1
|
Zhou H, Xiang R, Chen W, Peng Y, Chen Z, Chen W, Tang L. CircRNA-mediated heterogeneous ceRNA regulation mechanism in periodontitis and peri-implantitis. Eur J Med Res 2024; 29:594. [PMID: 39695789 DOI: 10.1186/s40001-024-02153-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/11/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Performing a comprehensive study on the differential expression of mRNAs, miRNAs, and circRNAs in the context of peri-implantitis and periodontitis has beneficial advantages to identify unique molecular signatures and pathways that may contribute to our understanding of these conditions. METHODS Gingival tissues from healthy individuals and peri-implantitis and periodontitis patients were obtained to identify differential expression genes (DEG) by Illumina HiSeq 2500 instrument. Differential expression analysis was conducted using R statistical software, with significance set at P < 0.05 and fold greater than 2. Functional enrichment analysis of the DEGs was conducted using the Reactome, Gene ontology and KEGG databases. RESULTS Significant differences in mRNA, miRNA, and circRNA profiles were identified between healthy gingival tissues. The top DEGs comprising 6 circRNAs, 2 miRNAs, and 4 mRNAs were identified and the constructed ceRNA network, elucidates their involvement in key signaling pathways such as ErbB, Wnt, and mTOR, which are crucial for understanding the inflammatory progression of these conditions. CONCLUSIONS This study highlights a heterogeneous circRNA-mediated ceRNA regulatory mechanism in peri-implantitis and periodontitis, activating signaling pathways and regulating gene expression. Key findings including a detailed analysis of the transcriptional landscape and identification of unique molecular signatures, pathways and cellular components in gingival tissues, offering insights into the molecular differences between peri-implantitis and periodontitis. The study may contribute to the understanding of the pathological mechanisms of these diseases and may aid in the development of targeted therapies.
Collapse
Affiliation(s)
- Hailun Zhou
- Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of the Rehabilitation and Reconstruction of Oral and Maxillofacial Research, Nanning, 530021, China
- Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, Nanning, 530021, China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, China
| | - Rong Xiang
- Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of the Rehabilitation and Reconstruction of Oral and Maxillofacial Research, Nanning, 530021, China
- Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, Nanning, 530021, China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, China
| | - Wenjin Chen
- Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of the Rehabilitation and Reconstruction of Oral and Maxillofacial Research, Nanning, 530021, China
- Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, Nanning, 530021, China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, China
| | - Yuanyuan Peng
- Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of the Rehabilitation and Reconstruction of Oral and Maxillofacial Research, Nanning, 530021, China
- Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, Nanning, 530021, China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, China
| | - Zhiyong Chen
- Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of the Rehabilitation and Reconstruction of Oral and Maxillofacial Research, Nanning, 530021, China
- Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, Nanning, 530021, China
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, China
| | - Wenxia Chen
- Guangxi Medical University, Nanning, 530021, China.
- Guangxi Key Laboratory of the Rehabilitation and Reconstruction of Oral and Maxillofacial Research, Nanning, 530021, China.
- Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, Nanning, 530021, China.
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, China.
- Department of Endodontics Dentistry, College of Stomatology, Guangxi Medical University, Nanning, 530021, China.
| | - Li Tang
- Guangxi Medical University, Nanning, 530021, China.
- Guangxi Key Laboratory of the Rehabilitation and Reconstruction of Oral and Maxillofacial Research, Nanning, 530021, China.
- Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, Nanning, 530021, China.
- Guangxi Clinical Research Center for Craniofacial Deformity, Nanning, 530021, China.
