1
|
Melo de Queiroz T, Valdes TA, Leitão A, Porto ALM. Bio-oxidation of progesterone by Penicillium oxalicum CBMAI 1185 and evaluation of the cytotoxic activity. Steroids 2024; 205:109392. [PMID: 38452910 DOI: 10.1016/j.steroids.2024.109392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
We report the biotransformation of progesterone 1 by whole cells of Brazilian marine-derived fungi. A preliminary screening with 12 fungi revealed that the strains Penicillium oxalicum CBMAI 1996, Mucor racemous CBMAI 847, Cladosporium sp. CBMAI 1237, Penicillium oxalicum CBMAI 1185 and Aspergillus sydowii CBMAI 935 were efficient in the biotransformation of progesterone 1 in the first days of the reaction, with conversion values ranging from 75 % to 99 %. The fungus P. oxalicum CBMAI 1185 was employed in the reactions in quintuplicate to purify and characterize the main biotransformation products of progesterone 1. The compounds testololactone 1a, 12β-hydroxyandrostenedione 1b and 1β-hydroxyandrostenedione 1c were isolated and characterized by NMR, MS, [α]D and MP. In addition, the chromatographic yield of compound 1a was determined by HPLC-PDA in the screening experiments. In this study, we show a biotransformation pathway of progesterone 1, suggesting the presence of several enzymes such as Baeyer-Villiger monooxygenases, dehydrogenases and cytochrome P450 monooxygenases in the fungus P. oxalicum CBMAI 1185. In summary, the results obtained in this study contribute to the synthetic area and have environmental importance, since the marine-derived fungi can be employed in the biodegradation of steroids present in wastewater and the environment. The cytotoxic results demonstrate that the biodegradation products were inactive against the cell lines, in contrast to progesterone.
Collapse
Affiliation(s)
- Thayane Melo de Queiroz
- Laboratório de Química Orgânica e Biocatálise, Instituto de Química de São Carlos, Universidade de São Paulo, Av. João Dagnone, 1100, Química Ambiental "Edifício Prof. Douglas Wagner Franco", Santa Angelina, 13563-120 São Carlos, SP, Brazil
| | - Talita A Valdes
- Medicinal & Biological Chemistry Group, Instituto de Química de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-Carlense, 400, 13566-590, São Carlos, SP, Brazil
| | - Andrei Leitão
- Medicinal & Biological Chemistry Group, Instituto de Química de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-Carlense, 400, 13566-590, São Carlos, SP, Brazil
| | - André L M Porto
- Laboratório de Química Orgânica e Biocatálise, Instituto de Química de São Carlos, Universidade de São Paulo, Av. João Dagnone, 1100, Química Ambiental "Edifício Prof. Douglas Wagner Franco", Santa Angelina, 13563-120 São Carlos, SP, Brazil.
| |
Collapse
|
2
|
Hegazy MEF, Elshamy AI, Mohamed TA, Hussien TA, Helaly SE, Abdel-Azim NS, Shams KA, Shahat AA, Tawfik WA, Shahen AM, Debbab A, El Saedi HR, Mohamed AEHH, Hammouda FM, Sakr M, Paré PW, Efferth T. Terpenoid bio-transformations and applications via cell/organ cultures: a systematic review. Crit Rev Biotechnol 2019; 40:64-82. [DOI: 10.1080/07388551.2019.1681932] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Mohamed-Elamir F. Hegazy
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
- Department of Phytochemistry, National Research Centre, Giza, Egypt
| | - Abdelsamed I. Elshamy
- Department of Natural Compounds Chemistry, National Research Centre, Giza, Egypt
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-Cho, Tokushima, Japan
| | - Tarik A. Mohamed
- Department of Phytochemistry, National Research Centre, Giza, Egypt
| | - Taha A. Hussien
- Pharmacognosy Department, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Soleiman E. Helaly
- Department of Microbial Drugs, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Department of Chemistry, Faculty of Science, Aswan University, Aswan, Egypt
| | | | - Khaled A. Shams
- Department of Phytochemistry, National Research Centre, Giza, Egypt
| | | | - Wafaa A. Tawfik
- Department of Phytochemistry, National Research Centre, Giza, Egypt
| | - Alaa M. Shahen
- Department of Phytochemistry, National Research Centre, Giza, Egypt
| | | | - Hesham R. El Saedi
- Division of Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
- Department of Chemistry, Faculty of Science, El-Menoufia University, Shebin El-Kom, Egypt
| | | | | | - Mahmoud Sakr
- Genetic Engineering and Biotech. Division, National Research Centre, Giza, Egypt
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Paul W. Paré
