1
|
Li XY, Pan L, Deng YW, Chen JJ, Tian Z, Tang GY, Ge SY, Wang YF. Variable innate lymphoid cells predominancy in oral lichen planus latently led to diverse clinical outcomes: a proof-of-concept study. Front Immunol 2025; 16:1551311. [PMID: 40356896 PMCID: PMC12066506 DOI: 10.3389/fimmu.2025.1551311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 04/07/2025] [Indexed: 05/15/2025] Open
Abstract
Objectives To search for a new classification scheme for oral lichen planus (OLP) and oral lichenoid lesions (OLL) based on innate lymphoid cells (ILCs) and to evaluate the clinical significance of this classification for diagnosis and treatment. Subjects and methods This study was based on a clinical cohort and applied flow cytometry to prospectively analyze the ILC subgroups and proportions in OLP and OLL lesions using SPSS software (version 26.0) to attempt cluster analysis to classify diseases at the cellular level based on the phenotype and quantity of ILCs cells, analyze the correlation between the new classification of diseases and clinical risk factors based on the patient's clinical background information and classification results, and evaluate the differences in therapeutic effects among patients in different groups in corresponding clinical cohorts. Results In the OLP and OLL groups, the ILC compartment consisted mainly of ILC1 (75.02% ± 27.55% and 72.99% ± 25.23%, respectively), ILC2 (1.49% ± 4.12% and 1.72% ± 3.18%, respectively), and ILC3 (16.52% ± 19.47% and 18.77% ± 18.12%, respectively). Using k-means clustering and two-step clustering, patients could be clustered into three groups that did not respond equally to the same treatment. Using k-means clustering, there was a statistically significant difference in REU scores between the ILC1 advantage group and the OLL subgroup before and after treatment (P = 0.02), which was not observed in two-step clustering. This indicates that k-means clustering may have greater value in the clinical application of OLL. In the ILC1 absolute advantage group, using HCQ + TGP for one month could effectively treat the patients regardless of the use of k-means clustering or two-step clustering (P ≤0.001), whereas the other groups did not. Conclusions This study provides a preliminary OLP and OLL classification method based on ILC subgroups that can guide the cytological classification of diseases to a certain extent. Further clinical application values should be verified in subsequent cohort studies.
Collapse
Affiliation(s)
- Xi-ye Li
- Department of Oral Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Lei Pan
- Department of Second Dental Center, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi-wen Deng
- Department of Oral Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jun-jun Chen
- Department of Oral Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Zhen Tian
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
- Department of Oral Pathology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guo-yao Tang
- Shanghai Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shu-yun Ge
- Department of Oral Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yu-feng Wang
- Department of Oral Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
2
|
Zhang S, Luo H, Tan D, Peng B, Zhong Z, Wang Y. Holism of Chinese herbal medicine prescriptions for inflammatory bowel disease: A review based on clinical evidence and experimental research. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154202. [PMID: 35665678 DOI: 10.1016/j.phymed.2022.154202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/17/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a chronic nonspecific inflammatory disease that causes a heavy burden and lacks effective treatments. Chinese herbal medicine prescriptions (CHMPs), which are characterized by a synergistic usage of herbs, are widely used in the management of IBD. The molecular mechanisms of action of CHMP are still ambiguous as the canonical "one-compound-one-target" approach has difficulty describing the dynamic bioreactions among CHMP objects. It seems more flexible to define the holism of CHMP for IBD by employing high-throughput analysis. However, studies that discuss the development of CHMP in treating IBD in a holistic view are still lacking. PURPOSE This review appraised preclinical and clinical research to fully describe the anti-IBD capacity of CHMPs and discussed CHMPs' holistic characteristics that can contribute to better management of IBD. METHODS & RESULTS We screened clinical and preclinical references of CHMP being used as treatments for IBD. We discussed the complexity of IBD and the development of CHMP to present the sophistication of CHMP treatments. To describe the clinical effectiveness of CHMPs against IBD, we performed an umbrella review of CHMP-associated META analyses, in which 1174 records were filtered down to 12 references. Then, we discussed 14 kinds of CHMPs that had a long history of use and analyzed their mechanisms of action. Representative herbs were employed to provide a subordinate explanation for the whole prescription. As holism is the dominant characteristic of CHMPs, we explored applications of CHMPs for IBD with the help of omics, gut microbiome, and network pharmacology, which are potential approaches to a dynamic figure of bioactions of CHMPs. CONCLUSION This review is the first to discuss the potential of CHMPs to manage IBD in a holistic context and will provide inspiring explanations for CHMP applications for further product transformation and application to other diseases.
