1
|
An RNA Polymerase III General Transcription Factor Engages in Cell Type-Specific Chromatin Looping. Int J Mol Sci 2022; 23:ijms23042260. [PMID: 35216376 PMCID: PMC8878802 DOI: 10.3390/ijms23042260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 12/10/2022] Open
Abstract
Transcription factors (TFs) bind DNA in a sequence-specific manner and are generally cell type-specific factors and/or developmental master regulators. In contrast, general TFs (GTFs) are part of very large protein complexes and serve for RNA polymerases’ recruitment to promoter sequences, generally in a cell type-independent manner. Whereas, several TFs have been proven to serve as anchors for the 3D genome organization, the role of GTFs in genome architecture have not been carefully explored. Here, we used ChIP-seq and Hi-C data to depict the role of TFIIIC, one of the RNA polymerase III GTFs, in 3D genome organization. We find that TFIIIC genome occupancy mainly occurs at specific regions, which largely correspond to Alu elements; other characteristic classes of repetitive elements (REs) such as MIR, FLAM-C and ALR/alpha are also found depending on the cell’s developmental origin. The analysis also shows that TFIIIC-enriched regions are involved in cell type-specific DNA looping, which does not depend on colocalization with the master architectural protein CTCF. This work extends previous knowledge on the role of TFIIIC as a bona fide genome organizer whose action participates in cell type-dependent 3D genome looping via binding to REs.
Collapse
|
2
|
Liang R, Liu Y. Tcf7l1 directly regulates cardiomyocyte differentiation in embryonic stem cells. Stem Cell Res Ther 2018; 9:267. [PMID: 30326964 PMCID: PMC6190650 DOI: 10.1186/s13287-018-1015-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/18/2018] [Accepted: 09/21/2018] [Indexed: 01/19/2023] Open
Abstract
The T-cell factor/lymphoid enhancer factor (TCF/LEF) family protein Tcf7l1 is highly abundant in embryonic stem cells (ESCs), regulating pluripotency and preparing epiblasts for further differentiation. Defects in the cardiovascular system in Tcf7l1-null mouse were considered secondary to mesoderm malformation. Here, we used temporally controlled Tcf7l1 expression in Tcf7l1-null ESCs to address whether Tcf7l1 directly contributes to cardiac forward programming. Tcf7l1 knockout during differentiation impaired cardiomyocyte formation but did not affect mesoderm formation. Tcf7l1-null ESCs showed delay in mesoderm formation, but once completed, ectopic Tcf7l1 augmented cardiomyocyte differentiation. Further, Tcf7l1-VP16 and Tcf7l1dN showed procardiac activity whereas Tcf7l1-En was ineffective. Our results support that Tcf7l1 contributes to cardiac lineage development as a β-catenin-independent transactivator of cardiac genes.
Collapse
Affiliation(s)
- Rui Liang
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77004, USA
| | - Yu Liu
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77004, USA.
| |
Collapse
|
3
|
Sierra RA, Hoverter NP, Ramirez RN, Vuong LM, Mortazavi A, Merrill BJ, Waterman ML, Donovan PJ. TCF7L1 suppresses primitive streak gene expression to support human embryonic stem cell pluripotency. Development 2018; 145:dev.161075. [PMID: 29361574 DOI: 10.1242/dev.161075] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 01/04/2018] [Indexed: 12/20/2022]
Abstract
Human embryonic stem cells (hESCs) are exquisitely sensitive to WNT ligands, which rapidly cause differentiation. Therefore, hESC self-renewal requires robust mechanisms to keep the cells in a WNT inactive but responsive state. How they achieve this is largely unknown. We explored the role of transcriptional regulators of WNT signaling, the TCF/LEFs. As in mouse ESCs, TCF7L1 is the predominant family member expressed in hESCs. Genome-wide, it binds a gene cohort involved in primitive streak formation at gastrulation, including NODAL, BMP4 and WNT3 Comparing TCF7L1-bound sites with those bound by the WNT signaling effector β-catenin indicates that TCF7L1 acts largely on the WNT signaling pathway. TCF7L1 overlaps less with the pluripotency regulators OCT4 and NANOG than in mouse ESCs. Gain- and loss-of-function studies indicate that TCF7L1 suppresses gene cohorts expressed in the primitive streak. Interestingly, we find that BMP4, another driver of hESC differentiation, downregulates TCF7L1, providing a mechanism of BMP and WNT pathway intersection. Together, our studies indicate that TCF7L1 plays a major role in maintaining hESC pluripotency, which has implications for human development during gastrulation.
