1
|
Ju F, Atyah MM, Horstmann N, Gul S, Vago R, Bruns CJ, Zhao Y, Dong QZ, Ren N. Characteristics of the cancer stem cell niche and therapeutic strategies. Stem Cell Res Ther 2022; 13:233. [PMID: 35659296 PMCID: PMC9166529 DOI: 10.1186/s13287-022-02904-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 05/16/2022] [Indexed: 12/27/2022] Open
Abstract
Distinct regions harboring cancer stem cells (CSCs) have been identified within the microenvironment of various tumors, and as in the case of their healthy counterparts, these anatomical regions are termed "niche." Thus far, a large volume of studies have shown that CSC niches take part in the maintenance, regulation of renewal, differentiation and plasticity of CSCs. In this review, we summarize and discuss the latest findings regarding CSC niche morphology, physical terrain, main signaling pathways and interactions within them. The cellular and molecular components of CSCs also involve genetic and epigenetic modulations that mediate and support their maintenance, ultimately leading to cancer progression. It suggests that the crosstalk between CSCs and their niche plays an important role regarding therapy resistance and recurrence. In addition, we updated diverse therapeutic strategies in different cancers in basic research and clinical trials in this review. Understanding the complex heterogeneity of CSC niches is a necessary pre-requisite for designing superior therapeutic strategies to target CSC-specific factors and/or components of the CSC niche.
Collapse
Affiliation(s)
- Feng Ju
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Kerpener Straße 62, Cologne, Germany
| | - Manar M. Atyah
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032 China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Nellie Horstmann
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Kerpener Straße 62, Cologne, Germany
| | - Sheraz Gul
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 22525 Hamburg, Germany
- Fraunhofer Cluster of Excellence for Immune-Mediated Diseases CIMD, 22525 Hamburg, Germany
| | - Razi Vago
- Avram and Stella Goldstein-Goren, Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Christiane J. Bruns
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Kerpener Straße 62, Cologne, Germany
| | - Yue Zhao
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Kerpener Straße 62, Cologne, Germany
| | - Qiong-Zhu Dong
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, 201199 China
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, 201199 China
| | - Ning Ren
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Shanghai, 200032 China
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
- Institute of Fudan-Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, 201199 China
- Key Laboratory of Whole-Period Monitoring and Precise Intervention of Digestive Cancer of Shanghai Municipal Health Commission, Shanghai, 201199 China
| |
Collapse
|
2
|
Mayr C, Kiesslich T, Modest DP, Stintzing S, Ocker M, Neureiter D. Chemoresistance and resistance to targeted therapies in biliary tract cancer: what have we learned? Expert Opin Investig Drugs 2022; 31:221-233. [PMID: 35098846 DOI: 10.1080/13543784.2022.2034785] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Biliary tract cancer (BTC), including intra- and extrahepatic cholangiocarcinoma and gallbladder cancer, is a rare and highly difficult to manage human malignancy. Besides late diagnosis and associated unresectability, frequently observed unresponsiveness toward and recurrence following chemotherapy or targeted therapy essentially contribute to the dismal prognosis of BTC patients. AREAS COVERED The review provides an update on individual mechanisms involved resistance of BTC toward conventional chemotherapy as well as targeted therapies. We review the distinct mechanisms of pharmacoresistance (MPRs) which have been defined in BTC cells on a molecular basis and examine the specific consequences for the various approaches of chemo-, targeted or immunomodulatory therapies. EXPERT OPINION Based on currently available experimental and clinical data, the present knowledge about these MPRs in BTCs are summarized. While some possible tactics for overcoming these mechanisms of resistance have been investigated, a BTC-specific and efficient approach based on comprehensive in vitro and in vivo experimental systems is not yet available. Additionally, a reliable monitoring of therapy-relevant cellular changes needs to be established which allows for choosing the optimal drug (combination) before and/or during pharmacological therapy.
Collapse
Affiliation(s)
- Christian Mayr
- Center for Physiology, Pathophysiology and Biophysics - Salzburg and Nuremberg, Institute for Physiology and Pathophysiology, Paracelsus Medical University, Salzburg, Austria
- Department of Internal Medicine I, Paracelsus Medical University/University Hospital Salzburg (Salk), Salzburg, Austria
| | - Tobias Kiesslich
- Center for Physiology, Pathophysiology and Biophysics - Salzburg and Nuremberg, Institute for Physiology and Pathophysiology, Paracelsus Medical University, Salzburg, Austria
- Department of Internal Medicine I, Paracelsus Medical University/University Hospital Salzburg (Salk), Salzburg, Austria
| | - Dominik Paul Modest
- Medical Department, Division of Hematology,Oncology, and Tumor Immunology (Campus Charité Mitte), Charité University Medicine Berlin, Berlin, Germany
| | - Sebastian Stintzing
- Medical Department, Division of Hematology,Oncology, and Tumor Immunology (Campus Charité Mitte), Charité University Medicine Berlin, Berlin, Germany
| | - Matthias Ocker
- Charité University Medicine Berlin, Berlin, Germany
- Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. Kg, Ingelheim, Germany
| | - Daniel Neureiter
- Institute of Pathology, Paracelsus Medical University/University Hospital Salzburg (Salk), Salzburg, Austria
- Cancer Cluster Salzburg, Austria
| |
Collapse
|
3
|
Butler LM, Perone Y, Dehairs J, Lupien LE, de Laat V, Talebi A, Loda M, Kinlaw WB, Swinnen JV. Lipids and cancer: Emerging roles in pathogenesis, diagnosis and therapeutic intervention. Adv Drug Deliv Rev 2020; 159:245-293. [PMID: 32711004 PMCID: PMC7736102 DOI: 10.1016/j.addr.2020.07.013] [Citation(s) in RCA: 378] [Impact Index Per Article: 75.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/02/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
Abstract
With the advent of effective tools to study lipids, including mass spectrometry-based lipidomics, lipids are emerging as central players in cancer biology. Lipids function as essential building blocks for membranes, serve as fuel to drive energy-demanding processes and play a key role as signaling molecules and as regulators of numerous cellular functions. Not unexpectedly, cancer cells, as well as other cell types in the tumor microenvironment, exploit various ways to acquire lipids and extensively rewire their metabolism as part of a plastic and context-dependent metabolic reprogramming that is driven by both oncogenic and environmental cues. The resulting changes in the fate and composition of lipids help cancer cells to thrive in a changing microenvironment by supporting key oncogenic functions and cancer hallmarks, including cellular energetics, promoting feedforward oncogenic signaling, resisting oxidative and other stresses, regulating intercellular communication and immune responses. Supported by the close connection between altered lipid metabolism and the pathogenic process, specific lipid profiles are emerging as unique disease biomarkers, with diagnostic, prognostic and predictive potential. Multiple preclinical studies illustrate the translational promise of exploiting lipid metabolism in cancer, and critically, have shown context dependent actionable vulnerabilities that can be rationally targeted, particularly in combinatorial approaches. Moreover, lipids themselves can be used as membrane disrupting agents or as key components of nanocarriers of various therapeutics. With a number of preclinical compounds and strategies that are approaching clinical trials, we are at the doorstep of exploiting a hitherto underappreciated hallmark of cancer and promising target in the oncologist's strategy to combat cancer.