Collapse
Affiliation(s)
- Siyuan Zhang
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Hua Luo
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Dechao Tan
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Bo Peng
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Zhangfeng Zhong
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China.
| | - Yitao Wang
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China.
| |
Collapse
|
3
|
Lim SY, Jang JH, Lee HJ, Park SS, Kim SR, Lee KM, Kim JK, Park H, Jung HK. Characteristics and phylogenetic analysis of the complete chloroplast genome of Paeonia japonica (Paeoniaceae). Mitochondrial DNA B Resour 2021; 6:734-735. [PMID: 33763563 PMCID: PMC7954510 DOI: 10.1080/23802359.2020.1860718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Paeonia japonica, distributed throughout Asia, is a traditional medicinal herb in Korea, with many potential beneficial effects including pain-relieving, anti-inflammatory, and anti-cancer activities. Despite its high pharmacological value, the genetic information on Paeonia japonica remains limited. In this study, the chloroplast genome of P. japonica was sequenced using next-generation sequencing (NGS) technology and genome and phylogeny were analyzed using multiple tools. The chloroplast genome of P. japonica was 152,731 bp in length with an inverted repeat region of 26,656 bp, including a large single-copy region of 84,389 bp and a small single copy region of 17,030 bp. The P. japonica chloroplast genome included 113 genes comprising 80 protein-coding genes, 27 tRNA, and 5 rRNA genes. Phylogenetic analysis indicated that P. japonica and P. obovata share a close evolutionary relationship.
Collapse
Affiliation(s)
- Seo-Young Lim
- National Development Institute of Korean Medicine, Jangheung-gun, South Korea
| | - Ji-Hun Jang
- National Development Institute of Korean Medicine, Jangheung-gun, South Korea
| | - Hyun-Ju Lee
- National Development Institute of Korean Medicine, Jangheung-gun, South Korea
| | - Seong-Sik Park
- National Development Institute of Korean Medicine, Jangheung-gun, South Korea
| | - Sun-Ra Kim
- National Development Institute of Korean Medicine, Jangheung-gun, South Korea
| | - Kyeong-Min Lee
- National Development Institute of Korean Medicine, Jangheung-gun, South Korea
| | - Ji-Kyung Kim
- National Development Institute of Korean Medicine, Jangheung-gun, South Korea
| | - Ho Park
- National Development Institute of Korean Medicine, Jangheung-gun, South Korea
| | - Ho-Kyung Jung
- National Development Institute of Korean Medicine, Jangheung-gun, South Korea
| |
Collapse
|
4
|
Zhang Y, Zhang S, Luo X, Zhao H, Xiang X. Paeoniflorin mitigates PBC-induced liver fibrosis by repressing NLRP3 formation. Acta Cir Bras 2021; 36:e361106. [PMID: 35195182 PMCID: PMC8860402 DOI: 10.1590/acb361106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/22/2021] [Indexed: 11/22/2022] Open
Abstract
Purpose: To delve into the influence of paeoniflorin (PA) on abating primary biliary cholangitis (PBC)-induced liver fibrosis and its causative role. Methods: Our team allocated the mice to control group, PA group, PBC group and PBC+PA group. We recorded the weight change of mice in each group. We used Masson staining for determining liver fibrosis, immunofluorescence staining for measuring tumor necrosis factor-α (TNF-α) expression, quantitative real-time polymerase chain reaction (qRT-PCR) for assaying related gene expression, as well as Western blot for testing related protein expression. Results: The weight of PBC model mice declined. Twenty-four weeks after modeling, the positive rate of anti-mitochondrial antibody-M2 (AMA-M2) in PBC mice reached 100%. Alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), hydroxyproline (HYP), laminin (LN), procollagen type III (PC III), and malondialdehyde (MDA) contents saliently waxed (p<0.01). Meanwhile, superoxide dismutase (SOD) and glutathione peroxidase (GSH-px) activity patently waned (p<0.01). Liver fibrosis levels were flagrantly higher (p<0.01), and TNF-α, NOD-like receptor protein 3 (NLRP3), caspase-1, interleukin-18 (IL-18), and interleukin-1β (IL-1β) protein or gene expression were manifestly up-regulated (p<0.01). PA could restore the weight of PBC mice, strikingly restrain the positive expression of AMA-M2, and down-regulate serum ALP, ALT, AST, HYP, LN, PC III, MDA in PBC mice (p<0.01). PA could also significantly up-regulate SOD and GSH-px levels (p<0.01), down-regulate IL-1β, IL-18, caspase-1, NLRP3, and TNF-α protein or gene expression in PBC mice (p<0.01) and inhibit liver fibrosis levels (p<0.01). Conclusions: PA can reduce PBC-induced liver fibrosis in mice and may function by curbing the formation of NLRP3.
Collapse
Affiliation(s)
| | | | | | | | - Xiaoxing Xiang
- Taizhou people’s Hospital affiliated to Medical College of Yangzhou University, China
| |
Collapse
|
5
|
Tan YQ, Chen HW, Li J, Wu QJ. Efficacy, Chemical Constituents, and Pharmacological Actions of Radix Paeoniae Rubra and Radix Paeoniae Alba. Front Pharmacol 2020; 11:1054. [PMID: 32754038 PMCID: PMC7365904 DOI: 10.3389/fphar.2020.01054] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 06/29/2020] [Indexed: 01/08/2023] Open
Abstract
Radix Paeoniae Rubra and Radix Paeoniae Alba are the different characteristic forms of Paeonia lactiflora Pall. They are widely used as traditional Chinese medicines in clinical practices. This study analyzes the development history, efficacy, chemical compositions, and pharmacological effects of Radix Paeoniae Rubra and Radix Paeoniae Alba, and explores the causes of the similarities and differences of these two amalgams. It provides a basis for the clinical application of these two Chinese medicinal materials, and lays a foundation for further study of the pharmacological effects and the quality identification of Paeonia lactiflora Pall as it applies to traditional Chinese medicine.
