1
|
Chakraborty N, Gautam A, Muhie S, Miller SA, Meyerhoff J, Sowe B, Jett M, Hammamieh R. Potential roles of polyunsaturated fatty acid-enriched diets in modulating social stress-like features. J Nutr Biochem 2023; 116:109309. [PMID: 36871836 DOI: 10.1016/j.jnutbio.2023.109309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/13/2023] [Accepted: 02/24/2023] [Indexed: 03/07/2023]
Abstract
Fish oil or its major constituents, namely omega-3 poly-unsaturated fatty acid (n3-PUFA), are popular supplements to improve neurogenesis, neuroprotection, and overall brain functions. Our objective was to probe the implications of fat enriched diet with variable PUFAs supplements in ameliorating social stress (SS). We fed mice on either of the three diet types, namely the n-3 PUFA-enriched diet (ERD, n3:n6= 7:1), a balanced diet (BLD, n3:n6= 1:1) or a standard lab diet (STD, n3:n6= 1:6). With respect to the gross fat contents, the customized special diets, namely ERD and BLD were extreme diet, not reflecting the typical human dietary composition. Aggressor-exposed SS (Agg-E SS) model triggered behavioral deficiencies that lingered for 6 weeks (6w) post-stress in mice on STD. ERD and BLD elevated bodyweights but potentially helped in building the behavioral resilience to SS. STD adversely affected the gene networks of brain transcriptomics associated with the cell mortality, energy homeostasis and neurodevelopment disorder. Diverging from the ERD's influences on these networks, BLD showed potential long-term benefits in combatting Agg-E SS. The gene networks linked to cell mortality and energy homeostasis, and their subfamilies, such as cerebral disorder and obesity remained at the baseline level of Agg-E SS mice on BLD 6w post-stress. Moreover, neurodevelopment disorder network and its subfamilies like behavioral deficits remained inhibited in the cohort fed on BLD 6w post Agg-E SS.
Collapse
Affiliation(s)
- Nabarun Chakraborty
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA.
| | - Aarti Gautam
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Seid Muhie
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA; Geneva Foundation, Silver Spring, Maryland, USA
| | - Stacy-Ann Miller
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - James Meyerhoff
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA; Geneva Foundation, Silver Spring, Maryland, USA
| | - Bintu Sowe
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA; Geneva Foundation, Silver Spring, Maryland, USA
| | - Marti Jett
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Rasha Hammamieh
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| |
Collapse
|
2
|
Cussotto S, Delgado I, Oriolo G, Kemper J, Begarie D, Dexpert S, Sauvant J, Leboyer M, Aouizerate B, Martin-Santos R, Schaefer M, Capuron L. Low omega-3 polyunsaturated fatty acids predict reduced response to standard antidepressants in patients with major depressive disorder. Depress Anxiety 2022; 39:407-418. [PMID: 35357051 DOI: 10.1002/da.23257] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 02/07/2022] [Accepted: 03/17/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is characterized by a high rate of treatment resistance. Omega (ω)-3 polyunsaturated fatty acids (PUFAs) were shown to correlate with depressive phenotype both in rodents and in humans. However, few studies to date have investigated the role of PUFAs in antidepressant response. The primary aim of this study was to assess the link between baseline PUFA composition and changes in depressive symptoms as well as antidepressant response in a multicenter study of depressed patients. METHODS Sixty depressed adults who met criteria for MDD according to DSM-IV-TR were recruited. Neuropsychiatric evaluations occurred at baseline and after 4 and 8 weeks of treatment with standard antidepressants, including escitalopram (N = 45), sertraline (N = 13) and venlafaxine (N = 2). At study endpoint, patients were stratified into responders (R) or non-responders (NR) based on their MADRS (Montgomery-Åsberg Depression Rating Scale) score. Baseline PUFA levels were assessed and their association with clinical response was determined. RESULTS Lower ω-3 PUFA levels were associated to worse baseline symptomatology. Baseline levels of PUFAs were significantly different between R and NR, with R exhibiting lower docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and ω-3 index; and higher ω-6/ω-3 ratio than NR before the start of antidepressant treatment. DHA levels as well as the ω-3 index and ω-6/ω-3 ratio significantly predicted response to antidepressants at study endpoint. CONCLUSIONS These results show that baseline levels of PUFAs predict later response to standard antidepressants in depressed subjects. They suggest that PUFA intake and/or metabolism represent a novel modifiable tool for the management of unresponsive depressed patients.