- Department of Implant Dentistry, College of Stomatology, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
2
|
Niu CX, Li JW, Li XL, Zhang LL, Lang Y, Song ZB, Yu CL, Yang XG, Zhao HF, Sun JL, Zheng LH, Wang X, Sun Y, Han XH, Wang GN, Bao YL. PRSS50-mediated inhibition of MKP3/ERK signaling is crucial for meiotic progression and sperm quality. Zool Res 2024; 45:1037-1047. [PMID: 39147718 PMCID: PMC11491780 DOI: 10.24272/j.issn.2095-8137.2023.388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 04/07/2024] [Indexed: 08/17/2024] Open
Abstract
Serine protease 50 (PRSS50/TSP50) is highly expressed in spermatocytes. Our study investigated its role in testicular development and spermatogenesis. Initially, PRSS50 knockdown was observed to impair DNA synthesis in spermatocytes. To further explore this, we generated PRSS50 knockout ( Prss50 -/- ) mice ( Mus musculus), which exhibited abnormal spermatid nuclear compression and reduced male fertility. Furthermore, dysplastic seminiferous tubules and decreased sex hormones were observed in 4-week-old Prss50 -/- mice, accompanied by meiotic progression defects and increased apoptosis of spermatogenic cells. Mechanistic analysis indicated that PRSS50 deletion resulted in increased phosphorylation of extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) and elevated levels of MAP kinase phosphatase 3 (MKP3), a specific ERK antagonist, potentially accounting for testicular dysplasia in adolescent Prss50 -/- mice. Taken together, these findings suggest that PRSS50 plays an important role in testicular development and spermatogenesis, with the MKP3/ERK signaling pathway playing a significant role in this process.
Collapse
Affiliation(s)
- Chun-Xue Niu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, Jilin 130117, China
| | - Jia-Wei Li
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, Jilin 130117, China
| | - Xiao-Li Li
- China International Joint Research Center for Human Stem Cell Bank, Northeast Normal University, Changchun, Jilin 130117, China
| | - Lin-Lin Zhang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, Jilin 130117, China
| | - Yan Lang
- China International Joint Research Center for Human Stem Cell Bank, Northeast Normal University, Changchun, Jilin 130117, China
| | - Zhen-Bo Song
- China International Joint Research Center for Human Stem Cell Bank, Northeast Normal University, Changchun, Jilin 130117, China. E-mail:
| | - Chun-Lei Yu
- China International Joint Research Center for Human Stem Cell Bank, Northeast Normal University, Changchun, Jilin 130117, China
| | - Xiao-Guang Yang
- China International Joint Research Center for Human Stem Cell Bank, Northeast Normal University, Changchun, Jilin 130117, China
| | - Hai-Feng Zhao
- Jilin Institute for Drug Control, Changchun, Jilin 130022, China
| | - Jia-Ling Sun
- Jilin Institute for Drug Control, Changchun, Jilin 130022, China
| | - Li-Hua Zheng
- China International Joint Research Center for Human Stem Cell Bank, Northeast Normal University, Changchun, Jilin 130117, China
| | - Xue Wang
- Jilin Institute for Drug Control, Changchun, Jilin 130022, China
| | - Ying Sun
- China International Joint Research Center for Human Stem Cell Bank, Northeast Normal University, Changchun, Jilin 130117, China
| | - Xiao-Hong Han
- Jilin Institute for Drug Control, Changchun, Jilin 130022, China
| | - Guan-Nan Wang
- China International Joint Research Center for Human Stem Cell Bank, Northeast Normal University, Changchun, Jilin 130117, China
| | - Yong-Li Bao
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, Jilin 130117, China. E-mail:
| |
Collapse
|
3
|
Youssef HMK, Radi DA, Abd El-Azeem MA. Expression of TSP50, SERCA2 and IL-8 in Colorectal Adenoma and Carcinoma: Correlation to Clinicopathological Factors. Pathol Oncol Res 2021; 27:1609990. [PMID: 34744521 PMCID: PMC8566330 DOI: 10.3389/pore.2021.1609990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/05/2021] [Indexed: 11/13/2022]
Abstract
Background: Colorectal cancer (CRC) is the third most common type of cancer, it is considered a genetically heterogeneous disease with different molecular pathways being involved in its initiation and progression. Testes-specific protease 50 (TSP50) gene is a member of cancer/testis antigens that encodes for threonine protease enzyme. Overexpression of TSP50 was found to enhance the progression and invasion of breast cancer and other malignant tumors. SERCA2 is widely expressed in several body tissues; its aberrant expression has been involved in many cancers. IL-8 is an inflammatory cytokine. Alongside its role in inflammation, its expression was reported to induce the migration of tumor cells. Aim: Study the expression of TSP50, SERCA2 and IL-8 in colorectal adenoma (CRA), CRC and normal colonic tissues to compare the expression of these biomarkers in relation to clinicopathological parameters and prognostic factors. Results: TSP50, SERCA2 and IL-8 expression varied between normal colonic tissues, CRA and CRC. Significant statistical association was detected between the three biomarkers' overexpression and degree of dysplasia in CRA. Also, significant statistical relation was found between the three biomarkers' overexpression and presence of lympho-vascular invasion, advanced TNM staging and high intra-tumoral inflammatory infiltrate. Multivariable analysis showed that the overexpression of the three biomarkers is significantly associated with worse prognosis. Conclusion: The expression of TSP50, SERCA2 and IL-8 was different between the normal tissue and neoplastic colorectal tissue on one hand and between CRA and CRC on the other. Increased expression of these biomarkers in neoplastic epithelial cells of colorectal carcinoma is associated with adverse prognostic factors and could be considered as independent prognostic factors.