Collapse
Affiliation(s)
- Lisa M Butler
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, SA 5005, Australia; South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Ylenia Perone
- Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine, London, UK
| | - Jonas Dehairs
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Leslie E Lupien
- Program in Experimental and Molecular Medicine, Geisel School of Medicine at Dartmouth, 1 Medical Center Drive, Lebanon, NH 037560, USA
| | - Vincent de Laat
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Ali Talebi
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Massimo Loda
- Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - William B Kinlaw
- The Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, 1 Medical Center Drive, Lebanon, NH 03756, USA
| | - Johannes V Swinnen
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium.
| |
Collapse
|
4
|
Du J, Xu Y, Sasada S, Oo AKK, Hassan G, Mahmud H, Khayrani AC, Alam MJ, Kumon K, Uesaki R, Afify SM, Mansour HM, Nair N, Zahra MH, Seno A, Okada N, Chen L, Yan T, Seno M. Signaling Inhibitors Accelerate the Conversion of mouse iPS Cells into Cancer Stem Cells in the Tumor Microenvironment. Sci Rep 2020; 10:9955. [PMID: 32572057 PMCID: PMC7308356 DOI: 10.1038/s41598-020-66471-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/14/2020] [Indexed: 12/03/2022] Open
Abstract
Cancer stem cells (CSCs) are a class of cancer cells characterized by self-renewal, differentiation and tumorigenic potential. We previously established a model of CSCs by culturing mouse induced pluripotent stem cells (miPSCs) for four weeks in the presence of a conditioned medium (CM) of cancer cell lines, which functioned as the tumor microenvironment. Based on this methodology of developing CSCs from miPSCs, we assessed the risk of 110 non-mutagenic chemical compounds, most of which are known as inhibitors of cytoplasmic signaling pathways, as potential carcinogens. We treated miPSCs with each compound for one week in the presence of a CM of Lewis lung carcinoma (LLC) cells. However, one-week period was too short for the CM to convert miPSCs into CSCs. Consequently, PDO325901 (MEK inhibitor), CHIR99021 (GSK-3β inhibitor) and Dasatinib (Abl, Src and c-Kit inhibitor) were found to confer miPSCs with the CSC phenotype in one week. The tumor cells that survived exhibited stemness markers, spheroid formation and tumorigenesis in Balb/c nude mice. Hence, we concluded that the three signal inhibitors accelerated the conversion of miPSCs into CSCs. Similarly to our previous study, we found that the PI3K-Akt signaling pathway was upregulated in the CSCs. Herein, we focused on the expression of relative genes after the treatment with these three inhibitors. Our results demonstrated an increased expression of pik3ca, pik3cb, pik3r5 and pik3r1 genes indicating class IA PI3K as the responsible signaling pathway. Hence, AKT phosphorylation was found to be up-regulated in the obtained CSCs. Inhibition of Erk1/2, tyrosine kinase, and/or GSK-3β was implied to be involved in the enhancement of the PI3K-AKT signaling pathway in the undifferentiated cells, resulting in the sustained stemness, and subsequent conversion of miPSCs into CSCs in the tumor microenvironment.
Collapse
Affiliation(s)
- Juan Du
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Yanning Xu
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan.,Department of Pathology, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, 300100, People's Republic of China
| | - Saki Sasada
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Aung Ko Ko Oo
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Ghmkin Hassan
- Laboratory of Nano-Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan.,Department of Microbiology and Biochemistry, Faculty of Pharmacy, Damascus University, Damascus, 10769, Syria
| | - Hafizah Mahmud
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Apriliana Cahya Khayrani
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan.,Division of Bioprocess Engineering, Department of Chemical Engineering, Faculty of Engineering, University of Indonesia, Depok, 16424, Indonesia
| | - Md Jahangir Alam
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Kazuki Kumon
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Ryo Uesaki
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Said M Afify
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan.,Division of Biochemistry, Chemistry Department, Faculty of Science, Menoufia University, Shebin El Kom-Menoufia, 32511, Shibin el Kom, Egypt
| | - Hager M Mansour
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Neha Nair
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Maram H Zahra
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Akimasa Seno
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan.,Laboratory of Nano-Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan.,Okayama University Research Laboratory of Stem Cell Engineering in Detroit, IBio, Wayne State University, Detroit, MI, 48202, USA
| | - Nobuhiro Okada
- Laboratory of Nano-Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
| | - Ling Chen
- Department of Pathology, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, 300100, People's Republic of China
| | - Ting Yan
- Department of Pathology, Shanxi Key Laboratory of Carcinogenesis and Translational Research on Esophageal Cancer, Shanxi Medical University, 030001, Taiyuan, PR China
| | - Masaharu Seno
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan. .,Laboratory of Nano-Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan. .,Okayama University Research Laboratory of Stem Cell Engineering in Detroit, IBio, Wayne State University, Detroit, MI, 48202, USA. .,Laboratory of Natural Food & Medicine, Co., Ltd, Okayama University Incubator, Okayama, 700-8530, Japan.