Collapse
Affiliation(s)
- Robert A Sierra
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Nathan P Hoverter
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Ricardo N Ramirez
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Linh M Vuong
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Bradley J Merrill
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Marian L Waterman
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA 92697, USA
| | - Peter J Donovan
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA .,Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
4
|
Muñoz-Descalzo S, Hadjantonakis AK, Arias AM. Wnt/ß-catenin signalling and the dynamics of fate decisions in early mouse embryos and embryonic stem (ES) cells. Semin Cell Dev Biol 2015; 47-48:101-9. [PMID: 26321498 DOI: 10.1016/j.semcdb.2015.08.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 08/18/2015] [Accepted: 08/20/2015] [Indexed: 12/22/2022]
Abstract
Wnt/ß-catenin signalling is a widespread cell signalling pathway with multiple roles during vertebrate development. In mouse embryonic stem (mES) cells, there is a dual role for ß-catenin: it promotes differentiation when activated as part of the Wnt/ß-catenin signalling pathway, and promotes stable pluripotency independently of signalling. Although mES cells resemble the preimplantation epiblast progenitors, the first requirement for Wnt/ß-catenin signalling during mouse development has been reported at implantation [1,2]. The relationship between ß-catenin and pluripotency and that of mES cells with epiblast progenitors suggests that ß-catenin might have a functional role during preimplantation development. Here we summarize the expression and function of Wnt/ß-catenin signalling elements during the early stages of mouse development and consider the reasons why the requirement in ES cells do not reflect the embryo.
Collapse
Affiliation(s)
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | |
Collapse
|
5
|
Glucocorticoid Receptor β Acts as a Co-activator of T-Cell Factor 4 and Enhances Glioma Cell Proliferation. Mol Neurobiol 2014; 52:1106-1118. [PMID: 25301232 DOI: 10.1007/s12035-014-8900-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 09/16/2014] [Indexed: 12/13/2022]
Abstract
We previously reported that glucocorticoid receptor β (GRβ) regulates injury-mediated astrocyte activation and contributes to glioma pathogenesis via modulation of β-catenin/T-cell factor/lymphoid enhancer factor (TCF/LEF) transcriptional activity. The aim of this study was to characterize the mechanism behind cross-talk between GRβ and β-catenin/TCF in the progression of glioma. Here, we reported that GRβ knockdown reduced U118 and Shg44 glioma cell proliferation in vitro and in vivo. Mechanistically, we found that GRβ knockdown decreased TCF/LEF transcriptional activity without affecting β-catenin/TCF complex. Both GRα and GRβ directly interact with TCF-4, while only GRβ is required for sustaining TCF/LEF activity under hormone-free condition. GRβ bound to the N-terminus domain of TCF-4 its influence on Wnt signaling required both ligand- and DNA-binding domains (LBD and DBD, respectively). GRβ and TCF-4 interaction is enough to maintain the TCF/LEF activity at a high level in the absence of β-catenin stabilization. Taken together, these results suggest a novel cross-talk between GRβ and TCF-4 which regulates Wnt signaling and the proliferation in gliomas.
Collapse
|
6
|
Kheradpour P, Kellis M. Systematic discovery and characterization of regulatory motifs in ENCODE TF binding experiments. Nucleic Acids Res 2013; 42:2976-87. [PMID: 24335146 PMCID: PMC3950668 DOI: 10.1093/nar/gkt1249] [Citation(s) in RCA: 327] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Recent advances in technology have led to a dramatic increase in the number of available transcription factor ChIP-seq and ChIP-chip data sets. Understanding the motif content of these data sets is an important step in understanding the underlying mechanisms of regulation. Here we provide a systematic motif analysis for 427 human ChIP-seq data sets using motifs curated from the literature and also discovered de novo using five established motif discovery tools. We use a systematic pipeline for calculating motif enrichment in each data set, providing a principled way for choosing between motif variants found in the literature and for flagging potentially problematic data sets. Our analysis confirms the known specificity of 41 of the 56 analyzed factor groups and reveals motifs of potential cofactors. We also use cell type-specific binding to find factors active in specific conditions. The resource we provide is accessible both for browsing a small number of factors and for performing large-scale systematic analyses. We provide motif matrices, instances and enrichments in each of the ENCODE data sets. The motifs discovered here have been used in parallel studies to validate the specificity of antibodies, understand cooperativity between data sets and measure the variation of motif binding across individuals and species.