Collapse
Affiliation(s)
- Heba M K Youssef
- Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Dina A Radi
- Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | |
Collapse
|
4
|
Gao F, Zhang X, Wang S, Zheng L, Sun Y, Wang G, Song Z, Bao Y. TSP50 promotes the Warburg effect and hepatocyte proliferation via regulating PKM2 acetylation. Cell Death Dis 2021; 12:517. [PMID: 34016961 PMCID: PMC8138007 DOI: 10.1038/s41419-021-03782-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/30/2021] [Accepted: 04/30/2021] [Indexed: 12/16/2022]
Abstract
Metabolic reprogramming is a hallmark of malignancy. Testes-specific protease 50 (TSP50), a newly identified oncogene, has been shown to play an important role in tumorigenesis. However, its role in tumor cell metabolism remains unclear. To investigate this issue, LC-MS/MS was employed to identify TSP50-binding proteins and pyruvate kinase M2 isoform (PKM2), a known key enzyme of aerobic glycolysis, was identified as a novel binding partner of TSP50. Further studies suggested that TSP50 promoted aerobic glycolysis in HCC cells by maintaining low pyruvate kinase activity of the PKM2. Mechanistically, TSP50 promoted the Warburg effect by increasing PKM2 K433 acetylation level and PKM2 acetylation site (K433R) mutation remarkably abrogated the TSP50-induced aerobic glycolysis, cell proliferation in vitro and tumor formation in vivo. Our findings indicate that TSP50-mediated low PKM2 pyruvate kinase activity is an important determinant for Warburg effect in HCC cells and provide a mechanistic link between TSP50 and tumor metabolism.
Collapse
Affiliation(s)
- Feng Gao
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Xiaojun Zhang
- Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, China
| | - Shuyue Wang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Lihua Zheng
- Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, China
| | - Ying Sun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, Jilin, China
| | - Guannan Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, Jilin, China
| | - Zhenbo Song
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China.
| | - Yongli Bao
- Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, Changchun, China.
| |
Collapse
|
5
|
Scovell JM, Bournat JC, Szafran AT, Solis M, Moore J, Rivera A, Chen CH, Zhang J, Wilken N, Seth A, Jorgez CJ. PRSS50 is a testis protease responsible for proper sperm tail formation and function. Development 2021; 148:240271. [PMID: 33913480 DOI: 10.1242/dev.197558] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/18/2021] [Indexed: 02/06/2023]
Abstract
Multiple morphological abnormalities of the sperm flagella (MMAF) are a major cause of asthenoteratozoospermia. We have identified protease serine 50 (PRSS50) as having a crucial role in sperm development, because Prss50-null mice presented with impaired fertility and sperm tail abnormalities. PRSS50 could also be involved in centrosome function because these mice showed a threefold increase in acephalic sperm (head-tail junction defect), sperm with multiple heads (spermatid division defect) and sperm with multiple tails, including novel two conjoined sperm (complete or partial parts of several flagellum on the same plasma membrane). Our data support that, in the testis, as in tumorigenesis, PRSS50 activates NFκB target genes, such as the centromere protein leucine-rich repeats and WD repeat domain-containing protein 1 (LRWD1), which is required for heterochromatin maintenance. Prss50-null testes have increased IκκB, and reduced LRWD1 and histone expression. Low levels of de-repressed histone markers, such as H3K9me3, in the Prss50-null mouse testis may cause increases in post-meiosis proteins, such as AKAP4, affecting sperm formation. We provide important insights into the complex mechanisms of sperm development, the importance of testis proteases in fertility and a novel mechanism for MMAF.
