1
|
Gomaa OM, Jassim AY, Chanda A. Bioremoval of PVP-coated silver nanoparticles using Aspergillus niger: the role of exopolysaccharides. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:31501-31510. [PMID: 35001269 PMCID: PMC8743098 DOI: 10.1007/s11356-021-18018-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 12/05/2021] [Indexed: 05/10/2023]
Abstract
Extensive use of engineered nanoparticles has led to their eventual release in the environment. The present work aims to study the removal of Polyvinylpyrrolidone-coated silver nanoparticles (PVP-Ag-NPs) using Aspergillus niger and depict the role of exopolysaccharides in the removal process. Our results show that the majority of PVP-Ag-NPs were attached to fungal pellets. About 74% and 88% of the PVP-Ag-NPs were removed when incubated with A. niger pellets and exopolysaccharide-induced A. niger pellets, respectively. Ionized Ag decreased by 553 and 1290-fold under the same conditions as compared to stock PVP-Ag-NP. PVP-Ag-PVP resulted in an increase in reactive oxygen species (ROS) in 24 h. Results show an increase in PVP-Ag-NPs size from 28.4 to 115.9 nm for A. niger pellets and 160.3 nm after removal by stress-induced A. niger pellets and further increased to 650.1 nm for in vitro EPS removal. The obtained findings show that EPS can be used for nanoparticle removal, by increasing the net size of nanoparticles in aqueous media. This will, in turn, facilitate its removal through conventional filtration techniques commonly used at wastewater treatment plants.
Collapse
Affiliation(s)
- Ola M Gomaa
- Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - Amar Yasser Jassim
- SmartState Center for Environmental Nanoscience and Risk (CENR), Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, USA
- Marine Science Center, University of Basrah, Basrah, Iraq
| | - Anindya Chanda
- Integrative Mycology Lab, Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, USA
- Myclogics LLC., Alexandria, VA, USA
- Broadwell College of Business and Economics, Fayetteville State University, Fayetteville, NC, USA
| |
Collapse
|
2
|
Gomaa OM, Abd El Kareem H, Selim N. Nitrate modulation of Bacillus sp. biofilm components: a proposed model for sustainable bioremediation. Biotechnol Lett 2021; 43:2185-2197. [PMID: 34510307 DOI: 10.1007/s10529-021-03185-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 09/04/2021] [Indexed: 11/30/2022]
Abstract
The presence of different pollutants in wastewater hinder microbial growth, compromise enzymatic activity or compete for electrons required for bioremediation pathway. Therefore, there is a need to use a single microorganism that is capable of tolerating different toxic compounds and can perform simultaneous bioremediation. In the present study, nitrate reducing bacteria capable of decolorizing azo dye was identified as Bacillus subtillis sp. DN using protein profiling, morphological and biochemical tests X-ray diffraction pattern, Raman spectroscopy and cyclic voltammetry confirm that the bacterium under study possesses membrane-bound nitrate reductase and that is capable of direct electron transfer. The addition of nitrate concentrations (0-50 mM) resulted in increased biofilm formation with variable exopolysaccharides, protein, and eDNA. Fourier Transform Infrared spectrum revealed the presence of a biopolymer at high nitrate concentrations. Effective capacitance and conductivity of the cells grown in different nitrate concentrations suggest changes in the relative position of polar groups, their relative orientation and permeability of cell membrane as detected by dielectric spectroscopy. The increase in biofilm shifted the removal of the azo dye from biodegradation to bioadsorption. Our results indicate that nitrate modulates biofilm components. Bacillus sp. DN granular biofilm can be used for simultaneous nitrate and azo dye removal from wastewater.
Collapse
Affiliation(s)
- Ola M Gomaa
- Radiation Microbiology Department, National Center for Radiation Research and Tecnology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Hussein Abd El Kareem
- Radiation Microbiology Department, National Center for Radiation Research and Tecnology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Nabila Selim
- Physics Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| |
Collapse
|
3
|
Cao R, Qin P, Li W, Shang C, Chai Y, Jin D, Chen A. Hydrogen sulfide and calcium effects on cadmium removal and resistance in the white-rot fungus Phanerochaete chrysosporium. Appl Microbiol Biotechnol 2021; 105:6451-6462. [PMID: 34357427 DOI: 10.1007/s00253-021-11461-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 12/01/2022]
Abstract
Hydrogen sulfide (H2S), an emerging gas transmitter, has been shown to be involved in multiple intracellular physiological and biochemical processes. In this study, the effects of hydrogen sulfide coupled with calcium on cadmium removal and resistance in Phanerochaete chrysosporium were examined. The results revealed that H2S enhanced the uptake of calcium by P. chrysosporium to resist cadmium stress. The removal and accumulation of cadmium by the mycelium was reduced by H2S and Ca2+ pretreatment. Moreover, oxidative damage and membrane integrity were alleviated by H2S and Ca2+. Corresponding antioxidative enzyme activities and glutathione were also found to positively respond to H2S and Ca2+, which played an important role in the resistance to cadmium-induced oxidative stress. The effects of hydroxylamine (HA; a hydrogen sulfide inhibitor) and ethylene glycol-bis-(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA; a calcium chelator) toward H2S and Ca2+ and their cross-interactions confirmed the positive roles and the potential crosstalk of H2S and Ca2+ in cadmium stress resistance. These findings imply that the protective effects of H2S in P. chrysosporium under cadmium stress may occur through a reduction in the accumulation of cadmium and promotion of the antioxidant system, and the H2S-regulated pathway may be associated with the intracellular calcium signaling system.Key points• Altered monoterpenoid tolerance mainly related to altered activity of efflux pumps.• Increased tolerance to geranic acid surprisingly caused by decreased export activity.• Reduction of export activity can be beneficial for biotechnological conversions.