Collapse
Affiliation(s)
- Pouya Kheradpour
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 32 Vassar St, Cambridge, MA 02139, USA and Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02139, USA
| | | |
Collapse
|
7
|
Muñoz Descalzo S, Rué P, Garcia-Ojalvo J, Martinez Arias A. Correlations between the levels of Oct4 and Nanog as a signature for naïve pluripotency in mouse embryonic stem cells. Stem Cells 2013; 30:2683-91. [PMID: 22969005 DOI: 10.1002/stem.1230] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 08/19/2012] [Indexed: 11/06/2022]
Abstract
The pluripotent state is traditionally associated with large absolute levels of certain transcription factors such as Nanog and Oct4. Here, we present experimental observations using quantitative immunofluorescence that pluripotency in mouse embryonic stem cells (mESCs) is established by specific ratios between Oct4 and Nanog. When cells are grown in 2i conditions, they exhibit uniform levels of pluripotency and this is associated with a high correlation between the levels of Oct4 and Nanog in individual cells. The correlation is lost when cells differentiate. Our results suggest that the correlation between these two factors and the distribution of Oct4/Nanog ratios can be used as quantifiers to distinguish between three subpopulations in an mESC culture: pluripotent, lineage-primed, and differentiating cells. When we apply these quantifiers to cells with lower levels of Nanog or mutant for β-Catenin or Tcf3, the results suggest that these cells exhibit higher probability of differentiation.
Collapse
|
8
|
Fuhrmann S. Wnt signaling in eye organogenesis. Organogenesis 2012; 4:60-7. [PMID: 19122781 DOI: 10.4161/org.4.2.5850] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 03/06/2008] [Indexed: 11/19/2022] Open
Abstract
The vertebrate eye consists of multiple tissues with distinct embryonic origins. To ensure formation of the eye as a functional organ, development of ocular tissues must be precisely coordinated. Besides intrinsic regulators, several extracellular pathways have been shown to participate in controlling critical steps during eye development. Many components of Wnt/Frizzled signaling pathways are expressed in developing ocular tissues, and substantial progress has been made in the past few years in understanding their function during vertebrate eye development. Here, I summarize recent work using functional experiments to elucidate the roles of Wnt/Frizzled pathways during development of ocular tissues in different vertebrates.
Collapse
Affiliation(s)
- Sabine Fuhrmann
- Department of Ophthalmology and Visual Sciences; John A. Moran Eye Center; University of Utah; Salt Lake City, Utah USA
| |
Collapse
|
9
|
Wu CI, Hoffman JA, Shy BR, Ford EM, Fuchs E, Nguyen H, Merrill BJ. Function of Wnt/β-catenin in counteracting Tcf3 repression through the Tcf3-β-catenin interaction. Development 2012; 139:2118-29. [PMID: 22573616 DOI: 10.1242/dev.076067] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The canonical Wnt/β-catenin signaling pathway classically functions through the activation of target genes by Tcf/Lef-β-catenin complexes. In contrast to β-catenin-dependent functions described for Tcf1, Tcf4 and Lef1, the known embryonic functions for Tcf3 in mice, frogs and fish are consistent with β-catenin-independent repressor activity. In this study, we genetically define Tcf3-β-catenin functions in mice by generating a Tcf3ΔN knock-in mutation that specifically ablates Tcf3-β-catenin. Mouse embryos homozygous for the knock-in mutation (Tcf3(ΔN/ΔN)) progress through gastrulation without apparent defects, thus genetically proving that Tcf3 function during gastrulation is independent of β-catenin interaction. Tcf3(ΔN/ΔN) mice were not viable, and several post-gastrulation defects revealed the first in vivo functions of Tcf3-β-catenin interaction affecting limb development, vascular integrity, neural tube closure and eyelid closure. Interestingly, the etiology of defects indicated an indirect role for Tcf3-β-catenin in the activation of target genes. Tcf3 directly represses transcription of Lef1, which is stimulated by Wnt/β-catenin activity. These genetic data indicate that Tcf3-β-catenin is not necessary to activate target genes directly. Instead, our findings support the existence of a regulatory circuit whereby Wnt/β-catenin counteracts Tcf3 repression of Lef1, which subsequently activates target gene expression via Lef1-β-catenin complexes. We propose that the Tcf/Lef circuit model provides a mechanism downstream of β-catenin stability for controlling the strength of Wnt signaling activity during embryonic development.
