1
|
Goto C, Hashizume S, Fukao Y, Hara-Nishimura I, Tamura K. Comprehensive nuclear proteome of Arabidopsis obtained by sequential extraction. Nucleus 2020; 10:81-92. [PMID: 30961429 PMCID: PMC6527390 DOI: 10.1080/19491034.2019.1603093] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In eukaryotes, the nucleus plays key roles in fundamental cellular processes, including DNA replication, chromatin maintenance, transcription, and translation. To better understand the functional diversity of nuclei, we developed a method for the comprehensive extraction of the nuclear proteome from Arabidopsis. We used a buffer with a high sucrose concentration to purify nuclei and then conducted solubility-based fractionation to increase proteome coverage. We identified 1539 proteins and two novel nuclear envelope (NE) proteins in the nuclear fraction of Arabidopsis cultured cells. The localization of 25 proteins was determined by GFP fusion analyses; 23 of these proteins were localized either in the nucleus or the NE-associated endoplasmic reticulum. This result was indicative of the high quality of the proteome. These findings will be useful for clarifying novel nuclear functions in plants.
Collapse
Affiliation(s)
- Chieko Goto
- a Graduate School of Agricultural and Life Sciences , University of Tokyo , Tokyo , Japan
| | - Shoko Hashizume
- b Department of Botany , Graduate School of Science, Kyoto University , Kyoto , Japan
| | - Yoichiro Fukao
- c Department of Bioinformatics , College of Life Sciences, Ritsumeikan University , Shiga , Japan
| | | | - Kentaro Tamura
- e Department of Environmental and Life Sciences , University of Shizuoka , Shizuoka , Japan
| |
Collapse
|
2
|
Yuan XS, Wang ZT, Hu YJ, Bao FC, Yuan P, Zhang C, Cao JL, Lv W, Hu J. Downregulation of RUVBL1 inhibits proliferation of lung adenocarcinoma cells by G1/S phase cell cycle arrest via multiple mechanisms. Tumour Biol 2016; 37:16015–16027. [PMID: 27722820 DOI: 10.1007/s13277-016-5452-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 09/23/2016] [Indexed: 02/08/2023] Open
Abstract
Lung cancer remains a leading cause of cancer-related mortality and morbidity worldwide, of which non-small cell lung cancer (NSCLC) accounts for 80 %. RUVBL1 is a highly conserved eukaryotic AAA+ adenosine 5'-triphosphatase (ATPase) that has many functions highly relevant to cancer. We therefore attempted to determine the potential role of RUVBL1 in the biogenesis of lung adenocarcinoma and obtained some interesting results. Our study revealed that RUVBL1 expression was higher in lung adenocarcinoma specimens than in those of adjacent non-tumor tissues and in lung cancer cell lines than in normal lung cell lines. RUVBL1 knockdown via siRNA reduced proliferation and caused G1/S phase cell cycle arrest in lung adenocarcinoma cell lines. The G1/S phase cell cycle arrest triggered by RUVBL1 downregulation could be attributed, at least in part, to repression of the AKT/GSK-3β/cyclin D1 pathway and probably to the activation of IRE1α-mediated endoplasmic reticulum (ER) stress. We thus demonstrated for the first time that a knockdown of RUVBL1 could effectively inhibit the proliferation of lung adenocarcinoma A549 and H292 cells through the induction of G1/S phase cell cycle arrest via multiple mechanisms. These observations strongly suggested that RUVBL1 should be considered a promising target for the prevention or therapy of lung adenocarcinoma.
Collapse
Affiliation(s)
- Xiao-Shuai Yuan
- Department of Thoracic Surgery, First Affiliated Hospital of Zhejiang University, No.79, Qingchun Road, Hangzhou, China
| | - Zhi-Tian Wang
- Department of Thoracic Surgery, First Affiliated Hospital of Zhejiang University, No.79, Qingchun Road, Hangzhou, China
| | - Ye-Ji Hu
- Department of Thoracic Surgery, First Affiliated Hospital of Zhejiang University, No.79, Qingchun Road, Hangzhou, China
| | - Fei-Chao Bao
- Department of Thoracic Surgery, First Affiliated Hospital of Zhejiang University, No.79, Qingchun Road, Hangzhou, China
| | - Ping Yuan
- Department of Thoracic Surgery, First Affiliated Hospital of Zhejiang University, No.79, Qingchun Road, Hangzhou, China
| | - Chong Zhang
- Department of Thoracic Surgery, First Affiliated Hospital of Zhejiang University, No.79, Qingchun Road, Hangzhou, China
| | - Jin-Lin Cao
- Department of Thoracic Surgery, First Affiliated Hospital of Zhejiang University, No.79, Qingchun Road, Hangzhou, China
| | - Wang Lv
- Department of Thoracic Surgery, First Affiliated Hospital of Zhejiang University, No.79, Qingchun Road, Hangzhou, China
| | - Jian Hu
- Department of Thoracic Surgery, First Affiliated Hospital of Zhejiang University, No.79, Qingchun Road, Hangzhou, China.
