1
|
Saha A, Patel S, Xu L, Scotland P, Schwartzman J, Filiano AJ, Kurtzberg J, Balber AE. Human umbilical cord blood monocytes, but not adult blood monocytes, rescue brain cells from hypoxic-ischemic injury: Mechanistic and therapeutic implications. PLoS One 2019; 14:e0218906. [PMID: 31483780 PMCID: PMC6726370 DOI: 10.1371/journal.pone.0218906] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/13/2019] [Indexed: 12/20/2022] Open
Abstract
Cord blood (CB) mononuclear cells (MNC) are being tested in clinical trials to treat hypoxic-ischemic (HI) brain injuries. Although early results are encouraging, mechanisms underlying potential clinical benefits are not well understood. To explore these mechanisms further, we exposed mouse brain organotypic slice cultures to oxygen and glucose deprivation (OGD) and then treated the brain slices with cells from CB or adult peripheral blood (PB). We found that CB-MNCs protect neurons from OGD-induced death and reduced both microglial and astrocyte activation. PB-MNC failed to affect either outcome. The protective activities were largely mediated by factors secreted by CB-MNC, as direct cell-to-cell contact between the injured brain slices and CB cells was not essential. To determine if a specific subpopulation of CB-MNC are responsible for these protective activities, we depleted CB-MNC of various cell types and found that only removal of CB CD14+ monocytes abolished neuroprotection. We also used positively selected subpopulations of CB-MNC and PB-MNC in this assay and demonstrated that purified CB-CD14+ cells, but not CB-PB CD14+ cells, efficiently protected neuronal cells from death and reduced glial activation following OGD. Gene expression microarray analysis demonstrated that compared to PB-CD14+ monocytes, CB-CD14+ monocytes over-expressed several secreted proteins with potential to protect neurons. Differential expression of five candidate effector molecules, chitinase 3-like protein-1, inhibin-A, interleukin-10, matrix metalloproteinase-9 and thrombospondin-1, were confirmed by western blotting, and immunofluorescence. These findings suggest that CD14+ monocytes are a critical cell-type when treating HI with CB-MNC.
Collapse
Affiliation(s)
- Arjun Saha
- Marcus Center for Cellular Cures (MC3), Duke University School of Medicine, Durham, North Carolina, United States of America
- * E-mail:
| | - Sachit Patel
- Marcus Center for Cellular Cures (MC3), Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Li Xu
- Marcus Center for Cellular Cures (MC3), Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Paula Scotland
- Marcus Center for Cellular Cures (MC3), Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Jonathan Schwartzman
- Marcus Center for Cellular Cures (MC3), Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Anthony J. Filiano
- Marcus Center for Cellular Cures (MC3), Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Joanne Kurtzberg
- Marcus Center for Cellular Cures (MC3), Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Andrew E. Balber
- Marcus Center for Cellular Cures (MC3), Duke University School of Medicine, Durham, North Carolina, United States of America
| |
Collapse
|
2
|
Umbilical cord blood cells for treatment of cerebral palsy; timing and treatment options. Pediatr Res 2018; 83:333-344. [PMID: 28937975 DOI: 10.1038/pr.2017.236] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/19/2017] [Indexed: 12/23/2022]
Abstract
Cerebral palsy is the most common cause of physical disability in children, and there is no cure. Umbilical cord blood (UCB) cell therapy for the treatment of children with cerebral palsy is currently being assessed in clinical trials. Although there is much interest in the use of UCB stem cells for neuroprotection and neuroregeneration, the mechanisms of action are not fully understood. Further, UCB contains many stem and progenitor cells of interest, and we will point out that individual cell types within UCB may elicit specific effects. UCB is a clinically proven source of hemotopoietic stem cells (HSCs). It also contains mesenchymal stromal cells (MSCs), endothelial progenitor cells (EPCs), and immunosupressive cells such as regulatory T cells (Tregs) and monocyte-derived supressor cells. Each of these cell types may be individual candidates for the prevention of brain injury following hypoxic and inflammatory events in the perinatal period. We will discuss specific properties of cell types in UCB, with respect to their therapeutic potential and the importance of optimal timing of administration. We propose that tailored cell therapy and targeted timing of administration will optimize the results for future clinical trials in the neuroprotective treatment of perinatal brain injury.
Collapse
|
3
|
Li B, Concepcion K, Meng X, Zhang L. Brain-immune interactions in perinatal hypoxic-ischemic brain injury. Prog Neurobiol 2017; 159:50-68. [PMID: 29111451 PMCID: PMC5831511 DOI: 10.1016/j.pneurobio.2017.10.006] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/26/2017] [Indexed: 01/07/2023]
Abstract
Perinatal hypoxia-ischemia remains the primary cause of acute neonatal brain injury, leading to a high mortality rate and long-term neurological deficits, such as behavioral, social, attentional, cognitive and functional motor deficits. An ever-increasing body of evidence shows that the immune response to acute cerebral hypoxia-ischemia is a major contributor to the pathophysiology of neonatal brain injury. Hypoxia-ischemia provokes an intravascular inflammatory cascade that is further augmented by the activation of resident immune cells and the cerebral infiltration of peripheral immune cells response to cellular damages in the brain parenchyma. This prolonged and/or inappropriate neuroinflammation leads to secondary brain tissue injury. Yet, the long-term effects of immune activation, especially the adaptive immune response, on the hypoxic-ischemic brain still remain unclear. The focus of this review is to summarize recent advances in the understanding of post-hypoxic-ischemic neuroinflammation triggered by the innate and adaptive immune responses and to discuss how these mechanisms modulate the brain vulnerability to injury. A greater understanding of the reciprocal interactions between the hypoxic-ischemic brain and the immune system will open new avenues for potential immunomodulatory therapy in the treatment of neonatal brain injury.