| |
Collapse
|
5
|
Shenouda S, Kulkarni K, Abuetabh Y, Sergi C. Cancer Stem Cells and their Management in Cancer Therapy. Recent Pat Anticancer Drug Discov 2020; 15:212-227. [PMID: 32660407 DOI: 10.2174/1574892815666200713145931] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/16/2020] [Accepted: 06/20/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND In the last decade, the proposed Cancer Stem Cell (CSC) hypothesis has steadily changed the way cancer treatment is approached. CSCs may be the source of the heterogeneous non-tumorigenic cell population included in a neoplasm. Intratumor and intertumoral heterogeneity is a well-known phenomenon that massively entangles the diagnosis and treatment of cancer. The literature seems to suggest that heterogeneity develops progressively within tumor-initiating stem cells. CSCs harbor genetic and/or epigenetic alterations that allow them to differentiate into multiple tumor cell types sequentially. OBJECTIVE The CSC hypothesis, cellular therapy, and the most recent patents on CSCs were reviewed. METHODS PubMed, Scopus, and Google Scholar were screened for this information. Also, an analysis of the most recent data targeting CSCs in pediatric cancer developed at two Canadian institutions is provided. The genes involved with the activation of CSCs and the drugs used to antagonize them are also highlighted. RESULTS It is underlined that (1) CSCs possess stem cell-like properties, including the ability for self-renewal; (2) CSCs can start carcinogenesis and are responsible for tumor recurrence after treatment; (3) Although some limitations have been raised, which may oppose the CSC hypothesis, cancer progression and metastasis have been recognized to be caused by CSCs. CONCLUSION The significant roles of cell therapy may include an auto-transplant with high-dose treatment, an improvement of the immune function, creation of chimeric antigen receptor T cells, and the recruitment of NK cell-based immunotherapy.
Collapse
Affiliation(s)
- Suzan Shenouda
- Department of Lab. Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Ketan Kulkarni
- Department of Pediatrics, Pediatric Hematology/Oncology, Halifax, NS, Canada
| | - Yasser Abuetabh
- Department of Lab. Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Consolato Sergi
- Department of Lab. Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
6
|
Wang K, Hui Y, Zhang S, Wang M, Yan H, Zhu H, Qu L, Lan X, Pan C. A deletion mutation within the ATBF1 gene is strongly associated with goat litter size. Anim Biotechnol 2019; 31:174-180. [DOI: 10.1080/10495398.2018.1561459] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Ke Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yiqing Hui
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Shaoli Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Ming Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Hailong Yan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin, China
- Life Science Research Center, Yulin University, Yulin, China
| | - Haijing Zhu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin, China
- Life Science Research Center, Yulin University, Yulin, China
| | - Lei Qu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin, China
- Life Science Research Center, Yulin University, Yulin, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Chuanying Pan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
7
|
Wei Z, Wang K, Hui Y, Yan H, Zhu H, Qu L, Pan C, Chen H, Lan X. Detection of insertion/deletions (indels) of the <i>ATBF1</i> gene and their effects on growth-related traits in three indigenous goat breeds. Arch Anim Breed 2018. [DOI: 10.5194/aab-61-311-2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Abstract. The AT motif-binding factor (ATBF1), also known as zinc finger homeobox 3
(ZFXH3), is necessary for activating the POU1F1 gene; thus,
the ATBF1 gene greatly affects the grow traits in animals. The
objective of this work was to explore novel indel (insertion/deletion)
variations and their associations with growth traits in three native Chinese
goat breeds. Two indels within the ATBF1 gene were found in the
Shaanbei white cashmere goat (SWCG; n=581), the Guanzhong dairy goat
(GZDG; n=334) and the Hainan black goat (HNBG; n=270) for the first time
using 12 pairs of primers. Association analysis revealed that the P1-12-bp
indel was consistently correlated with the body height of the three breeds,
and individuals with ID (insertion/deletion) and
DD (deletion/deletion) genotypes had a higher body weight than the
II (insertion/insertion) genotype (P=0.036); the P11-6-bp indel
was consistently correlated with chest circumference and hip width of the
three breeds. Moreover, these two loci were associated with other several
growth-related traits in different breeds. Hence, these findings indicated
that the goat ATBF1 gene had marked effects on growth traits and the
growth-trait-related loci, which would contribute to improving the
growth-related traits of local breeds in the goat industry by implementing
marker-assisted selection (MAS).
Collapse
|
8
|
Mayr C, Ocker M, Ritter M, Pichler M, Neureiter D, Kiesslich T. Biliary tract cancer stem cells - translational options and challenges. World J Gastroenterol 2017; 23:2470-2482. [PMID: 28465631 PMCID: PMC5394510 DOI: 10.3748/wjg.v23.i14.2470] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 02/27/2017] [Accepted: 03/21/2017] [Indexed: 02/06/2023] Open
Abstract
Management of biliary tract cancer remains challenging. Tumors show high recurrence rates and therapeutic resistance, leading to dismal prognosis and short survival. The cancer stem cell model states that a tumor is a heterogeneous conglomerate of cells, in which a certain subpopulation of cells - the cancer stem cells - possesses stem cell properties. Cancer stem cells have high clinical relevance due to their potential contributions to development, progression and aggressiveness as well as recurrence and metastasis of malignant tumors. Consequently, reliable identification of as well as pharmacological intervention with cancer stem cells is an intensively investigated and promising research field. The involvement of cancer stem cells in biliary tract cancer is likely as a number of studies demonstrated their existence and the obvious clinical relevance of several established cancer stem cell markers in biliary tract cancer models and tissues. In the present article, we review and discuss the currently available literature addressing the role of putative cancer stem cells in biliary tract cancer as well as the connection between known contributors of biliary tract tumorigenesis such as oncogenic signaling pathways, micro-RNAs and the tumor microenvironment with cancer stem cells.