Collapse
Affiliation(s)
- Ruoyu Cao
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Pufeng Qin
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Wenjie Li
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Cui Shang
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Youzheng Chai
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Doudou Jin
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China
| | - Anwei Chen
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, People's Republic of China.
| |
Collapse
|
4
|
Gomaa OM, Selim NS, Fathy R, Hamed H. Promoting bacteria-anode interfacial electron transfer by palladium nano-complex in double chamber microbial fuel cell. ENVIRONMENTAL TECHNOLOGY 2021; 42:148-159. [PMID: 31140952 DOI: 10.1080/09593330.2019.1625562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
The slow electron transfer between microbial outer membrane and electrode surface is considered one of the limitations of Microbial Fuel Cell (MFC) performance. The aim of the present work is to assess the role of palladium α-lipoic acid nanocomplex compound (PLAC) in promoting bacteria-anode interfacial electron transfer, by studying the dielectric properties of Shewanella oneidensis WW-1 cell membrane and its contribution to biofilm formation on the anode. The results showed that adding PLAC increased bacterial cell membrane permeability and outer cell surface charge. Exopolysaccharides (EPS) and surface-bound proteins increased 2.27 and 1.14 fold, respectively upon adding 0.25% v/v PLAC. Dynamic Light Scattering (DLS) showed uniform distribution of Shewanella-PLAC biocomposite size while Zeta potential and Fourier Transform Infrared (FTIR) Spectroscopy results suggest that PLAC diffused inside the cells. Transmission Electron Microscope (TEM) images reveal Exopolysaccharide (EPS) mat around the cells when PLAC was added to the cells, also confirmed by the FTIR spectrum. Scanning Electron Microscope and Atomic Force Microscope (AFM) confirmed the thickness of biofilm in the presence of PLAC. The average voltage reached 492 mV (external resistance 1 KΩ) over 35 days using 0.25% v/v PLAC as compared to a few hours in MFCs lacking PLAC. The results suggest that the addition of PLAC assisted in interfacial direct electron transfer through enhancing biofilm formation, moreover, its hydrophilic/lipophilic nature facilitated the electron shuttling process from within the bacterial cell to the electrode surface suggesting the involvement of mediated electron transfer as well.
Collapse
Affiliation(s)
- Ola M Gomaa
- Radiation Microbiology Department, The National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Nabila S Selim
- Physics Department, The National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Reham Fathy
- Radiation Microbiology Department, The National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Heba Hamed
- Radiation Microbiology Department, The National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| |
Collapse
|
5
|
Selim N, Maghrawy HH, Fathy R, Gamal M, Abd El Kareem H, Bowman K, Brehney M, Kyazze G, Keshavarz T, Gomaa O. Modification of bacterial cell membrane to accelerate decolorization of textile wastewater effluent using microbial fuel cells: role of gamma radiation. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2020. [DOI: 10.1080/16878507.2020.1743480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Nabila Selim
- Radiation Physics Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Heba Hamed Maghrawy
- Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Reham Fathy
- Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Marwa Gamal
- Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Hussein Abd El Kareem
- Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Kyle Bowman
- School of Life Sciences, University of Westminster, London, UK
| | - Mark Brehney
- School of Life Sciences, University of Westminster, London, UK
| | - Godfrey Kyazze
- School of Life Sciences, University of Westminster, London, UK
| | | | - Ola Gomaa
- Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| |
Collapse
|
6
|
Zhang X, Shao J, Chen A, Shang C, Hu X, Luo S, Lei M, Peng L, Zeng Q. Effects of cadmium on calcium homeostasis in the white-rot fungus Phanerochaete chrysosporium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 157:95-101. [PMID: 29609109 DOI: 10.1016/j.ecoenv.2018.03.071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 03/23/2018] [Accepted: 03/25/2018] [Indexed: 06/08/2023]
Abstract
Due to the widespread application of white-rot fungi for the treatment of pollutants, it's crucial to exploit the special effects of pollutants on the microbes. Here, we studied the effects of cadmium on calcium homeostasis in the most studied white-rot fungus Phanerochaete chrysosporium. The response of P. chrysosporium to cadmium stress is concentration-dependent. A high concentration of cadmium caused the release of calcium from P. chrysosporium, while a hormesis effect was observed at a lower cadmium concentration (10 μM), which resulted in a significant increase in calcium uptake and reversed the decrease in cell viability. Calcium (50 μM) promoted cell viability (127.2% of control), which reflects that calcium can protect P. chrysosporium from environmental stress. Real-time changes in the Ca2+ and Cd2+ fluxes of P. chrysosporium were quantified using the noninvasive microtest technique. Ca2+ influx decreased significantly under cadmium exposure, and the Ca2+ channel was involved in Ca2+ and Cd2+ influx. The cadmium and/or calcium uptake results coupled with the real-time Ca2+ and Cd2+ influxes microscale signatures can enhance our knowledge of the homeostasis of P. chrysosporium with respect to cadmium stress, which may provide useful information for improving the bioremediation process.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Jihai Shao
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Anwei Chen
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China.
