery, Department of Urology, and Howard Hughes
Medical Institute, Boston Children’s
Hospital, Boston, Massachusetts 02115, United States
| | - Matthew L. Warman
- Department of Pathology and Proteomics
Center, Department of Orthopaedic Surgery, Department of Urology, and Howard Hughes
Medical Institute, Boston Children’s
Hospital, Boston, Massachusetts 02115, United States
- Department
of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Allan Stensballe
- Department
of Health Science and Technology, Aalborg
University, Aalborg DK-9220, Denmark
| | - Hanno Steen
- Department of Pathology and Proteomics
Center, Department of Orthopaedic Surgery, Department of Urology, and Howard Hughes
Medical Institute, Boston Children’s
Hospital, Boston, Massachusetts 02115, United States
| |
Collapse
|
7
|
Mei N, Seale B, Ng AH, Wheeler AR, Oleschuk R. Digital Microfluidic Platform for Human Plasma Protein Depletion. Anal Chem 2014; 86:8466-72. [DOI: 10.1021/ac5022198] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ningsi Mei
- Department
of Chemistry, Queen’s University, 90 Bader Lane, Kingston, Ontario K7L
3N6, Canada
| | - Brendon Seale
- Department
of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Alphonsus H.C. Ng
- Institute
of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
- Donnelly Centre for Cellular and Biomolecular Research, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Aaron R. Wheeler
- Department
of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
- Institute
of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
- Donnelly Centre for Cellular and Biomolecular Research, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Richard Oleschuk
- Department
of Chemistry, Queen’s University, 90 Bader Lane, Kingston, Ontario K7L
3N6, Canada
| |
Collapse
|
8
|
Ahn SB, Khan A. Detection and quantitation of twenty-seven cytokines, chemokines and growth factors pre- and post-high abundance protein depletion in human plasma. EUPA OPEN PROTEOMICS 2014. [DOI: 10.1016/j.euprot.2014.02.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
9
|
Prieto DA, Ye X, Veenstra TD. Proteomic analysis of traumatic brain injury: the search for biomarkers. Expert Rev Proteomics 2014; 5:283-91. [DOI: 10.1586/14789450.5.2.283] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
10
|
Rivers J, Hughes C, McKenna T, Woolerton Y, Vissers JPC, Langridge JI, Beynon RJ. Asymmetric proteome equalization of the skeletal muscle proteome using a combinatorial hexapeptide library. PLoS One 2011; 6:e28902. [PMID: 22205978 PMCID: PMC3242751 DOI: 10.1371/journal.pone.0028902] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 11/16/2011] [Indexed: 12/04/2022] Open
Abstract
Immobilized combinatorial peptide libraries have been advocated as a strategy for equalization of the dynamic range of a typical proteome. The technology has been applied predominantly to blood plasma and other biological fluids such as urine, but has not been used extensively to address the issue of dynamic range in tissue samples. Here, we have applied the combinatorial library approach to the equalization of a tissue where there is also a dramatic asymmetry in the range of abundances of proteins; namely, the soluble fraction of skeletal muscle. We have applied QconCAT and label-free methodology to the quantification of the proteins that bind to the beads as the loading is progressively increased. Although some equalization is achieved, and the most abundant proteins no longer dominate the proteome analysis, at high protein loadings a new asymmetry of protein expression is reached, consistent with the formation of complex assembles of heat shock proteins, cytoskeletal elements and other proteins on the beads. Loading at different ionic strength values leads to capture of different subpopulations of proteins, but does not completely eliminate the bias in protein accumulation. These assemblies may impair the broader utility of combinatorial library approaches to the equalization of tissue proteomes. However, the asymmetry in equalization is manifest at either low and high ionic strength values but manipulation of the solvent conditions may extend the capacity of the method.