Collapse
Affiliation(s)
- Jason M Scovell
- Scott Department of Urology, Baylor College of Medicine, Houston, TX 77030, USA.,Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX 77030, USA.,Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA.,Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Juan C Bournat
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Adam T Szafran
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Minerva Solis
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Joshua Moore
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Armando Rivera
- Scott Department of Urology, Baylor College of Medicine, Houston, TX 77030, USA.,Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Surgery, Texas Children's Hospital, Houston, TX 77030, USA
| | - Ching H Chen
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jason Zhang
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nathan Wilken
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Abhishek Seth
- Scott Department of Urology, Baylor College of Medicine, Houston, TX 77030, USA.,Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Surgery, Texas Children's Hospital, Houston, TX 77030, USA
| | - Carolina J Jorgez
- Scott Department of Urology, Baylor College of Medicine, Houston, TX 77030, USA.,Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Surgery, Texas Children's Hospital, Houston, TX 77030, USA
| |
Collapse
|
6
|
Ai HH, Liu B, Yang MT, Zuo QQ, Song ZB, Bao YL, Sun LG, Zhou L, Li YX. Expression and effects of TSP50 in mouse embryo and cardiac myocyte development. Biochem Biophys Res Commun 2018; 502:283-288. [PMID: 29842883 DOI: 10.1016/j.bbrc.2018.05.169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 05/25/2018] [Indexed: 12/12/2022]
Abstract
TSP50, a testis-specific gene encoding a serine protease-like protein, was specifically expressed in the spermatocytes of testes but abnormally activated and expressed in many different kinds of cancers. Here, we aimed to analyze the expression of TSP50 in mouse embryo and its function in early embryonic development. Firstly, the distribution of TSP50 in oocytes and embryonic development was characterized by immunofluorescence, RT-PCR and western blotting, and the results showed that TSP50 was detected at all studied stages with a dynamic expression pattern. When overexpressed TSP50 in zygotes by microinjection, the zygotes development was highly accelerated. On the contrary, knocking down TSP50 expression by RNA interference greatly retarded the zygote development. Furthermore, TSP50 expression at embryonic day 6.5 (E6.5), day 8.5 (E8.5) and day 10.5 (E10.5) were increasingly enhanced, However, the expression of TSP50 decreased gradually in the development and differentiation of cardiac myocyte from E12.5 to postnatal (P0). Additionally, we found that TSP50 expression was decreased during cardiac myocyte differentiation of P19 cells. Overexpression of TSP50 could decrease the expression of GATA-4, and knockdown of TSP50 markedly increase the expression of GATA-4. Taken together, our data indicate that TSP50 may play an important role during the process of mouse embryonic development as well as myocardial cell differentiation.
Collapse
Affiliation(s)
- Hui-Han Ai
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China; Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China
| | - Biao Liu
- Department of Hand Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Mei-Ting Yang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Qian-Qian Zuo
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Zhen-Bo Song
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China; Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China.
| | - Yong-Li Bao
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China.
| | - Lu-Guo Sun
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China; Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China
| | - Liang Zhou
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China
| | - Yu-Xin Li
- Institute of Genetics and Cytology, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
7
|
Testes-specific protease 50 as an independent risk factor for poor prognosis in patients with non-small cell lung cancer. Oncol Lett 2018; 15:8796-8804. [PMID: 29805619 DOI: 10.3892/ol.2018.8387] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 02/07/2017] [Indexed: 12/23/2022] Open
Abstract
Testes-specific protease 50 (TSP50) is normally expressed in the testes and is overexpressed in various types of human cancers, including breast cancer, colorectal carcinoma and laryngocarcinoma. However, little has been reported on the association between TSP50 and non-small cell lung cancer (NSCLC). The present study aimed to detect TSP50 expression in 198 strict follow-up cases of paired NSCLC and 15 cases of normal lung parenchymal specimens using immunohistochemical staining. The expression levels of TSP50 were then correlated with the clinicopathological factors of NSCLC to assess its potential diagnostic and prognostic value. The relationship between TSP50 expression and the clinicopathological parameters of NSCLC was evaluated using χ2 and Fisher's exact tests. Survival rates for the overall population (n=198) were calculated using the Kaplan-Meier method, and univariate and multivariate analyses were performed using the Cox's proportional hazards regression model. P<0.05 was considered to indicate a statistically significant difference. The expression of TSP50 was significantly increased in NSCLC tissue compared with in adjacent non-tumor or normal lung parenchymal tissue (P<0.001). A significant association was revealed between high expression levels of TSP50 and clinicopathological characteristics including tumor differentiation (P=0.012), late tumor status (P=0.004) and late tumor node metastasis stage (P=0.026), as well as a reduced disease free survival (P=0.009) and overall survival rate (P=0.002) in all patients with NSCLC. Multivariate analyses demonstrated that high TSP50 expression in tumor tissues was significantly associated with a shorter disease-free survival rate [hazard ratio (HR) =1.590, 95% confidence interval (CI): 1.035-2.441], and with a shorter overall survival rate (HR=1.814; 95% CI: 1.156-2.846). In conclusion, the present data demonstrated that increased TSP50 protein expression may be a potential predictor of early recurrence and poor prognosis in NSCLC, and that TSP50 expression levels possess the potential to be used as a biomarker and therapeutic target for the treatment of patients with NSCLC.