Collapse
Affiliation(s)
- Sofia Cussotto
- University of Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Inês Delgado
- University of Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Giovanni Oriolo
- Department of Psychiatry and Psychology, Hospital Clinic, IDIBAPS, CIBERSAM, Barcelona, Spain.,Department of Medicine, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Jonas Kemper
- Department of Psychiatry, Psychotherapy, Psychosomatics, and Addiction Medicine, Evang. Kliniken Essen-Mitte, Essen, Germany
| | - Diane Begarie
- Departement de Biologie, École Normale Supérieure de Lyon, Université Claude Bernard Lyon I, Université de Lyon, Lyon, France
| | - Sandra Dexpert
- University of Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Julie Sauvant
- University of Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| | - Marion Leboyer
- INSERM, U955, Translational Neuro-Psychiatry lab, Institut Mondor de Recherche Biomédicale, Créteil, France.,AP-HP, Département Universitaire d'Addictologie et Psychiatrie des Hôpitaux Henri Mondor University Hospital, Université Paris Est Créteil, Créteil, France
| | - Bruno Aouizerate
- University of Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France.,CH Charles Perrens, Pôle de Psychiatrie Générale et Universitaire, Centre de référence régional des pathologies anxieuses et dépressives, Bordeaux, France
| | - Rocío Martin-Santos
- Department of Psychiatry and Psychology, Hospital Clinic, IDIBAPS, CIBERSAM, Barcelona, Spain.,Department of Medicine, Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Martin Schaefer
- Department of Psychiatry, Psychotherapy, Psychosomatics, and Addiction Medicine, Evang. Kliniken Essen-Mitte, Essen, Germany.,Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Lucile Capuron
- University of Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, Bordeaux, France
| |
Collapse
|
3
|
Bojková B, Winklewski PJ, Wszedybyl-Winklewska M. Dietary Fat and Cancer-Which Is Good, Which Is Bad, and the Body of Evidence. Int J Mol Sci 2020; 21:ijms21114114. [PMID: 32526973 PMCID: PMC7312362 DOI: 10.3390/ijms21114114] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/27/2020] [Accepted: 06/02/2020] [Indexed: 12/13/2022] Open
Abstract
A high-fat diet (HFD) induces changes in gut microbiota leading to activation of pro-inflammatory pathways, and obesity, as a consequence of overnutrition, exacerbates inflammation, a known risk factor not only for cancer. However, experimental data showed that the composition of dietary fat has a greater impact on the pathogenesis of cancer than the total fat content in isocaloric diets. Similarly, human studies did not prove that a decrease in total fat intake is an effective strategy to combat cancer. Saturated fat has long been considered as harmful, but the current consensus is that moderate intake of saturated fatty acids (SFAs), including palmitic acid (PA), does not pose a health risk within a balanced diet. In regard to monounsaturated fat, plant sources are recommended. The consumption of plant monounsaturated fatty acids (MUFAs), particularly from olive oil, has been associated with lower cancer risk. Similarly, the replacement of animal MUFAs with plant MUFAs decreased cancer mortality. The impact of polyunsaturated fatty acids (PUFAs) on cancer risk depends on the ratio between ω-6 and ω-3 PUFAs. In vivo data showed stimulatory effects of ω-6 PUFAs on tumour growth while ω-3 PUFAs were protective, but the results of human studies were not as promising as indicated in preclinical reports. As for trans FAs (TFAs), experimental data mostly showed opposite effects of industrially produced and natural TFAs, with the latter being protective against cancer progression, but human data are mixed, and no clear conclusion can be made. Further studies are warranted to establish the role of FAs in the control of cell growth in order to find an effective strategy for cancer prevention/treatment.
Collapse
Affiliation(s)
- Bianka Bojková
- Department of Animal Physiology, Institute of Biology and Ecology, Faculty of Science, P.J. Šafárik University in Košice, 041 54 Košice, Slovakia;
| | - Pawel J. Winklewski
- Department of Human Physiology, Medical University of Gdansk, 80-210 Gdansk, Poland;
- Department of Anatomy and Physiology, Pomeranian University of Slupsk, 76-200 Slupsk, Poland
- Correspondence: ; Tel./Fax: +48-58-3491515
| | | |
Collapse
|
4
|
Pietrzyk Ł. Food properties and dietary habits in colorectal cancer prevention and development. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2017. [DOI: 10.1080/10942912.2016.1236813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Łukasz Pietrzyk
- Department of Didactics and Medical Simulation, Chair of Human Anatomy, Medical University of Lublin, Lublin, Poland
- Department of General, Oncological and Minimally Invasive Surgery, 1st Military Clinical Hospital in Lublin, Lublin, Poland
| |
Collapse
|
5
|
Sánchez-Borrego R, von Schacky C, Osorio MJA, Llaneza P, Pinto X, Losa F, Navarro MC, Lubián D, Mendoza N. Recommendations of the Spanish Menopause Society on the consumption of omega-3 polyunsaturated fatty acids by postmenopausal women. Maturitas 2017; 103:71-77. [PMID: 28778336 DOI: 10.1016/j.maturitas.2017.06.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/17/2017] [Accepted: 06/22/2017] [Indexed: 01/19/2023]
Abstract
The consumption of long-chain omega-3 polyunsaturated fatty acids (LCO3-PUFAs) has shown a great variety of beneficial effects, including cardiovascular, metabolic and inflammatory effects, which make them interesting for the postmenopausal woman. Because LCO3-PUFAs could be effective and safe during this period, a panel of experts from the Spanish Menopause Society met to establish a set of recommendations for their use in postmenopausal women based on the best available evidence. The decrease in triglycerides is the most consistent effect observed with LCO3-PUFAs (at doses greater than 3g/day). In addition, LCO3-PUFAs have antiarrhythmic effects, reduce blood pressure, improve depressive and psychotic symptoms, and do not increase the risk of cancer. However, further studies are needed to confirm the benefit of LCO3-PUFAs in the relief of menopause symptoms and osteoporosis.