Collapse
Affiliation(s)
- Jenny Rivers
- Protein Function Group, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Chris Hughes
- Waters Corporation MS Technologies Centre, Atlas Park, Wythenshawe, Manchester, United Kingdom
| | - Thérèse McKenna
- Waters Corporation MS Technologies Centre, Atlas Park, Wythenshawe, Manchester, United Kingdom
| | - Yvonne Woolerton
- Protein Function Group, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Johannes P. C. Vissers
- Waters Corporation MS Technologies Centre, Atlas Park, Wythenshawe, Manchester, United Kingdom
| | - James I. Langridge
- Waters Corporation MS Technologies Centre, Atlas Park, Wythenshawe, Manchester, United Kingdom
| | - Robert J. Beynon
- Protein Function Group, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- * E-mail:
| |
Collapse
|
11
|
Di Domenico F, Coccia R, Butterfield DA, Perluigi M. Circulating biomarkers of protein oxidation for Alzheimer disease: expectations within limits. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:1785-95. [PMID: 22019699 DOI: 10.1016/j.bbapap.2011.10.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 09/30/2011] [Accepted: 10/05/2011] [Indexed: 12/11/2022]
Abstract
Alzheimer disease (AD), the most common dementing disorder, is a multifactorial disease with complex etiology. Among different hypotheses proposed for AD one of the most corroborated is the "oxidative stress hypothesis". Although recent studies extensively demonstrated the specific oxidative modification of selected proteins in the brain of AD patients and how their dysfunction possibly correlates with the pathology, there is still an urgent need to extend these findings to peripheral tissue. So far very few studies showed oxidative damage of proteins in peripheral tissues and current findings need to be replicated. Another limit in AD research is represented by the lack of highly specific diagnostic tools for early diagnosis. For a full screening and early diagnosis, biomarkers easily detectable in biological samples, such as blood, are needed. The search of reliable biomarkers for AD in peripheral blood is a great challenge. A few studies described a set of plasma markers that differentiated AD from controls and were shown to be useful in predicting conversion from mild cognitive impairment, which is considered a prodromal stage, to AD. We review the current state of knowledge on peripheral oxidative biomarkers for AD, including proteomics, which might be useful for early diagnosis and prognosis.
Collapse
Affiliation(s)
- Fabio Di Domenico
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | | | | | | |
Collapse
|
12
|
Chen CP, Hsu CC, Yeh WL, Lin HC, Hsieh SY, Lin SC, Chen TT, Chen MJ, Tang SF. Optimizing human synovial fluid preparation for two-dimensional gel electrophoresis. Proteome Sci 2011; 9:65. [PMID: 21988904 PMCID: PMC3206423 DOI: 10.1186/1477-5956-9-65] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 10/11/2011] [Indexed: 12/20/2022] Open
Abstract
Background Proteome analysis is frequently applied in identifying the proteins or biomarkers in knee synovial fluids (SF) that are associated with osteoarthritis and other arthritic disorders. The 2-dimensional gel electrophoresis (2-DE) is the technique of choice in these studies. Disease biomarkers usually appear in low concentrations and may be masked by high abundant proteins. Therefore, the main aim of this study was to find the most suitable sample preparation method that can optimize the expression of proteins on 2-DE gels that can be used to develop a reference proteome picture for non-osteoarthritic knee synovial fluid samples. Proteome pictures obtained from osteoarthritic knee synovial fluids can then be compared with the reference proteome pictures obtained in this study to assist us in identifying the disease biomarkers more correctly. Results The proteomic tool of 2-DE with immobilized pH gradients was applied in this study. A total of 12 2-DE gel images were constructed from SF samples that were free of osteoarthritis. In these samples, 3 were not treated with any sample preparation methods, 3 were treated with acetone, 3 were treated with 2-DE Clean-Up Kit, and 3 were treated with the combination of acetone and 2-D Clean-Up Kit prior to 2-DE analysis. Gel images were analyzed using the PDQuest Basic 8.0.1 Analytical software. Protein spots that were of interest were excised from the gels and sent for identification by mass spectrometry. Total SF total protein concentration was calculated to be 21.98 ± 0.86 mg/mL. The untreated SF samples were detected to have 456 ± 33 protein spots on 2-DE gel images. Acetone treated SF samples were detected to have 320 ± 28 protein spots, 2-D Clean-Up Kit treated SF samples were detected to have 413 ± 31 protein spots, and the combined treatment method of acetone and 2-D Clean-Up Kit was detected to have 278 ± 26 protein spots 2-DE gel images. SF samples treated with 2-D Clean-Up Kit revealed clearer presentation of the isoforms and increased intensities of the less abundant proteins of haptoglobin, apolipoprotein A-IV, prostaglandin-D synthase, alpha-1B-glycoprotein, and alpha-2-HS-glycoprotein on 2-DE gel images as compared with untreated SF samples and SF samples treated with acetone. Conclusions The acetone precipitation method and the combined treatment effect of acetone and 2-DE Clean-Up Kit are not preferred in preparing SF samples for 2-DE analysis as both protein intensities and numbers decrease significantly. On the other hand, 2-D Clean-Up Kit treated SF samples revealed clearer isoforms and higher intensities for the less abundant proteins of haptoglobin, apolipoprotein A-IV, prostaglandin-D synthase, alpha-1B-glycoprotein, and alpha-2-HS-glycoprotein on 2-DE gels. As a result, it is recommended that SF samples should be treated with protein clean up products such as 2-D Clean-Up Kit first before conducting proteomic research in searching for the relevant biomarkers associated with knee osteoarthritis.