Collapse
|
8
|
Cao QH, Liu F, Li CZ, Liu N, Shu M, Lin Y, Ding L, Xue L. Testes-specific protease 50 (TSP50) promotes invasion and metastasis by inducing EMT in gastric cancer. BMC Cancer 2018; 18:94. [PMID: 29361914 PMCID: PMC5781268 DOI: 10.1186/s12885-018-4000-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 01/17/2018] [Indexed: 12/14/2022] Open
Abstract
Background TSP50 (testes-specific protease 50) has been reported to be a candidate oncogene and is overexpressed in various cancers. Our previous study demonstrated that TSP50 protein is elevated in gastric cancer, and its high expression is associated with unfavorable prognosis and lymph node metastasis. However, the role of TSP50 in gastric cancer remains elusive. Methods qRT-PCR, western blot were used to determine TSP50 expression in gastric cancer cell lines. Role of TSP50 in proliferation and invasion was examined by BrdU incorporation assay, cell count, wound healing and transwell assay. Immunohistochemistry and western blot were performed to identify the potential mechanisms involved. Results TSP50 was highly expressed in most of the gastric cancer cell lines at both mRNA and protein levels. Up-regulation of TSP50 in gastric cancer cells enhanced proliferation and invasiveness, whereas down-regulation of TSP50 by its specific shRNA decreased it. A negative correlation between TSP50 and E-Cadherin was found in gastric cancer tissues, and combination of them improves the prediction for prognosis and lymph node metastasis. Mechanistic studies revealed that overexpression of TSP50 increased the expression of epithelial-to-mesenchymal transition (EMT) markers including Vimentin, and Twist, and decreased the epithelial marker E-Cadherin. NF-κB signaling pathway is involved in the regulatory effects of TSP50 on EMT, migration and invasion in gastric cancer cells. Conclusion TSP50 promotes the proliferation, migration and invasion of gastric cancer cells involving NF-κB dependent EMT activation. Targeting TSP50 may provide a novel therapeutic strategy for the management of gastric cancer. Electronic supplementary material The online version of this article (10.1186/s12885-018-4000-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qing-Hua Cao
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, #58, Zhongnshan Road II, Guangzhou, 510080, China
| | - Fang Liu
- Department of Oncology, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Chang-Zhao Li
- Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Alabama, USA
| | - Ni Liu
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, #58, Zhongnshan Road II, Guangzhou, 510080, China
| | - Man Shu
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, #58, Zhongnshan Road II, Guangzhou, 510080, China
| | - Yuan Lin
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, #58, Zhongnshan Road II, Guangzhou, 510080, China
| | - Li Ding
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, #58, Zhongnshan Road II, Guangzhou, 510080, China
| | - Ling Xue
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, #58, Zhongnshan Road II, Guangzhou, 510080, China.