Collapse
Affiliation(s)
- Chun-I Wu
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
SOX2 has a crucial role in the lineage determination and proliferation of mesenchymal stem cells through Dickkopf-1 and c-MYC. Cell Death Differ 2011; 19:534-45. [PMID: 22015605 PMCID: PMC3278737 DOI: 10.1038/cdd.2011.137] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
SOX2 is a well-known core transcription factor in embryonic stem cells (ESCs) and has an important role in the maintenance of pluripotency. Recently, SOX2 expression has also been reported in adult stem cells (ASCs), but the role of SOX2 in ASCs remains unknown. In this study, we examined the molecular mechanisms of SOX2 in human mesenchymal stem cells (hMSCs), a type of ASCs, by performing inhibition studies. SOX2 inhibition resulted in altered cell growth and differentiation capabilities. These changes coincided with a decrease in Dickkopf-1 (DKK1), a soluble inhibitor of WNT signaling. Chromatin immunoprecipitation and luciferase assays showed that SOX2 binds to DKK1 and has a positive regulatory role in transcription. The enforced expression of DKK1 in SOX2-inhibited hMSCs reversed the differentiation deformities, but could not abrogate the cell proliferation defect. Proliferation was regulated by c-MYC, whose expression can also be controlled by SOX2. Our study shows that SOX2 directly regulates DKK1 expression and, as a consequence, determines the differentiation lineage of hMSCs. Moreover, SOX2 also regulates proliferation by affecting c-MYC. Therefore, these results suggest that SOX2 might have a specific function by regulating DKK1 and c-MYC in the differentiation and growth of ASCs, which is separate from its roles in ESCs.
Collapse
|
11
|
Forming functional fat: a growing understanding of adipocyte differentiation. Nat Rev Mol Cell Biol 2011; 12:722-34. [PMID: 21952300 DOI: 10.1038/nrm3198] [Citation(s) in RCA: 1056] [Impact Index Per Article: 75.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Adipose tissue, which is primarily composed of adipocytes, is crucial for maintaining energy and metabolic homeostasis. Adipogenesis is thought to occur in two stages: commitment of mesenchymal stem cells to a preadipocyte fate and terminal differentiation. Cell shape and extracellular matrix remodelling have recently been found to regulate preadipocyte commitment and competency by modulating WNT and RHO-family GTPase signalling cascades. Adipogenic stimuli induce terminal differentiation in committed preadipocytes through the epigenomic activation of peroxisome proliferator-activated receptor-γ (PPARγ). The coordination of PPARγ with CCAAT/enhancer-binding protein (C/EBP) transcription factors maintains adipocyte gene expression. Improving our understanding of these mechanisms may allow us to identify therapeutic targets against metabolic diseases that are rapidly becoming epidemic globally.
Collapse
|
12
|
Fuhrmann S, Riesenberg AN, Mathiesen AM, Brown EC, Vetter ML, Brown NL. Characterization of a transient TCF/LEF-responsive progenitor population in the embryonic mouse retina. Invest Ophthalmol Vis Sci 2008; 50:432-40. [PMID: 18599572 DOI: 10.1167/iovs.08-2270] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE High mobility group (HMG) transcription factors of the T-cell-specific transcription factor/lymphoid enhancer binding factor (TCF/LEF) family are a class of intrinsic regulators that are dynamically expressed in the embryonic mouse retina. Activation of TCF/LEFs is a hallmark of the Wnt/beta-catenin pathway; however, the requirement for Wnt/beta-catenin and noncanonical Wnt signaling during mammalian retinal development remains unclear. The goal of the study was to characterize more fully a TCF/LEF-responsive retinal progenitor population in the mouse embryo and to correlate this with Wnt/beta-catenin signaling. METHODS TCF/LEF activation was analyzed in the TOPgal (TCF optimal promoter) reporter mouse at embryonic ages and compared to Axin2 mRNA expression, an endogenous readout of Wnt/beta-catenin signaling. Reporter expression was also examined in embryos with a retina-specific deletion of the beta-catenin gene (Ctnnb1), using Six3-Cre transgenic mice. Finally, the extent to which TOPgal cells coexpress cell cycle proteins, basic helix-loop-helix (bHLH) transcription factors, and other retinal cell markers was tested by double immunohistochemistry. RESULTS TOPgal reporter activation occurred transiently in a subpopulation of embryonic retinal progenitor cells. Axin2 was not expressed in the central retina, and TOPgal reporter expression persisted in the absence of beta-catenin. Although a proportion of TOPgal-labeled cells were proliferative, most coexpressed the cyclin-dependent kinase inhibitor p27/Kip1. CONCLUSIONS TOPgal cells give rise to the four earliest cell types: ganglion, amacrine, horizontal, and photoreceptor. TCF/LEF activation in the central retina does not correlate with Wnt/beta-catenin signaling, pointing to an alternate role for this transcription factor family during retinal development.