Collapse
Affiliation(s)
- Carl Pc Chen
- Department of Physical Medicine & Rehabilitation Chang Gung Memorial Hospital, Linkou and Chang Gung University College of Medicine, Tao-Yuan County, Taiwan.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Millioni R, Tolin S, Puricelli L, Sbrignadello S, Fadini GP, Tessari P, Arrigoni G. High abundance proteins depletion vs low abundance proteins enrichment: comparison of methods to reduce the plasma proteome complexity. PLoS One 2011; 6:e19603. [PMID: 21573190 PMCID: PMC3087803 DOI: 10.1371/journal.pone.0019603] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 04/06/2011] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND To date, the complexity of the plasma proteome exceeds the analytical capacity of conventional approaches to isolate lower abundance proteins that may prove to be informative biomarkers. Only complex multistep separation strategies have been able to detect a substantial number of low abundance proteins (<100 ng/ml). The first step of these protocols is generally the depletion of high abundance proteins by the use of immunoaffinity columns or, alternatively, the enrichment of by the use of solid phase hexapeptides ligand libraries. METHODOLOGY/PRINCIPAL FINDINGS Here we present a direct comparison of these two approaches. Following either approach, the plasma sample was further fractionated by SCX chromatography and analyzed by RP-LC-MS/MS with a Q-TOF mass spectrometer. The depletion of the 20 most abundant plasma proteins allowed the identification of about 25% more proteins than those detectable following low abundance proteins enrichment. The two datasets are partially overlapping and the identified proteins belong to the same order of magnitude in terms of plasma concentration. CONCLUSIONS/SIGNIFICANCE Our results show that the two approaches give complementary results. However, the enrichment of low abundance proteins has the great advantage of obtaining much larger amount of material that can be used for further fractionations and analyses and emerges also as a cheaper and technically simpler approach. Collectively, these data indicate that the enrichment approach seems more suitable as the first stage of a complex multi-step fractionation protocol.
Collapse
Affiliation(s)
- Renato Millioni
- Department of Clinical and Experimental Medicine, Division of Metabolism, University of Padua, Padua, Italy.
| | | | | | | | | | | | | |
Collapse
|
14
|
Tu C, Rudnick PA, Martinez MY, Cheek KL, Stein SE, Slebos RJC, Liebler DC. Depletion of abundant plasma proteins and limitations of plasma proteomics. J Proteome Res 2010; 9:4982-91. [PMID: 20677825 DOI: 10.1021/pr100646w] [Citation(s) in RCA: 286] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Immunoaffinity depletion with antibodies to the top 7 or top 14 high-abundance plasma proteins is used to enhance detection of lower abundance proteins in both shotgun and targeted proteomic analyses. We evaluated the effects of top 7/top 14 immunodepletion on the shotgun proteomic analysis of human plasma. Our goal was to evaluate the impact of immunodepletion on detection of proteins across detectable ranges of abundance. The depletion columns afforded highly repeatable and efficient plasma protein fractionation. Relatively few nontargeted proteins were captured by the depletion columns. Analyses of unfractionated and immunodepleted plasma by peptide isoelectric focusing (IEF), followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS), demonstrated enrichment of nontargeted plasma proteins by an average of 4-fold, as assessed by MS/MS spectral counting. Either top 7 or top 14 immunodepletion resulted in a 25% increase in identified proteins compared to unfractionated plasma. Although 23 low-abundance (<10 ng mL(-1)) plasma proteins were detected, they accounted for only 5-6% of total protein identifications in immunodepleted plasma. In both unfractionated and immunodepleted plasma, the 50 most abundant plasma proteins accounted for 90% of cumulative spectral counts and precursor ion intensities, leaving little capacity to sample lower abundance proteins. Untargeted proteomic analyses using current LC-MS/MS platforms-even with immunodepletion-cannot be expected to efficiently discover low-abundance, disease-specific biomarkers in plasma.