Collapse
Affiliation(s)
- Yu-Qing Tan
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Graduate School of Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Heng-Wen Chen
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jun Li
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qing-Juan Wu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Long-term combinations and updosing of second-generation H1-antihistamines show efficacy and safety in the treatment of chronic spontaneous urticaria: A multicenter real-life pilot study. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2020; 8:1733-1736.e11. [DOI: 10.1016/j.jaip.2019.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/28/2019] [Accepted: 12/03/2019] [Indexed: 12/20/2022]
|
7
|
Gürkan ÇG, Keleș GÇ, Kurt S, Çiftçi A, Ayas B, Güler Ş, Çetinkaya BÖ. Histopathological and biochemical evaluation of paeoniflorin administration in an experimental periodontitis model. J Oral Sci 2019; 61:554-557. [PMID: 31588098 DOI: 10.2334/josnusd.18-0427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The purpose of this study was to evaluate the effects of administered Paeoniflorin (Pae) on periodontal tissues within an experimental periodontitis model. Forty male Wistar rats were used in this study and experimental periodontitis was created in all rats except in the control group (n = 10, first group). In the periodontitis group, experimental periodontitis was created but no other application was performed (n = 10, second group). In the other groups created experimental periodontitis, systemic Pae (n = 10, third group) or saline (n = 10, fourth group) was applied. A biochemical analysis of the gingival vascular endothelial growth factor (VEGF) levels and a histomorphometric analysis (measurements of the area of alveolar bone, alveolar bone resorption, and attachment loss) were performed. In the Pae group, the area of the alveolar bone was increased, while alveolar bone resorption and attachment loss decreased. Gingival VEGF levels increased in all groups that created experimental periodontitis and the greatest increase seen in the Pae group. Histomorphometric and biochemical analyses in this study suggest that Pae has a curative effect on periodontal tissues. However, additional studies are needed to confirm these results.
Collapse
Affiliation(s)
| | - Gonca Çayır Keleș
- Department of Periodontology, Faculty of Dentistry, İstanbul Okan University
| | - Sevda Kurt
- Department of Periodontology, Faculty of Dentistry, Recep Tayyip Erdoğan University
| | - Alper Çiftçi
- Department of Microbiology, Faculty of Veterinary Medicine, Ondokuz Mayıs University
| | - Bülent Ayas
- Department of Histology and Embriology, Faculty of Medicine, Ondokuz Mayıs University
| | - Şevki Güler
- Department of Periodontology, Faculty of Dentistry, Abant İzzet Baysal University
| | | |
Collapse
|
8
|
Identification of Constituents Affecting the Secretion of Pro-Inflammatory Cytokines in LPS-Induced U937 Cells by UHPLC-HRMS-Based Metabolic Profiling of the Traditional Chinese Medicine Formulation Huangqi Jianzhong Tang. Molecules 2019; 24:molecules24173116. [PMID: 31461974 PMCID: PMC6749298 DOI: 10.3390/molecules24173116] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/12/2019] [Accepted: 08/19/2019] [Indexed: 12/30/2022] Open
Abstract
Within non-communicable diseases, chronic inflammatory conditions represent one of the biggest challenges for modern medicine. Traditional Chinese Medicine (TCM) has been practiced over centuries and has accumulated tremendous empirical knowledge on the treatment of such diseases. Huangqi Jianzhong Tang (HQJZT) is a famous TCM herbal formula composed of Radix Astragali, Ramulus Cinnamomi, Radix et Rhizoma Glycyrrhizae Praeparata cum Melle, Radix Paeoniae Alba, Rhizoma Zingiberis Recens, Fructus Jujubae and Saccharum Granorum (maltose), which has been used for the treatment of various chronic inflammatory gastrointestinal diseases. However, there is insufficient knowledge about its active constituents and the mechanisms responsible for its effects. The present study aimed at identifying constituents contributing to the bioactivity of HQJZT by combining in vitro cytokine production assays and LC-MS metabolomics techniques. From the HQJZT decoction as well as from its single herbal components, extracts of different polarities were prepared. Phytochemical composition of the extracts was analyzed by means of UPLC-QTOF-MS/MS. The inhibitory effects of the extracts on TNF-α, IL-1β and IFN-γ production were studied in U937 cells. Phytochemical and pharmacological bioactivity data were correlated by orthogonal projection to latent structures discriminant analysis (OPLS-DA) in order to identify those HQJZT constituents which may be relevant for the observed pharmacological activities. The investigations resulted in the identification of 16 HQJZT constituents, which are likely to contribute to the activities observed in U937 cells. Seven of them, namely calycosin, formononetin, astragaloside I, liquiritigenin, 18β-glycyrrhetinic acid, paeoniflorin and albiflorin were unambiguously identified. The predicted results were verified by testing these compounds in the same pharmacological assays as for the extracts. In conclusion, the anti-inflammatory activity of HQJZT could be substantiated by in vitro pharmacological screening, and the predicted activities of the OPLS-DA hits could be partially verified. Moreover, the benefits and limitations of MVDA for prediction pharmacologically active compounds contributing to the activity of a TCM mixture could be detected.