| | - Cui Shang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Xinjiang Hu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Si Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Ming Lei
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Liang Peng
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Qingru Zeng
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| |
Collapse
|
7
|
Delgado J, Owens RA, Doyle S, Núñez F, Asensio MA. Quantitative proteomics reveals new insights into calcium-mediated resistance mechanisms in Aspergillus flavus against the antifungal protein PgAFP in cheese. Food Microbiol 2017; 66:1-10. [DOI: 10.1016/j.fm.2017.03.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/24/2017] [Accepted: 03/21/2017] [Indexed: 10/19/2022]
|
8
|
Gomaa OM, Selim NS, Wee J, Linz JE. RNA Seq analysis of the role of calcium chloride stress and electron transport in mitochondria for malachite green decolorization by Aspergillus niger. Fungal Genet Biol 2017; 105:1-7. [DOI: 10.1016/j.fgb.2017.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/17/2017] [Accepted: 05/22/2017] [Indexed: 10/19/2022]
|
9
|
Gomaa OM, Husseiny SM, Abd El Kareem H, Talaat R. Penicillium purpurogenum cultures under ethanol-induced stress and its correlation with fungal adhesion and biodegrading ability. ENVIRONMENTAL TECHNOLOGY 2016; 37:2580-2589. [PMID: 26936484 DOI: 10.1080/09593330.2016.1155653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 02/14/2016] [Indexed: 06/05/2023]
Abstract
Fungi are known to be affected by external environmental stimuli, resulting in different stress response effects, which in turn could be used to enhance its biodegrading ability. In a previous study, ethanol was used to manipulate cell-cell and cell-surface interaction to prevent cell loss and maximize the usage of Penicillium purpurogenum cells in the media, a correlation was drawn between ethanol oxidative stress, surface-bound proteins and fungal adhesion. The present study focuses on a more detailed study of the effect of ethanol on the same fungus. The results show that the presence of Yap1p gene and the detection of an oxidized form of glutathione (GSSG) suggest that a stress response might be involved in the adhesion process. The process of adhesion could be described as a signaling process and it is affected by the germ tube formation as an initial step in adhesion. Protein profile showed polymorphism in surface-bound proteins for cultures amended with ethanol when compared to control cultures. Ethanol also affected the DNA polymorphic profile of DNA, rendering the fungus genetically variable. P. purpurogenum produced phenol oxidase enzyme and could be used to degrade total phenols in olive mill waste water without the formation of biofilm on the surface of the containers.
Collapse
Affiliation(s)
- Ola M Gomaa
- a Microbiology Department , National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA) , Cairo , Egypt
| | - Sherif M Husseiny
- b Botany Department , Girl's College, Ain Shams University , Cairo , Egypt
| | - Hussein Abd El Kareem
- a Microbiology Department , National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA) , Cairo , Egypt
| | - Riham Talaat
- a Microbiology Department , National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA) , Cairo , Egypt
| |
Collapse
|
10
|
Formation and characterization of extracellular polymeric substance from Shewanella xiamenensis BC01 under calcium stimulation. J Taiwan Inst Chem Eng 2015. [DOI: 10.1016/j.jtice.2015.05.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Mycoremediation with mycotoxin producers: a critical perspective. Appl Microbiol Biotechnol 2015; 100:17-29. [DOI: 10.1007/s00253-015-7032-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 09/08/2015] [Accepted: 09/10/2015] [Indexed: 12/18/2022]
|
12
|
Gomaa OM. Removal of silver nanoparticles using live and heat shock Aspergillus niger cultures. World J Microbiol Biotechnol 2014; 30:1747-54. [DOI: 10.1007/s11274-014-1597-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 01/06/2014] [Indexed: 01/26/2023]
|
13
|
Gomaa OM, Selim NS, Linz JE. A Possible Role of Aspergillus niger Mitochondrial Cytochrome c in Malachite Green Reduction Under Calcium Chloride Stress. Cell Biochem Biophys 2013; 67:1291-9. [DOI: 10.1007/s12013-013-9661-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|