| |
Collapse
|
9
|
Li L, Hou Y, Yu J, Lu Y, Chang L, Jiang M, Wu X. Synergism of ursolic acid and cisplatin promotes apoptosis and enhances growth inhibition of cervical cancer cells via suppressing NF-κB p65. Oncotarget 2017; 8:97416-97427. [PMID: 29228621 PMCID: PMC5722573 DOI: 10.18632/oncotarget.22133] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/17/2017] [Indexed: 01/03/2023] Open
Abstract
Objective This study was designed to investigate the effect of combination of ursolic acid (UA) with cisplatin (DDP) on cervical cancer cell proliferation and apoptosis. Methods The mRNA and protein expressions of nuclear factor-kappa B (NF-κB) p65 in cervical cancer cells were examined using RT-PCR and western blot. MTT and colony formation assays were performed to examine the DDP toxicity and the proliferation ability of cervical cancer cells. Cell morphology was observed by means of Hoechst33258 and transmission electron microscopy (TEM). The apoptosis rate and cell cycle were assessed through flow cytometry assay. Western blot was used to detect the expression of apoptosis-related molecules. Results The mRNA and protein expressions of NF-κB p65 in cervical cancer cells were significantly higher than that in cervical epithelial cells. The combined treatment of UA and DDP inhibited cervical cancer cell growth and promoted apoptosis more effectively than DDP treatment or UA treatment alone (P < 0.05). Compared with the DDP group and UA group, the expressions of Bcl-2 and NF-κB p65 in DDP +UA group were decreased, while the expressions of Bax, Caspase-3 and PARP cleavage were observably increased. The expression of nuclear NF-κB p65 significantly reduced in UA group and DDP +UA group. si-p65 group displayed a decrease of cell proliferation ability and led to a significant reduction in the number of SiHa cell colony formation. Conclusion The combination of UA with DDP could more effectively inhibit SiHa cells proliferation and facilitate cell apoptosis through suppressing NF-κB p65.
Collapse
Affiliation(s)
- Lan Li
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Cancer Hospital of Yunnan Province, Kunming 650118, China
| | - Yu Hou
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Cancer Hospital of Yunnan Province, Kunming 650118, China
| | - Jing Yu
- Department of Gynaecology, The Third Affiliated Hospital of Kunming Medical University, Cancer Hospital of Yunnan Province, Kunming 650118, China
| | - Yulin Lu
- Nursing School, Kunming Medical University, Kunming 650118, China
| | - Li Chang
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Cancer Hospital of Yunnan Province, Kunming 650118, China
| | - Meiping Jiang
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Cancer Hospital of Yunnan Province, Kunming 650118, China
| | - Xingrao Wu
- Department of Radiation Oncology, The Third Affiliated Hospital of Kunming Medical University, Cancer Hospital of Yunnan Province, Kunming 650118, China
| |
Collapse
|
10
|
Abstract
Testes-specific protease 50 (TSP50), a novelly identified oncogene, has the capacity to induce cell proliferation, cell invasion and tumor growth. Further studies indicated that CAGA-luc (an activin-responsive reporter construct) reporter activity could be significantly suppressed by TSP50 overexpression, implying that the activin signaling may participate in TSP50-mediated cell proliferation. Here, we reported that TSP50 had an inhibitory effect on activin signaling. Mechanistic studies revealed that TSP50 could interact with ActRIIA, inhibit activin typeIreceptor (ActRIB) phosphorylation, repress Smad2/3 nuclear accumulation and finally promote cell proliferation by reducing the expression of activin signal target gene p27. Additionally, we found that ActRIB activation could reverse TSP50-mediated cell proliferation and tumor growth. Furthermore, analysis of human breast cancer specimens by immunohistochemistry indicated that TSP50 expression was negatively related to p-Smad2/3 and p27 protein levels. Most importantly, breast cancer diagnosis-related indicators such as tumor size, tumor grade, estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER-2) levels, were correlated well with TSP50/p-Samd2/3 and TSP50/p27 expression status. Thus, our studies revealed a novel regulatory mechanism underlying TSP50-induced cell proliferation and provided a new favorable intervention target for the treatment of breast cancer.
Collapse
|
11
|
Nuclear factor-κB–dependent microRNA-130a upregulation promotes cervical cancer cell growth by targeting phosphatase and tensin homolog. Arch Biochem Biophys 2016; 598:57-65. [DOI: 10.1016/j.abb.2016.03.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/17/2016] [Accepted: 03/19/2016] [Indexed: 12/13/2022]
|
12
|
QIAO WENLIANG, HU HAIYANG, SHI BOWEN, ZANG LIJUAN, JIN WEI, LIN QIANG. Lentivirus-mediated knockdown of TSP50 suppresses the growth of non-small cell lung cancer cells via G0/G1 phase arrest. Oncol Rep 2016; 35:3409-18. [DOI: 10.3892/or.2016.4763] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 02/18/2016] [Indexed: 11/05/2022] Open
|