Collapse
|
9
|
Li Q, Shan Q, Sang X, Zhu R, Chen X, Cao G. Total Glycosides of Peony Protects Against Inflammatory Bowel Disease by Regulating IL-23/IL-17 Axis and Th17/Treg Balance. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:177-201. [PMID: 30612460 DOI: 10.1142/s0192415x19500095] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Inflammatory bowel disease (IBD) is a group of autoimmune diseases, including ulcerative colitis and Crohn’s disease, characterized by nonspecific inflammation in the gut. Total glycoside of peony (TGP) has been widely used for treatment of autoimmune diseases because of its pharmacological effects. However, it is lack of depth in whether TGP regulate T helper 17 cell (Th17) / T regulatory cell (Treg) immune balance or interleukin 23 (IL-23) / IL-17 axis to achieve the goal of treating IBD. Hence, the aim of this study was to investigate the effects of TGP on experimental colitis mice and the related mechanisms. In the present study, we demonstrated that administration of TGP effectively attenuates colonic inflammation of TNBS-induced colitis mice, mainly reflected in significantly improved clinical parameters, reduced inflammatory response and myeloperoxidase (MPO) activity, even stronger systemic immune ability and effective improvement of Th17/Treg immune disorders. In addition, there was a stronger immunosuppressive ability in a positive cluster of differentiation 4 (CD4[Formula: see text]) T-lymphocytes from the TGP treated mouse colon, characterized by the inhibition of high levels of inflammatory factors and increased regulatory T cells. Importantly, high-dose TGP has similar therapeutic effects as salicylazosulfapyridine (SASP) on IBD treatment. The potential mechanisms might be, at least in part, related to the adjustment of imbalance of Th17/Treg cells and the inhibition of IL-23/IL17 inflammatory signal axis.
Collapse
Affiliation(s)
- Qinglin Li
- Zhejiang Cancer Hospital, Hangzhou 310022, P. R. China
| | - Qiyuan Shan
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, P. R. China
| | - Xianan Sang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, P. R. China
| | - Ruyi Zhu
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, P. R. China
| | - Xiaocheng Chen
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, P. R. China
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, P. R. China
| |
Collapse
|
10
|
Liu Y, Zhao J, Zhao Y, Zong S, Tian Y, Chen S, Li M, Liu H, Zhang Q, Jing X, Sun B, Wang H, Sun T, Yang C. Therapeutic effects of lentinan on inflammatory bowel disease and colitis-associated cancer. J Cell Mol Med 2019; 23:750-760. [PMID: 30472806 PMCID: PMC6349230 DOI: 10.1111/jcmm.13897] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/14/2018] [Indexed: 01/03/2023] Open
Abstract
In this study, we investigated the therapeutic potential of lentinan in mouse models of inflammatory bowel disease (IBD) and colitis-associated cancer (CAC). Lentinan decreased the disease activity index and macroscopic and microscopic colon tissue damage in dextran sulphate sodium (DSS)-induced or TNBS-induced models of colitis. High-dose lentinan was more effective than salicylazosulfapyridine in the mouse models of colitis. Lentinan decreased the number of tumours, inflammatory cell infiltration, atypical hyperplasia and nuclear atypia in azoxymethane/DSS-induced CAC model. It also decreased the expression of pro-inflammatory cytokines, such as IL-13 and CD30L, in IBD and CAC model mice possibly by inhibiting Toll-like receptor 4 (TLR4)/NF-κB signalling and the expression of colon cancer markers, such as carcinoembryonic antigen, cytokeratin 8, CK18 and p53, in CAC model mice. In addition, lentinan restored the intestinal bacterial microbiotal community structure in IBD model mice. Thus, it shows therapeutic potential in IBD and CAC model mice possibly by inhibiting TLR4/NF-κB signalling-mediated inflammatory responses and disruption of the intestinal microbiotal structure.