Collapse
Affiliation(s)
- Chengjian Tu
- The Jim Ayers Institute for Precancer Detection and Diagnosis, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Bellei E, Bergamini S, Monari E, Fantoni LI, Cuoghi A, Ozben T, Tomasi A. High-abundance proteins depletion for serum proteomic analysis: concomitant removal of non-targeted proteins. Amino Acids 2010; 40:145-56. [PMID: 20495836 DOI: 10.1007/s00726-010-0628-x] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Accepted: 05/10/2010] [Indexed: 11/25/2022]
Abstract
In clinical and pharmaceutical proteomics, serum and plasma are frequently used for detection of early diagnostic biomarkers for therapeutic targets. Although obtaining these body fluid samples is non-invasive and easy, they contain some abundant proteins that mask other protein components present at low concentrations. The challenge in identifying serum biomarkers is to remove the abundant proteins, uncovering and enriching at the same time the low-abundance ones. The depletion strategies, however, could lead to the concomitant removal of some non-targeted proteins that may be of potential interest. In this study, we compared three different methods aimed to deplete high-abundance proteins from human serum, focusing on the identification of non-specifically bound proteins which might be eventually removed. A Cibacron blue-dye-based method for albumin removal, an albumin and IgG immunodepletion method and an immunoaffinity column (Multiple Affinity Removal System) that simultaneously removes a total of six high-abundance proteins, were investigated. The bound proteins were eluted, separated by two-dimensional gel electrophoresis and identified by Nano LC-CHIP-MS system. Flow-through fractions and bound fractions were also analysed with the ProteinChip technology SELDI-TOF-MS. Our results showed that the methods tested removed not only the targeted proteins with high efficiency, but also some non-targeted proteins. We found that the Multiple Affinity Removal Column improved the intensity of low-abundance proteins, displayed new protein spots and increased resolution. Notably, the column showed the lowest removal of untargeted proteins, proved to be the most promising depletion approach and a reliable method for serum preparation prior to proteomic studies.
Collapse
Affiliation(s)
- Elisa Bellei
- Department of Laboratory Medicine, Medical Faculty, University Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41100, Modena, Italy.
| | | | | | | | | | | | | |
Collapse
|
16
|
Polaskova V, Kapur A, Khan A, Molloy MP, Baker MS. High-abundance protein depletion: comparison of methods for human plasma biomarker discovery. Electrophoresis 2010; 31:471-82. [PMID: 20119956 DOI: 10.1002/elps.200900286] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Affinity depletion of abundant proteins from human plasma has become a routine sample preparation strategy in proteomics used prior to protein identification and quantitation. To date, there have been limited published studies comparing the performance of commercially available depletion products. We conducted a thorough evaluation of six depletion columns using 2-DE combined with sophisticated image analysis software, examining the following criteria: (i) efficiency of high-abundance protein depletion, (ii) non-specific removal of other than the targeted proteins and (iii) total number of protein spots detected on the gels following depletion. From all the products investigated, the Seppro IgY system provided the best results. It displayed the greatest number of protein spots on the depleted plasma gels, minimal non-specific binding and high efficiency of abundant protein removal. Nevertheless, the increase in the number of detected spots compared with the second best performing and cheaper multiple affinity removal column (MARC) was not shown to be statistically significant. The ProteoPrep spin column, considered to be the "deepest" depletion technique available at the time of conducting the study, surprisingly displayed significantly fewer spots on the flow-through fraction gels compared with both the Seppro and the MARC. The spin column format and low plasma capacity were also found to be impractical for 2-DE. To conclude, we succeeded in providing an overview of the depletion columns performances with regard to the three examined areas. Our study will serve as a reference to other scientists when deciding on the optimal product for their particular projects.