Collapse
|
9
|
Yao T, Lu R, Zhang Y, Zhang Y, Zhao C, Lin R, Lin Z. Cervical cancer stem cells. Cell Prolif 2016; 48:611-25. [PMID: 26597379 DOI: 10.1111/cpr.12216] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 07/18/2015] [Indexed: 12/13/2022] Open
Abstract
The concept of cancer stem cells (CSC) has been established over the past decade or so, and their role in carcinogenic processes has been confirmed. In this review, we focus on cervical CSCs, including (1) their purported origin, (2) markers used for cervical CSC identification, (3) alterations to signalling pathways in cervical cancer and (4) the cancer stem cell niche. Although cervical CSCs have not yet been definitively identified and characterized, future studies pursuing them as therapeutic targets may provide novel insights for treatment of cervical cancer.
Collapse
Affiliation(s)
- Tingting Yao
- Department of Gynecological Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-sen University, Guangzhou, 510120, China
| | - Rongbiao Lu
- Department of Dermatology and Venereology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510630, China
| | - Yizhen Zhang
- Department of Clinical Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ya Zhang
- Department of Clinical Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Chenyang Zhao
- Department of Clinical Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Rongchun Lin
- Department of Gynecological Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Zhongqiu Lin
- Department of Gynecological Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| |
Collapse
|
10
|
Biava PM. New Views in the Integrative Treatment of Oncologic Disease: Stem Cell Differentiation Stage Factors and Their Role in Tumor Cell Reprogramming. WORLD FUTURES 2016; 72:43-52. [DOI: 10.1080/02604027.2016.1143290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
11
|
Persano L, Zagoura D, Louisse J, Pistollato F. Role of Environmental Chemicals, Processed Food Derivatives, and Nutrients in the Induction of Carcinogenesis. Stem Cells Dev 2015; 24:2337-52. [DOI: 10.1089/scd.2015.0081] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Luca Persano
- Istituto di Riceca Pediatrica Città della Speranza—IRP, Padova, Italy
- Department of Woman and Child Health, University of Padova, Padova, Italy
| | - Dimitra Zagoura
- Laboratory of Biology, University of Athens School of Medicine, Athens, Greece
| | - Jochem Louisse
- Division of Toxicology, Wageningen University, Wageningen, the Netherlands
| | - Francesca Pistollato
- Center for Nutrition & Health, Universidad Europea del Atlantico (UEA), Santander, Spain
| |
Collapse
|
12
|
Pereira A, Mendizabal E, de Leon J, Pérez-Medina T, Magrina JF, Magtibay PM, Rodríguez-Tapia A, Lizarraga S, Ortiz-Quintana L. Peritoneal carcinomatosis: A malignant disease with an embryological origin? Surg Oncol 2015; 24:305-11. [PMID: 26141556 DOI: 10.1016/j.suronc.2015.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 06/07/2015] [Indexed: 01/01/2023]
Abstract
INTRODUCTION In 1931, Simpson et al. coined the term "peritoneal carcinomatosis" to describe the regional spread of ovarian tumors as localized or extended with involvement of the peritoneal serous membrane and neighboring anatomical structures. Research into the origin of peritoneal carcinomatosis is based on two phases in a woman's life: EMBRYO DEVELOPMENT: During week 3, the bilaminar disc becomes a trilaminar disc called the mesoderm. Inside the lateral plate mesoderm, the coelomic cavity is divided into 2 layers: the parietal (somatic) mesoderm, which gives rise to the parietal peritoneum and pleural surfaces; and the visceral (splanchnic) mesoderm, which gives rise to the visceral peritoneum, visceral surface of the pleura, gonadal stroma, and the muscular layer of the hollow viscera and its mesenteries. TUMOR SPREAD Transcoelomic metastasis and metaplasia of pluripotent stem cells in the peritoneum was involved in the pathogenesis of ovarian cancer. This involvement takes the form of a synchronous malignant transformation at multiple foci and may cause intraperitoneal field cancerization. Pluripotent stem cells play a role both in the development of the embryonic peritoneum and in the spread of transcoelomic tumors. Consequently, knowledge of the origin of these cells (embryonic or current) could be extremely useful. The many markers that act during the embryonic period can affect descendants, that is, cells are already marked before specification and differentiation are activated. Thus, programmed activation could be attributed to genetic and epigenetic changes.
Collapse
Affiliation(s)
- Augusto Pereira
- Division of Gynecologic Oncology, Gregorio Marañón University General Hospital, Madrid, Spain.