| |
Collapse
|
3
|
Majewski J, André S, Jones E, Chi E, Gabius HJ. X-ray reflectivity and grazing incidence diffraction studies of interaction between human adhesion/growth-regulatory galectin-1 and DPPE-GM1 lipid monolayer at an air/water interface. BIOCHEMISTRY (MOSCOW) 2016; 80:943-56. [PMID: 26542007 DOI: 10.1134/s0006297915070135] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The specific interaction of ganglioside GM1 with the homodimeric (prototype) endogenous lectin galectin-1 triggers growth regulation in tumor and activated effector T cells. This proven biorelevance directed interest to studying association of the lectin to a model surface, i.e. a 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine/ganglioside GM1 (80 : 20 mol%) monolayer, at a bioeffective concentration. Surface expansion by the lectin insertion was detected at a surface pressure of 20 mN/m. On combining the methods of grazing incidence X-ray diffraction and X-ray reflectivity, a transient decrease in lipid-ordered phase of the monolayer was observed. The measured electron density distribution indicated that galectin-1 is oriented with its long axis in the surface plane, ideal for cis-crosslinking. The data reveal a conspicuous difference to the way the pentameric lectin part of the cholera toxin, another GM1-specific lectin, is bound to the monolayer. They also encourage further efforts to monitor effects of structurally different members of the galectin family such as the functionally antagonistic chimera-type galectin-3.
Collapse
Affiliation(s)
- J Majewski
- Manuel Lujan Jr. Neutron Scattering Center, Los Alamos Neutron Science Center, Los Alamos National Laboratory, Los Alamos, NM, USA
| | | | | | | | | |
Collapse
|
4
|
Yang S, Quaresma AJC, Nickerson JA, Green KM, Shaffer SA, Imbalzano AN, Martin-Buley LA, Lian JB, Stein JL, van Wijnen AJ, Stein GS. Subnuclear domain proteins in cancer cells support the functions of RUNX2 in the DNA damage response. J Cell Sci 2015; 128:728-40. [PMID: 25609707 DOI: 10.1242/jcs.160051] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cancer cells exhibit modifications in nuclear architecture and transcriptional control. Tumor growth and metastasis are supported by RUNX family transcriptional scaffolding proteins, which mediate the assembly of nuclear-matrix-associated gene-regulatory hubs. We used proteomic analysis to identify RUNX2-dependent protein-protein interactions associated with the nuclear matrix in bone, breast and prostate tumor cell types and found that RUNX2 interacts with three distinct proteins that respond to DNA damage - RUVBL2, INTS3 and BAZ1B. Subnuclear foci containing these proteins change in intensity or number following UV irradiation. Furthermore, RUNX2, INTS3 and BAZ1B form UV-responsive complexes with the serine-139-phosphorylated isoform of H2AX (γH2AX). UV irradiation increases the interaction of BAZ1B with γH2AX and decreases histone H3 lysine 9 acetylation levels, which mark accessible chromatin. RUNX2 depletion prevents the BAZ1B-γH2AX interaction and attenuates loss of H3K9 and H3K56 acetylation. Our data are consistent with a model in which RUNX2 forms functional complexes with BAZ1B, RUVBL2 and INTS3 to mount an integrated response to DNA damage. This proposed cytoprotective function for RUNX2 in cancer cells might clarify its expression in chemotherapy-resistant and/or metastatic tumors.