Collapse
Affiliation(s)
- Yanrong Liu
- Tianjin Key Laboratory of Molecular Drug ResearchTianjin International Joint Academy of BiomedicineTianjinChina,Drug Safety Evaluation CenterTianjin International Joint Academy of BiomedicineTianjinChina
| | - Jianmin Zhao
- Department of PathologyHospital of Shun Yi DistrictBeijingChina
| | - Yali Zhao
- Tianjin Key Laboratory of Molecular Drug ResearchTianjin International Joint Academy of BiomedicineTianjinChina,State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjinChina
| | - Shumin Zong
- Tianjin Key Laboratory of Molecular Drug ResearchTianjin International Joint Academy of BiomedicineTianjinChina,State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjinChina
| | - Yixuan Tian
- Tianjin Key Laboratory of Molecular Drug ResearchTianjin International Joint Academy of BiomedicineTianjinChina,State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjinChina
| | - Shuang Chen
- Tianjin Key Laboratory of Molecular Drug ResearchTianjin International Joint Academy of BiomedicineTianjinChina
| | - Meng Li
- Tianjin Key Laboratory of Molecular Drug ResearchTianjin International Joint Academy of BiomedicineTianjinChina,State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjinChina
| | - Huijuan Liu
- Tianjin Key Laboratory of Molecular Drug ResearchTianjin International Joint Academy of BiomedicineTianjinChina
| | - Qiang Zhang
- Tianjin Key Laboratory of Molecular Drug ResearchTianjin International Joint Academy of BiomedicineTianjinChina,State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjinChina
| | - Xueshuang Jing
- Tianjin Key Laboratory of Molecular Drug ResearchTianjin International Joint Academy of BiomedicineTianjinChina
| | - Bo Sun
- Tianjin Key Laboratory of Molecular Drug ResearchTianjin International Joint Academy of BiomedicineTianjinChina
| | - Hongzhi Wang
- Tianjin Key Laboratory of Molecular Drug ResearchTianjin International Joint Academy of BiomedicineTianjinChina,State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjinChina
| | - Tao Sun
- Tianjin Key Laboratory of Molecular Drug ResearchTianjin International Joint Academy of BiomedicineTianjinChina,State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjinChina
| | - Cheng Yang
- Tianjin Key Laboratory of Molecular Drug ResearchTianjin International Joint Academy of BiomedicineTianjinChina,State Key Laboratory of Medicinal Chemical Biology and College of PharmacyNankai UniversityTianjinChina
| |
Collapse
|
11
|
Wang Y, Gu Y, Fang K, Mao K, Dou J, Fan H, Zhou C, Wang H. Lactobacillus acidophilus and Clostridium butyricum ameliorate colitis in murine by strengthening the gut barrier function and decreasing inflammatory factors. Benef Microbes 2018; 9:775-787. [PMID: 30014710 DOI: 10.3920/bm2017.0035] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ulcerative colitis is a type of chronic inflammation present in the intestines for which the aetiology is not yet clear. The current therapies for ulcerative colitis cannot be considered to be long-term management strategies due to their significant side effects. Therefore, it is essential to identify an alternative therapeutic strategy for ulcerative colitis. The present study focused on the evaluation of the anti-inflammatory activities of Lactobacillus acidophilus CGMCC 7282 and Clostridium butyricum CGMCC 7281. The roles of both single and combination of L. acidophilus CGMCC 7282 and C. butyricum CGMCC 7281 in ulcerative colitis were investigated in 2,4,6-trinitrobenzenesulfonic acid-induced acute colitis (Th1-type colitis) in Sprague-Dawley rats and oxazolone-induced chronic colitis (Th2-type colitis) in BALB/c mice. The in vivo studies showed that the administration of L. acidophilus CGMCC 7282, C. butyricum CGMCC 7281 and L. acidophilus CGMCC 7282 plus C. butyricum CGMCC 7281 could reduce the Th1-type colitis as well as the Th2-type colitis, and the combination of the two strains exhibited the most notable effects, as indicated by the reduced mortality rates, the suppressed disease activity indices, the improved body weights, the reduced colon weight/colon length and colon weight/body weight ratios, and the improved gross anatomic characteristics and histological features (ameliorations of neutrophil infiltration and ulceration in the colon). It was found that the alterations of the gut microbiome, the barrier function changing and the selected inflammation-related cytokines are observed in the ulcerative colitis rats/mice treated with L. acidophilus CGMCC 7282 and C. butyricum CGMCC 7281. The combination of L. acidophilus CGMCC 7282 plus C. butyricum CGMCC 7281 also exerted a stronger anti-inflammatory effect than either of the single strains alone in vitro. These findings provide evidence that the administration of L. acidophilus CGMCC 7282 plus C. butyricum CGMCC 7281 may be a promising therapy for ulcerative colitis.