| | - Elsa Mendizabal
- Division of Gynecologic Oncology, Gregorio Marañón University General Hospital, Madrid, Spain
| | - Juan de Leon
- Division of Maternal Fetal Medicine, Gregorio Marañón University General Hospital, Madrid, Spain
| | - Tirso Pérez-Medina
- Department of Gynecologic Surgery, Puerta de Hierro University Hospital, Madrid, Spain
| | | | | | - Ana Rodríguez-Tapia
- Department of Gynecology and Obstetrics, College of Medicine, Autonomous University, Madrid, Spain
| | - Santiago Lizarraga
- Division of Gynecologic Oncology, Gregorio Marañón University General Hospital, Madrid, Spain
| | - Luís Ortiz-Quintana
- Division of Gynecologic Oncology, Gregorio Marañón University General Hospital, Madrid, Spain
| |
Collapse
|
13
|
Biava PM, Canaider S, Facchin F, Bianconi E, Ljungberg L, Rotilio D, Burigana F, Ventura C. Stem Cell Differentiation Stage Factors from Zebrafish Embryo: A Novel Strategy to Modulate the Fate of Normal and Pathological Human (Stem) Cells. Curr Pharm Biotechnol 2015; 16:782-792. [PMID: 26201607 PMCID: PMC5384357 DOI: 10.2174/1389201016666150629102825] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 05/07/2015] [Accepted: 05/20/2015] [Indexed: 12/15/2022]
Abstract
In spite of the growing body of evidence on the biology of the Zebrafish embryo and stem cells, including the use of Stem Cell Differentiation Stage Factors (SCDSFs) taken from Zebrafish embryo to impact cancer cell dynamics, comparatively little is known about the possibility to use these factors to modulate the homeostasis of normal human stem cells or to modulate the behavior of cells involved in different pathological conditions. In the present review we recall in a synthetic way the most important researches about the use of SCDSFs in reprogramming cancer cells and in modulating the high speed of multiplication of keratinocytes which is characteristic of some pathological diseases like psoriasis. Moreover we add here the results about the capability of SCDSFs in modulating the homeostasis of human adiposederived stem cells (hASCs) isolated from a fat tissue obtained with a novel-non enzymatic method and device. In addition we report the data not yet published about a first protein analysis of the SCDSFs and about their role in a pathological condition like neurodegeneration.
Collapse
Affiliation(s)
- Pier M Biava
- Scientific Institute of Research and Care Multimedica, Milano, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Tomao F, Papa A, Rossi L, Strudel M, Vici P, Lo Russo G, Tomao S. Emerging role of cancer stem cells in the biology and treatment of ovarian cancer: basic knowledge and therapeutic possibilities for an innovative approach. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2013; 32:48. [PMID: 23902592 PMCID: PMC3734167 DOI: 10.1186/1756-9966-32-48] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 07/29/2013] [Indexed: 12/14/2022]
Abstract
In 2013 there will be an estimated 22,240 new diagnoses and 14,030 deaths from ovarian cancer in the United States. Despite the improved surgical approach and the novel active drugs that are available today in clinical practice, about 80% of women presenting with late-stage disease have a 5-year survival rate of only 30%. In the last years a growing scientific knowledge about the molecular pathways involved in ovarian carcinogenesis has led to the discovery and evaluation of several novel molecular targeted agents, with the aim to test alternative models of treatment in order to overcome the clinical problem of resistance. Cancer stem cells tend to be more resistant to chemotherapeutic agents and radiation than more differentiated cellular subtypes from the same tissue. In this context the study of ovarian cancer stem cells is taking on an increasingly important strategic role, mostly for the potential therapeutic application in the next future. In our review, we focused our attention on the molecular characteristics of epithelial ovarian cancer stem cells, in particular on possible targets to hit with targeted therapies.
Collapse
Affiliation(s)
- Federica Tomao
- Department of Gynaecology and Obstetrics, University of Rome, Sapienza, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
15
|
Recent advances in cancer stem cell research for cholangiocarcinoma. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2013; 19:606-13. [PMID: 22907641 DOI: 10.1007/s00534-012-0542-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cancer stem cells have been identified as cells with the capacity to self-renew and differentiate into multiple lineages of human malignancies. Cholangiocarcinoma is one of the most difficult intra-abdominal malignancies that can be treated using a surgical approach. Chemotherapy in addition to surgery is necessary to improve patient survival. However, its clinical benefit is limited, and, to date, no other effective anticancer drug is available for this disease. Several reports have shown the existence of cholangiocarcinoma stem cells. Cell surface antigens such as CD133, CD24, EpCAM, CD44, and others have been used to isolate cholangiocarcinoma stem cells. In general, enhanced expression of these markers in resected specimens of cholangiocarcinoma was associated with malignant potential. Distinct and specific pathways are expected to be present in cancer stem cells compared to other cancer cells that have no stem cell properties. To date, reports showing possible signaling pathways in cholangiocarcinoma stem cells are limited. More research is anticipated. Targeting therapies for surface molecular markers or specific signaling pathways of cholangiocarcinoma stem cells may be important in order to change the clinical outcome of patients with this disease. However, no clinical trial has been performed so far. This review will focus on the markers and signaling pathways used to define cholangiocarcinoma stem cells. A novel therapeutic approach of targeting cholangiocarcinoma stem cells will also be discussed.
Collapse
|
16
|
Mooney BM, Raof NA, Li Y, Xie Y. Convergent mechanisms in pluripotent stem cells and cancer: Implications for stem cell engineering. Biotechnol J 2013; 8:408-19. [DOI: 10.1002/biot.201200202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 12/03/2012] [Accepted: 01/02/2013] [Indexed: 12/24/2022]
|
17
|
Ovarian cancer stem cells: a new target for cancer therapy. BIOMED RESEARCH INTERNATIONAL 2013; 2013:916819. [PMID: 23509802 PMCID: PMC3581273 DOI: 10.1155/2013/916819] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/28/2012] [Revised: 01/13/2013] [Accepted: 01/14/2013] [Indexed: 12/18/2022]
Abstract
Ovarian cancer is a highly lethal disease among all gynecologic malignancies and is the fifth leading cause of cancer-related death in women. Although the standard combination of surgery and chemotherapy was initially effective in patients with ovarian cancer, disease relapse commonly occurred due to the generation of chemoresistance. It has been reported that cancer stem cells (CSCs) are involved in drug resistance and cancer recurrence. Over the past decades, increasing studies have been done to identify CSCs from human ovarian cancer cells. The present paper will summarize different investigations on ovarian CSCs, including isolation, mechanisms of chemoresistance, and therapeutic approaches. Although there are still numerous challenges to translate basic research to clinical applications, understanding the molecular details of CSCs is essential for developing effective strategies to prevent ovarian cancer and its recurrence.