Collapse
Affiliation(s)
- Sabine Fuhrmann
- Department of Ophthalmology and Visual Sciences, Moran Eye Center, University of Utah, Salt Lake City, Utah 84132, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Prasad CP, Mirza S, Sharma G, Prashad R, DattaGupta S, Rath G, Ralhan R. Epigenetic alterations of CDH1 and APC genes: relationship with activation of Wnt/beta-catenin pathway in invasive ductal carcinoma of breast. Life Sci 2008; 83:318-25. [PMID: 18662704 DOI: 10.1016/j.lfs.2008.06.019] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Accepted: 06/12/2008] [Indexed: 11/18/2022]
Abstract
Activation of canonical Wnt/beta-catenin pathway in Invasive Ductal Carcinoma of Breast (IDCs) was recently reported from our laboratory. Herein, we analyzed promoter methylation status of CDH1 and Adenomatous polyposis coli (APC) genes in 50 IDCs and correlated with expression of E-cadherin (E-CD) and APC proteins and with activation of oncogenic Wnt/beta-catenin signaling pathway components, Dvl, beta-catenin and CyclinD1. Further, Wnt/beta-catenin driven epithelial mesenchymal transition (EMT) was investigated by correlating the expression of Dvl, beta-catenin and CyclinD1 with vimentin expression in these IDCs. Promoter hypermethylation was observed in 25/50 (50%) IDCs for CDH1 and in 11/50 (22%) tumors for APC, associated with loss of expression of E-CD and APC proteins; concordant hypermethylation of these genes was observed in paired patients' sera. Further, 57% of tumors harboring CDH1 methylation and 50% tumors harboring the methylated APC gene showed nuclear localization of beta-catenin, suggesting activation of the canonical Wnt/beta-catenin pathway. Our study demonstrates significant association between vimentin expression and nuclear beta-catenin (p=0.001; Odds ratio (OR)=25.6) and Dvl (p=0.023; OR=8.0), suggesting that EMT may be driven by Wnt/beta-catenin activation in IDCs. In conclusion, we demonstrate correlation of CDH1 and APC promoter methylation with loss of E-CD and APC proteins and with activation of Wnt/beta-catenin signaling pathway. Association of nuclear Dvl and beta-catenin with vimentin expression suggests the importance of Wnt/beta-catenin pathway driven EMT in IDCs. The concordance between CDH1 and APC methylation in IDCs and paired circulating DNA underscores the utility of serum DNA as a non-invasive tool for methylation analysis in IDC patients.
Collapse
MESH Headings
- Adenomatous Polyposis Coli Protein/genetics
- Adenomatous Polyposis Coli Protein/metabolism
- Antigens, CD
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cadherins/genetics
- Cadherins/metabolism
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/pathology
- Cell Line, Tumor
- DNA Methylation
- Epigenesis, Genetic
- Female
- Genes, APC
- Humans
- Kaplan-Meier Estimate
- Prospective Studies
- Signal Transduction
- Wnt Proteins/genetics
- Wnt Proteins/metabolism
- beta Catenin/genetics
- beta Catenin/metabolism
Collapse
Affiliation(s)
- Chandra P Prasad
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi-110029, India
| | | | | | | | | | | | | |
Collapse
|
14
|
Cole MF, Johnstone SE, Newman JJ, Kagey MH, Young RA. Tcf3 is an integral component of the core regulatory circuitry of embryonic stem cells. Genes Dev 2008; 22:746-55. [PMID: 18347094 PMCID: PMC2275428 DOI: 10.1101/gad.1642408] [Citation(s) in RCA: 386] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Accepted: 01/18/2008] [Indexed: 12/13/2022]
Abstract
Embryonic stem (ES) cells have a unique regulatory circuitry, largely controlled by the transcription factors Oct4, Sox2, and Nanog, which generates a gene expression program necessary for pluripotency and self-renewal. How external signals connect to this regulatory circuitry to influence ES cell fate is not known. We report here that a terminal component of the canonical Wnt pathway in ES cells, the transcription factor T-cell factor-3 (Tcf3), co-occupies promoters throughout the genome in association with the pluripotency regulators Oct4 and Nanog. Thus, Tcf3 is an integral component of the core regulatory circuitry of ES cells, which includes an autoregulatory loop involving the pluripotency regulators. Both Tcf3 depletion and Wnt pathway activation cause increased expression of Oct4, Nanog, and other pluripotency factors and produce ES cells that are refractory to differentiation. Our results suggest that the Wnt pathway, through Tcf3, brings developmental signals directly to the core regulatory circuitry of ES cells to influence the balance between pluripotency and differentiation.
Collapse
Affiliation(s)
- Megan F. Cole
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Sarah E. Johnstone
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Jamie J. Newman
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Michael H. Kagey
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | - Richard A. Young
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|