Collapse
Affiliation(s)
- Veronika Polaskova
- Department of Chemistry and Biomolecular Sciences, Macquarie University, NSW, Australia
| | | | | | | | | |
Collapse
|
17
|
Schröder C, Jacob A, Tonack S, Radon TP, Sill M, Zucknick M, Rüffer S, Costello E, Neoptolemos JP, Crnogorac-Jurcevic T, Bauer A, Fellenberg K, Hoheisel JD. Dual-color proteomic profiling of complex samples with a microarray of 810 cancer-related antibodies. Mol Cell Proteomics 2010; 9:1271-80. [PMID: 20164060 PMCID: PMC2877986 DOI: 10.1074/mcp.m900419-mcp200] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Antibody microarrays have the potential to enable comprehensive proteomic analysis of small amounts of sample material. Here, protocols are presented for the production, quality assessment, and reproducible application of antibody microarrays in a two-color mode with an array of 1,800 features, representing 810 antibodies that were directed at 741 cancer-related proteins. In addition to measures of array quality, we implemented indicators for the accuracy and significance of dual-color detection. Dual-color measurements outperform a single-color approach concerning assay reproducibility and discriminative power. In the analysis of serum samples, depletion of high-abundance proteins did not improve technical assay quality. On the contrary, depletion introduced a strong bias in protein representation. In an initial study, we demonstrated the applicability of the protocols to proteins derived from urine samples. We identified differences between urine samples from pancreatic cancer patients and healthy subjects and between sexes. This study demonstrates that biomedically relevant data can be produced. As demonstrated by the thorough quality analysis, the dual-color antibody array approach proved to be competitive with other proteomic techniques and comparable in performance to transcriptional microarray analyses.
Collapse
Affiliation(s)
- Christoph Schröder
- Division of Functional Genome Analysis, Deutsches Krebsforschungszentrum, 69120 Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Bujold E, Romero R, Kusanovic JP, Erez O, Gotsch F, Chaiworapongsa T, Gomez R, Espinoza J, Vaisbuch E, Mee Kim Y, Edwin S, Pisano M, Allen B, Podust VN, Dalmasso EA, Rutherford J, Rogers W, Moser A, Yoon BH, Barder T. Proteomic profiling of amniotic fluid in preterm labor using two-dimensional liquid separation and mass spectrometry. J Matern Fetal Neonatal Med 2009; 21:697-713. [PMID: 19012186 DOI: 10.1080/14767050802053289] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Simultaneous analysis of the protein composition of biological fluids is now possible. Such an approach can be used to identify biological markers of disease and to understand the pathophysiology of disorders that have eluded classification, diagnosis, and treatment. The purpose of this study was to analyze the differences in protein composition of the amniotic fluid of patients in preterm labor. STUDY DESIGN Amniotic fluid was obtained by amniocentesis from three groups of women with preterm labor and intact membranes: (1) women without intra-amniotic infection/inflammation (IAI) who delivered at term, (2) women without IAI who delivered a preterm neonate, and (3) women with IAI. Intra-amniotic infection was defined as a positive amniotic fluid culture for microorganisms. Intra-amniotic inflammation was defined as an elevated amniotic fluid interleukin (IL)-6 (> or =2.3 ng/mL). Two-dimensional (2D) chromatography was used for analysis. The first dimension separated proteins by isoelectric point, while the second, by the degree of hydrophobicity. 2D protein maps were generated using different experimental conditions (reducing agents as well as protein concentration). The maps were used to discern subsets of isoelectric point/hydrophobicity containing differentially expressed proteins. Protein identification of differentially expressed fractions was conducted with mass spectrometry. Enzyme-linked immunosorbent assays (ELISA) as well as surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS)-based on-chip antibody capture immunoassays were also used for confirmation of a specific protein that was differentially expressed. RESULTS (1) Amniotic fluid protein composition can be analyzed using a combination of 2D liquid chromatography and mass spectrometry for the identification of proteins differentially expressed in patients in preterm labor. (2) While total insulin-like growth factor-binding protein-1 (IGFBP-1) concentration did not change, IGFBP-1 fragments at about 13.5 kDa were present in patients with IAI. (3) Proteins that were over-expressed in group 1 included von Ebner gland protein precursor, IL-7 precursor, apolipoprotein A1, tropomyosin sk1 (TPMsk1) fragment, ribosomal protein S6 kinase alpha-3, and alpha-1-microglobulin/bikunin precursor (AMBP). (4) Proteins that were over-expressed in group 3 included fibrinopeptide B, transferrin, major histocompatibility complex (MHC) class 1 chain-related A antigen fragment, transcription elongation factor A, sex-determining region Y (SRY) box 5 protein, Down syndrome critical region 2 protein (DSCR2), and human peptide 8 (HP8). (5) One protein, retinol-binding protein, was over-expressed in women who delivered preterm, regardless of the presence of IAI. CONCLUSIONS A combination of techniques involving 2D chromatography, mass spectrometry, and immunoassays allows identification of proteins that are differentially regulated in the amniotic fluid of patients with preterm labor. Specifically, the amount of the IGFBP-1 fragments at approximately 13.5 kDa was found to be increased in patients with IAI, while the amount of the intact form of IGFBP-1 was decreased.