Collapse
Affiliation(s)
| | - Clemens von Schacky
- Preventive Cardiology, Medizinische Klinik I, Ludwig Maximilians-University of Munich, Germany
| | | | - Plácido Llaneza
- Department of Obstetrics and Gynecology, University of Asturias, Spain
| | | | | | | | - Daniel Lubián
- Department of Obstetrics and Gynecology, University of Cadiz, Spain
| | - Nicolás Mendoza
- Departamento de Obstetricia y Ginecología, Universidad de Granada, Spain.
| |
Collapse
|
6
|
Chakraborty N, Muhie S, Kumar R, Gautam A, Srinivasan S, Sowe B, Dimitrov G, Miller SA, Jett M, Hammamieh R. Contributions of polyunsaturated fatty acids (PUFA) on cerebral neurobiology: an integrated omics approach with epigenomic focus. J Nutr Biochem 2017; 42:84-94. [PMID: 28152499 DOI: 10.1016/j.jnutbio.2016.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 11/07/2016] [Accepted: 12/15/2016] [Indexed: 01/03/2023]
Abstract
The epigenetic landscape is vulnerable to diets. Here, we investigated the influence of different polyunsaturated fatty acids (PUFA) dietary supplements on rodents' nervous system development and functions and potential consequences to neurodegenerative disorders. Our previous nutrigenomics study showed significant impact of high n-3 PUFA-enriched diet (ERD) on synaptogenesis and various neuromodulators. The present study introduced a second equicaloric diet with n-6 PUFA balanced by n-3 PUFA (BLD). The typical lab diet with high n-6 PUFA was the baseline. Transcriptomic and epigenetic investigations, namely microRNA (miRNA) and DNA methylation assays, were carried out on the hemibrains of the C57BL/6j mice fed on any of these three diets from their neonatal age to midlife. Integrating the multiomics data, we focused on the genes encoding both hypermethylated CpG islands and suppressed transcripts. In addition, miRNA:mRNA pairs were screened to identify those overexpressed miRNAs that reduced transcriptional expressions. The majority of miRNAs overexpressed by BLD are associated with Alzheimer's and schizophrenia. BLD implicated long-term potentiation, memory, cognition and learning, primarily via hypermethylation of those genes that enrich the calcium-releasing neurotransmitters. ERD caused hypermethylation of those genes that enrich cytoskeletal development networks and promote the formation of neuronal precursors. We drew the present observations in light of our limited knowledge regarding the epigenetic influences on biofunctions. A more comprehensive study is essential to understand the broad influences of dietary supplements and to suggest optimal dietary solutions for neurological disorders.
Collapse
Affiliation(s)
- Nabarun Chakraborty
- Integrative Systems Biology, US Army Center for Environmental Health Research, Frederick, MD, USA 21702-5010; The Geneva Foundation, Tacoma, WA, USA 98402
| | - Seid Muhie
- Integrative Systems Biology, US Army Center for Environmental Health Research, Frederick, MD, USA 21702-5010; The Geneva Foundation, Tacoma, WA, USA 98402
| | - Raina Kumar
- Integrative Systems Biology, US Army Center for Environmental Health Research, Frederick, MD, USA 21702-5010; Advanced Biomedical Computing Center, Frederick National Laboratory for Cancer Research, Frederick, MD, USA 21702
| | - Aarti Gautam
- Integrative Systems Biology, US Army Center for Environmental Health Research, Frederick, MD, USA 21702-5010
| | - Seshamalini Srinivasan
- Integrative Systems Biology, US Army Center for Environmental Health Research, Frederick, MD, USA 21702-5010; The Geneva Foundation, Tacoma, WA, USA 98402
| | - Bintu Sowe
- Integrative Systems Biology, US Army Center for Environmental Health Research, Frederick, MD, USA 21702-5010; The Geneva Foundation, Tacoma, WA, USA 98402
| | - George Dimitrov
- Integrative Systems Biology, US Army Center for Environmental Health Research, Frederick, MD, USA 21702-5010; Advanced Biomedical Computing Center, Frederick National Laboratory for Cancer Research, Frederick, MD, USA 21702
| | - Stacy-Ann Miller
- Integrative Systems Biology, US Army Center for Environmental Health Research, Frederick, MD, USA 21702-5010; The Geneva Foundation, Tacoma, WA, USA 98402
| | - Marti Jett
- Integrative Systems Biology, US Army Center for Environmental Health Research, Frederick, MD, USA 21702-5010
| | - Rasha Hammamieh
- Integrative Systems Biology, US Army Center for Environmental Health Research, Frederick, MD, USA 21702-5010.
| |
Collapse
|