Collapse
Affiliation(s)
- Y Wang
- 1 Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Y Gu
- 2 State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu 210009, China P.R
| | - K Fang
- 2 State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu 210009, China P.R
| | - K Mao
- 2 State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu 210009, China P.R
| | - J Dou
- 2 State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu 210009, China P.R
| | - H Fan
- 2 State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu 210009, China P.R
| | - C Zhou
- 2 State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu 210009, China P.R
| | - H Wang
- 2 State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu 210009, China P.R
| |
Collapse
|
12
|
Lin H, Zhang W, Jiang X, Chen R, Huang X, Huang Z. Total glucosides of paeony ameliorates TNBS‑induced colitis by modulating differentiation of Th17/Treg cells and the secretion of cytokines. Mol Med Rep 2017; 16:8265-8276. [PMID: 28944916 DOI: 10.3892/mmr.2017.7598] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 06/20/2017] [Indexed: 11/06/2022] Open
Abstract
The imbalance between effector CD4+ T helper 17 (Th17) and regulatory CD4+ T cells (Treg) cells and their associated cytokines, have been associated with the pathogenesis of inflammatory bowel disease (IBD). Total glycosides of paeony (TGP) is an alternative immunomodulatory agent that is widely used for the treatment of autoimmune diseases. The present study aimed to evaluate the modulatory effect of TGP in a rat model of colitis induced by 2,4,6‑trinitrobenzene sulfonic acid (TNBS). TGP was administered intragastrically 24 h after the TNBS intrarectal instillation for 7 days. TGP treatment ameliorated the clinical status and reversed the histopathologic severity of acute TNBS colitis. Furthermore, TGP inhibited the levels of Th17‑associated cytokines interleukin (IL)‑17, IL‑6, tumor necrosis factor‑α, whereas the expression levels of Treg‑associated cytokines IL‑10, transforming growth factor‑β in the plasma, colon, spleen and mesenteric lymph nodes (MLN). Additionally, TGP reduced the percentage of Th17 cells; however, the proportion of Treg cells in the spleen and MLN was increased. The present study also observed a suppression of Th17‑associated transcription factor, termed retinoid‑related orphan receptor‑γt (ROR‑γt). However, expression of the Treg‑associated transcription factor forkhead boxp3 was increased in the TGP treatment group. Therefore, the present findings suggest that TGP has a regulatory role in modulating the balance of Th17 and Treg cells to ameliorate the TNBS‑induced colitis and support the strategy of using TGP to treat IBD.
Collapse
Affiliation(s)
- Haihua Lin
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Wenyou Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Xuepei Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Renpin Chen
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Xielin Huang
- Department of Clinical Medicine, Renji College of Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Zhiming Huang
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| |
Collapse
|
13
|
Clinical Efficacy and Safety of Total Glucosides of Paeony for Primary Sjögren's Syndrome: A Systematic Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017. [PMID: 28642798 PMCID: PMC5469993 DOI: 10.1155/2017/3242301] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To evaluate the clinical efficacy and safety of total glucosides of paeony (TGP) for primary Sjögren's syndrome (pSS). METHODS Eight electronic databases were searched from their inception to July 2016. Clinical randomized controlled trials (RCTs) were included. The study quality was evaluated according to the standard suggested in the Cochrane Handbook. RevMan 5.1 was used for statistical analysis. RESULTS Seven RCTs involving 443 patients were included. The results showed that TGP combined with an immunosuppressant (IS) showed greater efficacy for improving the saliva flow test of pSS compared to immunosuppressant alone (WMD -6.88, 95% CI -9.02 to -4.74, and P < 0.00001). And the same trend favouring TGP-IS dual combination was found in Schirmer test (WMD 1.63, 95% CI 0.26 to 3.01, and P = 0.02), ESR (WMD 7.33, 95% CI -10.08 to -4.59, and P < 0.00001), CRP (WMD -6.00, 95% CI -7.17 to -4.83, and P < 0.00001), IgM (WMD = -0.42, 95% CI -0.70 to 0.13, and P = 0.004), and IgG (WMD -3.22, 95% CI -4.32 to -2.12, and P < 0.00001) analysis. However, TGP did not affect IgA (WMD 0.53, 95% CI -1.34 to -0.29, and P = 0.20). The adverse events manifested no significant differences between the two groups. CONCLUSIONS The TGP-IS combination is superior to IS alone in the treatment of pSS. However, due to the low quality of included studies, high-quality RCTs are needed to confirm the beneficial effects of TGP.
Collapse
|
14
|
Du X, Chen W, Wang Y, Chen C, Guo L, Ju R, Li J, Zhang D, Zhu L, Ye C. Therapeutic efficacy of carboxyamidotriazole on 2,4,6-trinitrobenzene sulfonic acid-induced colitis model is associated with the inhibition of NLRP3 inflammasome and NF-κB activation. Int Immunopharmacol 2017; 45:16-25. [PMID: 28152446 DOI: 10.1016/j.intimp.2017.01.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/07/2016] [Accepted: 01/10/2017] [Indexed: 01/08/2023]
Abstract
Excess proinflammatory cytokines owing to the activation of NF-κB and NLRP3 inflammasome play the key role in inflammatory bowel disease (IBD). Previously, we reported the anti-inflammatory activity of carboxyamidotriazole (CAI) resulting from decreasing cytokines. Therefore, we investigated the therapeutic effects of CAI in 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced rat colitis and the involvement of CAI action with NLRP3 inflammasome and NF-κB pathway. CAI was orally administered to TNBS-induced colitis rat. The severity of colitis was assessed, and NLRP3 inflammasome, NF-κB pathway and cytokines were determined. Our results showed that CAI significantly reduced weight loss and disease activity index (DAI) scores in colitis rats and alleviated the colonic macroscopic signs and pathological damage. In addition, the intestinal inflammatory markers and permeability index were markedly ameliorated by CAI treatment. The decreased levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, IL-18 were also detected in the colon tissues of CAI-treated colitis rats. Moreover, the activation of NLRP3 inflammasome in inflamed colon was significantly suppressed by showing an obvious reduction in the NLRP3 and activated caspase-1 levels. Furthermore, CAI reduced NF-κB p65 expression and IκBα phosphorylation and degradation in colitis rats. Therefore, CAI attenuates TNBS-induced colitis, which may be attributed to its inhibition of NLRP3 inflammasome and NF-κB activation, and down-regulation of proinflammatory cytokines. These results provide further understanding of the intestinal anti-inflammatory effect of CAI and highlight it as a potential drug for the treatment of IBD.