Collapse
|
18
|
Abstract
Understanding the genetic and molecular mechanisms of ovarian cancer has been the focus of research efforts working toward the greater goal of improving cancer therapy for patients with residual disease after initial treatment with conventional surgery and neoadjuvant chemotherapy. The focus of this review will be centered on new therapeutic strategies based on Cancer Stem Cells studies of chemoresistant subpopulations, the prevention of metastasis, and individualized therapy in order to find the most successful combination of treatments to effectively treat human ovarian cancer. We reviewed recent literature (1993-2011) of novel treatment approaches to ovarian cancer stem cells. As the focus of ovarian cancer investigation has centered on the cancer stem cell model and the complexities that it presents in the development of effective treatments, the future of treating ovarian cancer lies in utilizing individualized treatment systems that include enhancing existing treatments, aiming for novel therapy targets, managing the plasticity of stem cells to induce cellular differentiation, and regulating oncogenic signaling pathways.
Collapse
|
19
|
Levesque JP, Winkler IG, Rasko JEJ. Nichotherapy for stem cells: there goes the neighborhood. Bioessays 2012; 35:183-90. [PMID: 23129341 DOI: 10.1002/bies.201200111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Stem cells and their malignant counterparts require the support of a specific microenvironment or "niche". While various anti-cancer therapies have been broadly successful, there are growing opportunities to target the environment in which these cells reside to further improve therapeutic efficacy and outcome. This is particularly true when the aim is to target normal or malignant stem cells. The field aiming to target or use the niches that harbor, protect, and support stem cells could be designated as "nichotherapy". In this essay, we provide a few examples of nichotherapies. Some have been employed for decades, such as hematopoietic stem cell mobilization, whereas others are emerging, such as chemosensitization of leukemia stem cells by targeting their niche.
Collapse
Affiliation(s)
- Jean-Pierre Levesque
- Stem Cell Biology Group, Biological Therapies Program, Mater Medical Research Institute, South Brisbane, Australia.
| | | | | |
Collapse
|
20
|
Carcel-Trullols J, Aguilar-Gallardo C, Garcia-Alcalde F, Pardo-Cea MA, Dopazo J, Conesa A, Simón C. Transdifferentiation of MALME-3M and MCF-7 Cells toward Adipocyte-like Cells is Dependent on Clathrin-mediated Endocytosis. SPRINGERPLUS 2012; 1:44. [PMID: 23961369 PMCID: PMC3725915 DOI: 10.1186/2193-1801-1-44] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 10/03/2012] [Indexed: 01/19/2023]
Abstract
Abstract Enforced cell transdifferentiation of human cancer cells is a promising alternative to conventional chemotherapy. We previously identified albumin-associated lipid- and, more specifically, saturated fatty acid-induced transdifferentiation programs in human cancer cells (HCCLs). In this study, we further characterized the adipocyte-like cells, resulting from the transdifferentiation of human cancer cell lines MCF-7 and MALME-3M, and proposed a common mechanistic approach for these transdifferentiating programs. We showed the loss of pigmentation in MALME-3M cells treated with albumin-associated lipids, based on electron microscopic analysis, and the overexpression of perilipin 2 (PLIN2) by western blotting in MALME-3M and MCF-7 cells treated with unsaturated fatty acids. Comparing the gene expression profiles of naive melanoma MALME-3M cells and albumin-associated lipid-treated cells, based on RNA sequencing, we confirmed the transcriptional upregulation of some key adipogenic gene markers and also an alternative splicing of the adipogenic master regulator PPARG, that is probably related to the reported up regulated expression of the protein. Most importantly, these results also showed the upregulation of genes responsible for Clathrin (CLTC) and other adaptor-related proteins. An increase in CLTC expression in the transdifferentiated cells was confirmed by western blotting. Inactivation of CLTC by chlorpromazine (CHP), an inhibitor of CTLC mediated endocytosis (CME), and gene silencing by siRNAs, partially reversed the accumulation of neutral lipids observed in the transdifferentiated cells. These findings give a deeper insight into the phenotypic changes observed in HCCL to adipocyte-like transdifferentiation and point towards CME as a key pathway in distinct transdifferentiation programs. Disclosures Simon C and Aguilar-Gallardo C are co-inventors of the International Patent Application No. PCT/EP2011/004941 entitled “Methods for tumor treatment and adipogenesis differentiation”. Electronic supplementary material The online version of this article (doi:10.1186/2193-1801-1-44) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jaime Carcel-Trullols
- Bioinformatics and Genomics Department, Prince Felipe Research Centre (CIPF), Avda. Autopista del Saler, 16-3 46012 Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
21
|
Galán A, Rodríguez-Navarro S. Sus1/ENY2: a multitasking protein in eukaryotic gene expression. Crit Rev Biochem Mol Biol 2012; 47:556-68. [PMID: 23057668 DOI: 10.3109/10409238.2012.730498] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The purpose of this review is to provide a complete overview on the functions of the transcription/export factor Sus1. Sus1 is a tiny conserved factor in sequence and functions through the eukaryotic kingdom. Although it was discovered recently, research done to address the role of Sus1/ENY2 has provided in deep description of different mechanisms influencing gene expression. Initially found to interact with the transcription and mRNA export machinery in yeast, it is now clear that it has a broad role in mRNA biogenesis. Sus1 is necessary for histone H2B deubiquitination, mRNA export and gene gating. Moreover, interesting observations also suggest a link with the cytoplasmatic mRNP fate. Although the role of Sus1 in human cells is largely unknown, preliminary results suggest interesting links to pathological states that range from rare diseases to diabetes. We will describe what is known about Sus1/ENY2 in yeast and other eukaryotes and discuss some exciting open questions to be solved in the future.