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
3
|
Saputra HM, Mandia S, Retnoaji B, Wijayanti N. Antioxidant Properties of Liverwort (Marchantia polymorpha L.) to Lead-induced Oxidative Stress on HEK293 Cells. ACTA ACUST UNITED AC 2016. [DOI: 10.3923/jbs.2016.77.85] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
4
|
Świzdor A, Panek A, Milecka-Tronina N. Microbial Baeyer-Villiger oxidation of 5α-steroids using Beauveria bassiana. A stereochemical requirement for the 11α-hydroxylation and the lactonization pathway. Steroids 2014; 82:44-52. [PMID: 24486796 DOI: 10.1016/j.steroids.2014.01.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 12/24/2013] [Accepted: 01/20/2014] [Indexed: 01/19/2023]
Abstract
Beauveria bassiana KCH 1065, as was recently demonstrated, is unusual amongst fungal biocatalysts in that it converts C19 3-oxo-4-ene and 3β-hydroxy-5-ene as well as 3β-hydroxy-5α-saturated steroids to 11α-hydroxy ring-D lactones. The Baeyer-Villiger monooxygenase (BVMO) of this strain is distinguished from other enzymes catalyzing BVO of steroidal ketones by the fact that it oxidizes solely substrates with 11α-hydroxyl group. The current study using a series of 5α-saturated steroids (androsterone, 3α-androstanediol and androstanedione) has highlighted that a small change of the steroid structure can result in significant differences of the metabolic fate. It was found that the 3α-stereochemistry of hydroxyl group restricted "normal" binding orientation of the substrate within 11α-hydroxylase and, as a result, androsterone and 3α-androstanediol were converted into a mixture of 7β-, 11α- and 7α-hydroxy derivatives. Hydroxylation of androstanedione occurred only at the 11α-position, indicating that the 3-oxo group limits the alternative binding orientation of the substrate within the hydroxylase. Only androstanedione and 3α-androstanediol were metabolized to hydroxylactones. The study uniquely demonstrated preference for oxidation of equatorial (11α-, 7β-) hydroxyketones by BVMO from B. bassiana. The time course experiments suggested that the activity of 17β-HSD is a factor determining the amount of produced ring-D lactones. The obtained 11α-hydroxylactones underwent further transformations (oxy-red reactions) at C-3. During conversion of androstanedione, a minor dehydrogenation pathway was observed with generation of 11α,17β-dihydroxy-5α-androst-1-en-3-one. The introduction of C1C2 double bond has been recorded in B. bassiana for the first time.
Collapse
Affiliation(s)
- Alina Świzdor
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland.
| | - Anna Panek
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Natalia Milecka-Tronina
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| |
Collapse
|
5
|
Zhang XY, Peng Y, Su ZR, Chen QH, Ruan H, He GQ. Optimization of biotransformation from phytosterol to androstenedione by a mutant Mycobacterium neoaurum ZJUVN-08. J Zhejiang Univ Sci B 2013; 14:132-43. [PMID: 23365012 DOI: 10.1631/jzus.b1200067] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Biotransformation of phytosterol (PS) by a newly isolated mutant Mycobacterium neoaurum ZJUVN-08 to produce androstenedione has been investigated in this paper. The parameters of the biotransformation process were optimized using fractional factorial design and response surface methodology. Androstenedione was the sole product in the fermentation broth catalyzed by the mutant M. neoaurum ZJUVN-08 strain. Results showed that molar ratio of hydroxypropyl-β-cyclodextrin (HP-β-CD) to PS and substrate concentrations were the two most significant factors affecting androstenedione production. By analyzing the statistical model of three-dimensional surface plot, the optimal process conditions were observed at 0.1 g/L inducer, pH 7.0, molar ratio of HP-β-CD to PS 1.92:1, 8.98 g/L PS, and at 120 h of incubation time. Under these conditions, the maximum androstenedione yield was 5.96 g/L and nearly the same with the non-optimized (5.99 g/L), while the maximum PS conversion rate was 94.69% which increased by 10.66% compared with the non-optimized (84.03%). The predicted optimum conditions from the mathematical model were in agreement with the verification experimental results. It is considered that response surface methodology was a powerful and efficient method to optimize the parameters of PS biotransformation process.
Collapse
Affiliation(s)
- Xiao-yan Zhang
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | | | | | | | | | | |
Collapse
|