Collapse
Affiliation(s)
- Xiaowan Du
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Wei Chen
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yufeng Wang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Chen Chen
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Lei Guo
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Rui Ju
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Juan Li
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Dechang Zhang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Lei Zhu
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China.
| | - Caiying Ye
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China.
| |
Collapse
|
15
|
Demethyleneberberine alleviates inflammatory bowel disease in mice through regulating NF-κB signaling and T-helper cell homeostasis. Inflamm Res 2016; 66:187-196. [PMID: 27900412 DOI: 10.1007/s00011-016-1005-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 10/24/2016] [Accepted: 10/28/2016] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE The activation of NF-κB signaling and unbalance of T-helper (Th) cells have been reported to play a key role in the pathogenesis of colitis. Cortex Phellodendri Chinensis (CPC) is commonly used to treat inflammation and diarrhea. Demethyleneberberine (DMB), a component of CPC, was reported to treat alcoholic liver disease as a novel natural mitochondria-targeted antioxidant in our previous study. In this study, we investigated whether DMB could protect against dextran sulfate sodium (DSS)-induced inflammatory colitis in mice by regulation of NF-κB pathway and Th cells homeostatis. METHODS Inflammatory colitis mice were induced by 3% DSS, and DMB were orally administered on the doses of 150 and 300 mg/kg. In vitro, DMB (10, 20, 40 μM) and N-acetyl cysteine (NAC, 5 mM) were co-cultured with RAW264.7 for 2 h prior to lipopolysaccharide (LPS) stimulation, and splenocytes from the mice were cultured ex vivo for 48 h for immune response test. RESULTS In vivo, DMB significantly alleviated the weight loss and diminished myeloperoxidase (MPO) activity, while significantly reduced the production of pro-inflammatory cytokines, such as interleukin (IL)-6 and tumor necrosis factor-α (TNF-α), and inhibited the activation of NF-κB signaling pathway. Furthermore, DMB decreased interferon (IFN)-γ, increased IL-4 concentration in the mice splenocytes and the ratio of IgG1/IgG2a in the serum. In vitro, ROS production and pro-inflammation cytokines were markedly inhibited by DMB in RAW264.7 cell. CONCLUSIONS Our findings revealed that DMB alleviated mice colitis and inhibited the inflammatory responses by inhibiting NF-κB pathway and regulating the balance of Th cells.
Collapse
|
16
|
Enhancement of Exposure and Reduction of Elimination for Paeoniflorin or Albiflorin via Co-Administration with Total Peony Glucosides and Hypoxic Pharmacokinetics Comparison. Molecules 2016; 21:molecules21070874. [PMID: 27376264 PMCID: PMC6273400 DOI: 10.3390/molecules21070874] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/21/2016] [Accepted: 06/28/2016] [Indexed: 11/16/2022] Open
Abstract
There is evidence suggesting that herbal extracts demonstrate greater bioactivities than their isolated constituents at an equivalent dose. This phenomenon could be attributed to the absence of interacting substances present in the extracts. By measuring the pharmacokinetic parameters of paeoniflorin (PF) and albiflorin (AF) after being orally administered to rats in isolated form, in combination with each other and within total peony glucosides (TPG), respectively, the current study aimed to identify positive pharmacokinetic interactions between components of peony radix extracts. Moreover, the pharmacokinetic profiles of PF and AF under normoxia and hypoxia were also investigated and compared. In order to achieve these goals, a highly sensitive and reproducible ultra-peformance liquid chromatography-mass spectrometry (UPLC-MS) method was developed and validated for simultaneously quantitation of PF and AF in rat plasma. This study found that compared with that of single component (PF/AF), the exposure of PF in rat plasma after combination administration or TPG administration was significantly increased, meanwhile the elimination of PF/AF was remarkably reduced. It was also noticed that AUC and Cmax of PF in hypoxia rats were significantly decreased compared with that of normaxia rats, suggesting that there was a decreased exposure of PF in rats under hypoxia. The current study, for the first time, revealed the pharmacokinetic interactions between PF/AF and other constitutes in TGP and the pharmacokinetic profiles of PF and AF under hypoxia. In view of the current findings, it could be supposed that the clinical performance of total peony glucosides would be better than that of single constitute (PF/AF). The outcomes of this animal study are expected to serve as a basis for development of clinical guidelines on total peony glucosides usage.