Collapse
Affiliation(s)
- Emmanuel Bujold
- Perinatology Research Branch, NICHD/NIH/DHSS, Bethesda, Maryland, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kuk C, Kulasingam V, Gunawardana CG, Smith CR, Batruch I, Diamandis EP. Mining the ovarian cancer ascites proteome for potential ovarian cancer biomarkers. Mol Cell Proteomics 2008; 8:661-9. [PMID: 19047685 DOI: 10.1074/mcp.m800313-mcp200] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Current ovarian cancer biomarkers are inadequate because of their relatively low diagnostic sensitivity and specificity. There is a need to discover and validate novel ovarian cancer biomarkers that are suitable for early diagnosis, monitoring, and prediction of therapeutic response. We performed an in-depth proteomics analysis of ovarian cancer ascites fluid. Size exclusion chromatography and ultrafiltration were used to remove high abundance proteins with molecular mass >/=30 kDa. After trypsin digestion, the subproteome (</=30 kDa) of ascites fluid was determined by two-dimensional liquid chromatography-tandem mass spectrometry. Filtering criteria were used to select potential ovarian cancer biomarker candidates. By combining data from different size exclusion and ultrafiltration fractionation protocols, we identified 445 proteins from the soluble ascites fraction using a two-dimensional linear ion trap mass spectrometer. Among these were 25 proteins previously identified as ovarian cancer biomarkers. After applying a set of filtering criteria to reduce the number of potential biomarker candidates, we identified 52 proteins for which further clinical validation is warranted. Our proteomics approach for discovering novel ovarian cancer biomarkers appears to be highly efficient because it was able to identify 25 known biomarkers and 52 new candidate biomarkers that warrant further validation.
Collapse
Affiliation(s)
- Cynthia Kuk
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5G 1L5, Canada
| | | | | | | | | | | |
Collapse
|
20
|
Deckers N, Dorny P, Kanobana K, Vercruysse J, Gonzalez AE, Ward B, Ndao M. Use of ProteinChip technology for identifying biomarkers of parasitic diseases: the example of porcine cysticercosis (Taenia solium). Exp Parasitol 2008; 120:320-9. [PMID: 18823977 DOI: 10.1016/j.exppara.2008.08.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 08/19/2008] [Accepted: 08/21/2008] [Indexed: 01/06/2023]
Abstract
Taenia solium cysticercosis is a significant public health problem in endemic countries. The current serodiagnostic techniques are not able to differentiate between infections with viable cysts and infections with degenerated cysts. The objectives of this study were to identify specific novel biomarkers of these different disease stages in the serum of experimentally infected pigs using ProteinChip technology (Bio-Rad) and to validate these biomarkers by analyzing serum samples from naturally infected pigs. In the experimental sample set 30 discriminating biomarkers (p<0.05) were found, 13 specific for the viable phenotype, 9 specific for the degenerated phenotype and 8 specific for the infected phenotype (either viable or degenerated cysts). Only 3 of these biomarkers were also significant in the field samples; however, the peak profiles were not consistent among the two sample sets. Five biomarkers discovered in the sera from experimentally infected pigs were identified as clusterin, lecithin-cholesterol acyltransferase, vitronectin, haptoglobin and apolipoprotein A-I.
Collapse
Affiliation(s)
- N Deckers
- Department of Animal Health, Institute of Tropical Medicine, Nationalestraat 155, B-2000, Antwerp, Belgium
| | | | | | | | | | | | | |
Collapse
|