Collapse
Affiliation(s)
- Seungchan Yang
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Alexandre J C Quaresma
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA Institute of Biomedicine, Department of Biochemistry and Developmental Biology, FI-00014 University of Helsinki, Finland
| | - Jeffrey A Nickerson
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Karin M Green
- Department of Biochemistry and Molecular Pharmacology and Proteomics and Mass Spectrometry Facility, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Scott A Shaffer
- Department of Biochemistry and Molecular Pharmacology and Proteomics and Mass Spectrometry Facility, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Anthony N Imbalzano
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Lori A Martin-Buley
- Department of Biochemistry & Vermont Cancer Center, University of Vermont Medical School, Burlington, VT 05405, USA
| | - Jane B Lian
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA Department of Biochemistry & Vermont Cancer Center, University of Vermont Medical School, Burlington, VT 05405, USA
| | - Janet L Stein
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA Department of Biochemistry & Vermont Cancer Center, University of Vermont Medical School, Burlington, VT 05405, USA
| | - Andre J van Wijnen
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA Departments of Orthopedic Surgery & Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street S.W., MSB 3-69, Rochester, MN 55905, USA
| | - Gary S Stein
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA Department of Biochemistry & Vermont Cancer Center, University of Vermont Medical School, Burlington, VT 05405, USA
| |
Collapse
|
5
|
Shekari F, Baharvand H, Salekdeh GH. Organellar proteomics of embryonic stem cells. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2014; 95:215-230. [PMID: 24985774 DOI: 10.1016/b978-0-12-800453-1.00007-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Embryonic stem cells (ESCs) are undifferentiated cells with two common remarkable features known as self-renewal and differentiation. Proteomics plays an increasingly important role in understanding molecular mechanisms underlying self-renewal and pluripotency of ESCs and their applications in cell therapy and developmental biology studies. As the function of a protein is strongly associated with its localization in cell, a complete and accurate picture of the proteome of ESCs cannot be achieved without knowing the subcellular locations of proteins. Subcellular fractionation allows enrichment of low abundant proteins and signaling complexes and reduces the complexity of the sample. It also provided insight into tracking proteins that shuttle between different compartments. Despite the substantial interest and efforts in ESC subcellular proteomics area, progress has been relatively limited. In this review, we present an overview on current status of ESCs organelle proteomics research and discuss challenges in subcellular proteomics.
Collapse
Affiliation(s)
- Faezeh Shekari
- Department of Molecular Systems Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Developmental Biology, University of Science and Culture, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Developmental Biology, University of Science and Culture, ACECR, Tehran, Iran; Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Ghasem Hosseini Salekdeh
- Department of Molecular Systems Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Karaj, Iran.
| |
Collapse
|
6
|
Mathieu V, de Lassalle EM, Toelen J, Mohr T, Bellahcène A, Van Goietsenoven G, Verschuere T, Bouzin C, Debyser Z, De Vleeschouwer S, Van Gool S, Poirier F, Castronovo V, Kiss R, Feron O. Galectin-1 in Melanoma Biology and Related Neo-Angiogenesis Processes. J Invest Dermatol 2012; 132:2245-54. [DOI: 10.1038/jid.2012.142] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
van Hoof D, Krijgsveld J, Mummery C. Proteomic analysis of stem cell differentiation and early development. Cold Spring Harb Perspect Biol 2012; 4:cshperspect.a008177. [PMID: 22317846 DOI: 10.1101/cshperspect.a008177] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Genomics methodologies have advanced to the extent that it is now possible to interrogate the gene expression in a single cell but proteomics has traditionally lagged behind and required much greater cellular input and was not quantitative. Coupling protein with gene expression data is essential for understanding how cell behavior is regulated. Advances primarily in mass spectrometry have, however, greatly improved the sensitivity of proteomics methods over the last decade and the outcome of proteomic analyses can now also be quantified. Nevertheless, it is still difficult to obtain sufficient tissue from staged mammalian embryos to combine proteomic and genomic analyses. Recent developments in pluripotent stem cell biology have in part addressed this issue by providing surrogate scalable cell systems in which early developmental events can be modeled. Here we present an overview of current proteomics methodologies and the kind of information this can provide on the biology of human and mouse pluripotent stem cells.
Collapse
Affiliation(s)
- Dennis van Hoof
- Department of Anatomy and Embryology, Leiden University Medical Center, ZC Leiden
| | | | | |
Collapse
|
8
|
Reiland S, Salekdeh GH, Krijgsveld J. Defining pluripotent stem cells through quantitative proteomic analysis. Expert Rev Proteomics 2011; 8:29-42. [PMID: 21329426 DOI: 10.1586/epr.10.100] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Embryonic stem cells (ESCs) are at the center stage of intense research, inspired by their potential to give rise to all cell types of the adult individual. This property makes ESCs suitable candidates for generating specialized cells to replace damaged tissue lost after injury or disease. However, such clinical applications require a detailed insight of the molecular mechanisms underlying the self-renewal, expansion and differentiation of stem cells. This has gained further relevance since the introduction of induced pluripotent stem cells (iPSCs), which are functionally very similar to ESCs. The key property that iPSCs can be derived from somatic cells lifts some of the major ethical issues related to the need for embryos to generate ESCs. Yet, this has only increased the need to define the similarity of iPSCs and ESCs at the molecular level, both before and after they are induced to differentiate. In this article, we describe the proteomic approaches that have been used to characterize ESCs with regard to self-renewal and differentiation, with an emphasis on signaling cascades and histone modifications. We take this as a lead to discuss how quantitative proteomics can be deployed to study reprogramming and iPSC identity. In addition, we discuss how emerging proteomic technologies can become a useful tool to monitor the (de)differentiation status of ESCs and iPSCs.
Collapse
Affiliation(s)
- Sonja Reiland
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | | | | |
Collapse
|