Collapse
|
17
|
Nirmal SA, Gangurde SS, Dumbre PS, Pal SC, Mandal SC. Challenges and opportunities in the treatment of ulcerative colitis. World J Pharmacol 2015; 4:219-226. [DOI: 10.5497/wjp.v4.i2.219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 01/26/2015] [Accepted: 04/09/2015] [Indexed: 02/06/2023] Open
Abstract
Ulcerative colitis (UC) is an inflammatory destructive disease of the large intestine occurred usually in the rectum and lower part of the colon as well as the entire colon. Drug therapy is not the only choice for UC treatment and medical management should be as a comprehensive whole. Many synthetic drugs are available for the treatment of UC like 5-aminosalicylic acid, oral or systemic corticosteroids, immunomodulator, etc. but these drugs are associated with many serious side effects after long term use or have certain disadvantage or not suitable for the use in some patients. In short synthetic drugs have many disadvantages and for this reason effective and safe alternative drug treatment for the UC is the challenge. Herbal drugs are found to be very promising results of the treatment of UC and enzymatic level. Researchers explored many herbal drugs for the treatment and even many more may found effective in the treatment of UC. At this point we feel herbal medicine is the better alternative for the treatment of UC.
Collapse
|
18
|
Zhang J, Li H, Huo R, Zhai T, Li H, Sun Y, Shen B, Li N. Paeoniflorin selectively inhibits LPS-provoked B-cell function. J Pharmacol Sci 2015; 128:8-16. [DOI: 10.1016/j.jphs.2015.02.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 02/16/2015] [Accepted: 02/19/2015] [Indexed: 10/23/2022] Open
|
19
|
Preventive effect of the microalga Chlamydomonas debaryana on the acute phase of experimental colitis in rats. Br J Nutr 2014; 112:1055-64. [PMID: 25192306 DOI: 10.1017/s0007114514001895] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Inflammatory bowel diseases (IBD) are characterised by chronic uncontrolled inflammation of intestinal mucosa. Diet and nutritional factors have emerged as possible interventions for IBD. Microalgae are rich sources of n-3 PUFA and derived oxylipins. Oxylipins are lipid mediators involved in the resolution of many inflammatory disorders. The aim of the present study was to investigate the effects of the oxylipin-containing biomass of the microalga Chlamydomonas debaryana and its major oxylipin constituent, (9Z,11E,13S,15Z)-13-hydroxyoctadeca-9,11,15-trienoic acid ((13S)-HOTE), on acute 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis in rats. Lyophilised microalgal biomass and (13S)-HOTE were administered by oral route 48, 24 and 1 h before the induction of colitis and 24 h later, and the rats were killed after 48 h. The treatment with the lyophilised microalga and (13S)-HOTE improved body-weight loss and colon shortening, as well as attenuated the extent of colonic damage and increased mucus production. Cellular neutrophil infiltration, with the subsequent increase in myeloperoxidase levels induced by TNBS, were also reduced after the administration of the lyophilised microalga or (13S)-HOTE. The anti-inflammatory effects of these treatments were confirmed by the inhibition of colonic TNF-α production. Moreover, lyophilised microalga or (13S)-HOTE down-regulated cyclo-oxygenase-2 and inducible nitric oxide synthase expression. The present study was the first to show the prophylactic effects of a lyophilised biomass sample of the microalga C. debaryana and the oxylipin (13S)-HOTE on TNBS-induced acute colitis in rats. Our findings suggest that the microalga C. debaryana or derived oxylipins could be used as nutraceuticals in the treatment of the active phase of IBD.
Collapse
|
20
|
Zhao G, Li J, Wang J, Shen X, Sun J. Aquaporin 3 and 8 are down-regulated in TNBS-induced rat colitis. Biochem Biophys Res Commun 2013; 443:161-6. [PMID: 24286754 DOI: 10.1016/j.bbrc.2013.11.067] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 11/16/2013] [Indexed: 12/15/2022]
Abstract
Aquaporins (AQPs) plays an important role in transcellular water movement, but the AQPs expression profile has not been demonstrated in 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis which closely mimics human Crohn's disease (CD) histopathologically. To solve the problem, 30 female Sprague-Dawley (SD) rats were randomly divided into a model group (n=18), an ethanol control group (n=6) and a normal control group (n=6). On day 1, the rats in the model group received TNBS+50% ethanol via the rectum, while the ethanol control rats received an equal volume of 50% ethanol and the normal control rats did not receive any treatment. All rats were sacrificed on day 7, and ileum, proximal colon and distal colon specimens were obtained to examine the alteration in AQP3 and AQP8 using real-time polymerase chain reaction, Western blot analysis and immunohistochemistry. As a result, exposure to TNBS+ethanol resulted in a marked decrease in both the mRNA and protein expression of AQP3 and AQP8, with the exception of AQP8 protein which was negative in the distal colon in all three groups. These reductions in AQP3 and AQP8 were accompanied by an increase in intestinal inflammation and injury. The results obtained here implied that both AQP3 and AQP8 may be involved in the pathogenesis of inflammatory bowel disease.
Collapse
Affiliation(s)
- Guangxi Zhao
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Li
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiyao Wang
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xizhong Shen
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianyong Sun
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|