Collapse
Affiliation(s)
- Amparo Galán
- Centro de Investigación Príncipe Felipe, CIPF. Gene Expression coupled to RNA Transport Laboratory, Eduardo Primo Yúfera, Valencia, Spain
| | | |
Collapse
|
22
|
Wu J, Pan Z, Cheng M, Shen Y, Yu H, Wang Q, Lou Y. Ginsenoside Rg1 facilitates neural differentiation of mouse embryonic stem cells via GR-dependent signaling pathway. Neurochem Int 2012; 62:92-102. [PMID: 23063465 DOI: 10.1016/j.neuint.2012.09.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 09/07/2012] [Accepted: 09/30/2012] [Indexed: 12/29/2022]
Abstract
Ginsenoside Rg1, a steroidal saponin of high abundance in ginseng, possesses the neuroprotective effects. In this study, we tried to explore the effect of Rg1 on promoting differentiation of mouse embryonic stem (ES) cells towards the neuronal lineage and its potential role involved in glucocorticoid receptor (GR) activation. Rg1 treatment induced a remarkable increase in the population of neuron-like cells in a time-dependent manner. More than 80% of Rg1-treated embryoid bodies (EBs) differentiated into neuron-like cells on d 8+10. Furthermore, the gradually increased protein expression of neurofilament (NEFM) and β-tubulin III (a neuronal specific protein) was determined. GR expression gradually increased during the differentiation course. RU486, an antagonist of GR, could efficiently block the neurogenesis-promoting activity of Rg1. On the other side, Rg1 stimulated the phosphorylation of ERK1/2 and Akt at different time points through GR activation-dependent mechanisms. Treatment of both U0126 (an inhibitor of MEK) and LY294002 (an inhibitor of PI3 K), hampered the neuronal differentiation induced by Rg1. Meantime, U0126 further decreased Rg1-induced p-Akt expression. In conclusion, Rg1 possesses the effects on inducing differentiation of mouse ES cells into neurons in vitro via the GR-MEK-ERK1/2-PI3 K-Akt signaling pathway.
Collapse
Affiliation(s)
- Jiaying Wu
- Division of Cardio-Cerebral Vascular and Hepatic Pharmacology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Chen L, Kasai T, Li Y, Sugii Y, Jin G, Okada M, Vaidyanath A, Mizutani A, Satoh A, Kudoh T, Hendrix MJC, Salomon DS, Fu L, Seno M. A model of cancer stem cells derived from mouse induced pluripotent stem cells. PLoS One 2012; 7:e33544. [PMID: 22511923 PMCID: PMC3325228 DOI: 10.1371/journal.pone.0033544] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 02/10/2012] [Indexed: 01/28/2023] Open
Abstract
Cancer stem cells (CSCs) are capable of continuous proliferation and self-renewal and are proposed to play significant roles in oncogenesis, tumor growth, metastasis and cancer recurrence. CSCs are considered derived from normal stem cells affected by the tumor microenvironment although the mechanism of development is not clear yet. In 2007, Yamanaka's group succeeded in generating Nanog mouse induced pluripotent stem (miPS) cells, in which green fluorescent protein (GFP) has been inserted into the 5'-untranslated region of the Nanog gene. Usually, iPS cells, just like embryonic stem cells, are considered to be induced into progenitor cells, which differentiate into various normal phenotypes depending on the normal niche. We hypothesized that CSCs could be derived from Nanog miPS cells in the conditioned culture medium of cancer cell lines, which is a mimic of carcinoma microenvironment. As a result, the Nanog miPS cells treated with the conditioned medium of mouse Lewis lung carcinoma acquired characteristics of CSCs, in that they formed spheroids expressing GFP in suspension culture, and had a high tumorigenicity in Balb/c nude mice exhibiting angiogenesis in vivo. In addition, these iPS-derived CSCs had a capacity of self-renewal and expressed the marker genes, Nanog, Rex1, Eras, Esg1 and Cripto, associated with stem cell properties and an undifferentiated state. Thus we concluded that a model of CSCs was originally developed from miPS cells and proposed the conditioned culture medium of cancer cell lines might perform as niche for producing CSCs. The model of CSCs and the procedure of their establishment will help study the genetic alterations and the secreted factors in the tumor microenvironment which convert miPS cells to CSCs. Furthermore, the identification of potentially bona fide markers of CSCs, which will help the development of novel anti-cancer therapies, might be possible though the CSC model.
Collapse
Affiliation(s)
- Ling Chen
- Department of Medical and Bioengineering Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
- Department of Pathology, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, People's Republic of China
| | - Tomonari Kasai
- Department of Medical and Bioengineering Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Yueguang Li
- Department of General Surgery, Tianjin 4th Centre Hospital, Tianjin, People's Republic of China
| | - Yuh Sugii
- Department of Medical and Bioengineering Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Guoliang Jin
- Department of Medical and Bioengineering Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Masashi Okada
- Department of Medical and Bioengineering Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Arun Vaidyanath
- Department of Medical and Bioengineering Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Akifumi Mizutani
- Department of Medical and Bioengineering Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Ayano Satoh
- Multidisciplinary Division, Okayama University, Okayama, Japan
| | - Takayuki Kudoh
- Department of Medical and Bioengineering Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Mary J. C. Hendrix
- Children's Memorial Research Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - David S. Salomon
- Laboratory of Mammary Biology and Tumorigenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Li Fu
- State Key Laboratory of Breast Cancer Research, Department of Breast Cancer Pathology and Research Laboratory, Cancer Hospital of Tianjin Medical University, Tianjin, People's Republic of China
- * E-mail: (MS); (LF)
| | - Masaharu Seno
- Department of Medical and Bioengineering Science, Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
- * E-mail: (MS); (LF)
| |
Collapse
|
24
|
Specific unsaturated fatty acids enforce the transdifferentiation of human cancer cells toward adipocyte-like cells. Stem Cell Rev Rep 2012; 7:898-909. [PMID: 21499706 DOI: 10.1007/s12015-011-9253-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Differentiation therapy pursues the discovery of novel molecules to transform cancer progression into less aggressive phenotypes by mechanisms involving enforced cell transdifferentiation. In this study, we examined the identification of transdifferentiating adipogenic programs in human cancer cell lines (HCCLs). Our findings showed that specific unsatturated fatty acids, such as palmitoleic, oleic and linoleic acids, trigger remarkable phenotypic modifications in a large number of human cancer cell lines (HCCLs), including hepatocarcinoma HUH-7, ovarian carcinoma SK-OV-3, breast adenocarcinoma MCF-7 and melanoma MALME-3M. In particular, we characterized a massive biogenesis of lipid droplets (LDs) and up-regulation of the adipogenic master regulator, PPARG, resulting in the transdifferentiation of HCCLs into adipocyte-like cells. These findings suggest the possibility of a novel strategy in cancer differentiation therapy via switching the identity of HCCLs to an adipogenic phenotype through unsaturated fatty acid-induced transdifferentiation.
Collapse
|
25
|
Cabarcas SM, Mathews LA, Farrar WL. The cancer stem cell niche--there goes the neighborhood? Int J Cancer 2011; 129:2315-27. [PMID: 21792897 PMCID: PMC6953416 DOI: 10.1002/ijc.26312] [Citation(s) in RCA: 193] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 03/07/2011] [Indexed: 12/11/2022]
Abstract
The niche is the environment in which stem cells reside and is responsible for the maintenance of unique stem cell properties such as self-renewal and an undifferentiated state. The heterogeneous populations which constitute a niche include both stem cells and surrounding differentiated cells. This network of heterogeneity is responsible for the control of the necessary pathways that function in determining stem cell fate. The concept that cancer stem cells, a subpopulation of cells responsible for tumor initiation and formation, reside in their own unique niche is quickly evolving and it is of importance to understand and identify the processes occurring within this environment. The necessary intrinsic pathways that are utilized by this cancer stem cell population to maintain both self-renewal and the ability to differentiate are believed to be a result of the environment where cancer stem cells reside. The ability of a specific cancer stem cell niche to provide the environment in which this population can flourish is a critical aspect of cancer biology that mandates intense investigation. This review focuses on current evidence demonstrating that homeostatic processes such as inflammation, epithelial to mesenchymal transition, hypoxia and angiogenesis contribute to the maintenance and control of cancer stem cell fate by providing the appropriate signals within the microenvironment. It is necessary to understand the key processes occurring within this highly specialized cancer stem cell niche to identify potential therapeutic targets that can serve as the basis for development of more effective anticancer treatments.
Collapse
Affiliation(s)
- Stephanie M Cabarcas
- Cancer Stem Cell Section, Laboratory of Cancer Prevention, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | | | | |
Collapse
|
26
|
Wu Y, Liu S, Xin H, Jiang J, Younglai E, Sun S, Wang H. Up-regulation of microRNA-145 promotes differentiation by repressing OCT4 in human endometrial adenocarcinoma cells. Cancer 2011; 117:3989-98. [PMID: 21365617 DOI: 10.1002/cncr.25944] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Revised: 12/28/2010] [Accepted: 12/28/2010] [Indexed: 01/01/2023]
Abstract
BACKGROUND MicroRNA-145 (miR-145) has been reported to be a tumor-suppressing agent in several studies. It can repress pluripotency and control human embryonic stem cell differentiation by regulating the core pluripotency factor OCT4. However, it is not known whether miR-145 can play a role in inducing tumor cell differentiation and repressing growth of tumors. METHODS Ishikawa cells, the established human endometrial cancer cells, were treated with miR-145 mimics, inhibitor, or small interfering RNA OCT4. miR-145 levels were assayed using TaqMan microRNA assays, and the messenger RNA levels of OCT4 and the differentiation marker glycodelin were measured using real-time polymerase chain reaction. The protein levels of OCT4 and glycodelin were characterized via flow cytometry, western blotting, and immunohistochemistry. In vivo activity was measured in a xenograft mouse model. RESULTS Up-regulating miR-145 reduced the expression of OCT4 and induced the differentiation of Ishikawa cells to closely resemble normal endometrial epithelium both in vitro and in vivo. miR-145 successfully inhibited tumor growth. We also found that in patients with endometrial carcinoma, miR-145 and OCT4 were expressed in tissues, and there was a relationship between miR-145, OCT4, and the degree of tumor cell differentiation. CONCLUSIONS Our results strongly suggested that miR-145 is a tumor cell differentiation-inducing agent in endometrial carcinoma, and that miR-145 or OCT4 may be useful markers for grading endometrial carcinoma.
Collapse
Affiliation(s)
- Yanjing Wu
- Department of Obstetrics & Gynecology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | | | | | | | | | | | | |
Collapse
|
27
|
Disease embryo development network reveals the relationship between disease genes and embryo development genes. J Theor Biol 2011; 287:100-8. [PMID: 21824480 PMCID: PMC7094120 DOI: 10.1016/j.jtbi.2011.07.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 06/15/2011] [Accepted: 07/22/2011] [Indexed: 11/20/2022]
Abstract
A basic problem for contemporary biology and medicine is exploring the correlation between human disease and underlying cellular mechanisms. For a long time, several efforts were made to reveal the similarity between embryo development and disease process, but few from the system level. In this article, we used the human protein-protein interactions (PPIs), disease genes with their classifications and embryo development genes and reconstructed a human disease-embryo development network to investigate the relationship between disease genes and embryo development genes. We found that disease genes and embryo development genes are prone to connect with each other. Furthermore, diseases can be categorized into three groups according to the closeness with embryo development in gene overlapping, interacting pattern in PPI network and co-regulated by microRNAs or transcription factors. Embryo development high-related disease genes show their closeness with embryo development at least in three biological levels. But it is not for embryo development medium-related disease genes and embryo development low-related disease genes. We also found that embryo development high-related disease genes are more central than other disease genes in the human PPI network. In addition, the results show that embryo development high-related disease genes tend to be essential genes compared with other diseases' genes. This network-based approach could provide evidence for the intricate correlation between disease process and embryo development, and help to uncover potential mechanisms of human complex diseases.
Collapse
|