Collapse
Affiliation(s)
- Bo Li
- The Lawrence D. Longo, MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| | - Katherine Concepcion
- The Lawrence D. Longo, MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Xianmei Meng
- The Lawrence D. Longo, MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Lubo Zhang
- The Lawrence D. Longo, MD Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| |
Collapse
|
4
|
Darlington D, Deng J, Giunta B, Hou H, Sanberg CD, Kuzmin-Nichols N, Zhou HD, Mori T, Ehrhart J, Sanberg PR, Tan J. Multiple low-dose infusions of human umbilical cord blood cells improve cognitive impairments and reduce amyloid-β-associated neuropathology in Alzheimer mice. Stem Cells Dev 2012; 22:412-21. [PMID: 22816379 DOI: 10.1089/scd.2012.0345] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Alzheimer's disease (AD) is the most common progressive age-related dementia in the elderly and the fourth major cause of disability and mortality in that population. The disease is pathologically characterized by deposition of β-amyloid plaques neurofibrillary tangles in the brain. Current strategies for the treatment of AD are symptomatic only. As such, they are less than efficacious in terms of significantly slowing or halting the underlying pathophysiological progression of the disease. Modulation by cell therapy may be new promising disease-modifying therapy. Recently, we showed reduction in amyloid-β (Aβ) levels/β-amyloid plaques and associated astrocytosis following low-dose infusions of mononuclear human umbilical cord blood cells (HUCBCs). Our current study extended our previous findings by examining cognition via (1) the rotarod test, (2) a 2-day version of the radial-arm water maze test, and (3) a subsequent observation in an open pool platform test to characterize the effects of monthly peripheral HUCBC infusion (1×10(6) cells/μL) into the transgenic PSAPP mouse model of cerebral amyloidosis (bearing mutant human APP and presenilin-1 transgenes) from 6 to 12 months of age. We show that HUCBC therapy correlates with decreased (1) cognitive impairment, (2) Aβ levels/β-amyloid plaques, (3) amyloidogenic APP processing, and (4) reactive microgliosis after a treatment of 6 or 10 months. As such, this report lays the groundwork for an HUCBC therapy as potentially novel alternative to oppose AD at the disease-modifying level.
Collapse
Affiliation(s)
- Donna Darlington
- Rashid Laboratory for Developmental Neurobiology, Silver Child Development Center, Morsani College of Medicine, University of South Florida, Tampa, Florida 33613, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Umbilical cord blood mononuclear cell transplantation for neonatal hypoxic-ischemic encephalopathy. Pediatr Res 2012; 71:464-73. [PMID: 22430382 DOI: 10.1038/pr.2011.59] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite recent advances in the treatment of neonatal hypoxic-ischemic encephalopathy (HIE) using therapeutic hypothermia, at least 30% of the cooled infants will die or have moderate/severe neurological disability. Umbilical cord blood cells (UCBCs), which are readily available at birth, have been shown to reduce sensorimotor and/or cognitive impairments in several models of brain damage, representing a promising option for the treatment of neurological diseases. In this review, we discuss recent preclinical studies that assessed the effects of UCBC transplantation in the Rice-Vannucci animal model of HIE. We also review the possible cell types and mechanisms involved in the therapeutic effect of UCBC transplantation, including neuroprotection, immunomodulation, and stimulation of neural plasticity and regeneration. In addition, we discuss how neuroimaging methods, such as bioluminescence imaging, nuclear-medicine imaging, or magnetic resonance imaging, could be used to evaluate the biodistribution of UCBCs in both preclinical and clinical studies.
Collapse
|
6
|
Kiang JG, Agravante NG, Smith JT, Bowman PD. 17-DMAG diminishes hemorrhage-induced small intestine injury by elevating Bcl-2 protein and inhibiting iNOS pathway, TNF-α increase, and caspase-3 activation. Cell Biosci 2011; 1:21. [PMID: 21711488 PMCID: PMC3135504 DOI: 10.1186/2045-3701-1-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 06/03/2011] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Hemorrhage increases inducible nitric oxide synthase (iNOS) and depletes ATP levels in various tissues. Previous studies have shown that geldanamycin, an inducer of heat shock protein 70kDa (HSP-70) and inhibitor of iNOS, limits both processes. Reduction in NO production limits lipid peroxidation, apoptosome formation, and caspase-3 activation, thereby increasing cellular survival and reducing the sequelae of hemorrhage. The poor solubility of geldanamycin in aqueous solutions, however, limits its effectiveness as a drug. 17-DMAG is a water-soluble analog of geldanamycin that might have greater therapeutic utility. This study investigated the effectiveness of 17-DMAG at reducing hemorrhagic injury in mouse small intestine. RESULTS In mice, the hemorrhage-induced iNOS increase correlated with increases in Kruppel-like factor 6 (KLF6) and NF-kB and a decrease in KLF4. As a result, increases in NO production and lipid peroxidation occurred. Moreover, hemorrhage also resulted in decreased Bcl-2 and increased TNF-α, IL-6, and IL-10 concentrations, p53 protein, caspase-3 activation, and cellular ATP depletion. A shortening and widening of villi in the small intestine was also observed. Treatment with 17-DMAG significantly reduced the hemorrhage-induced increases in iNOS protein, jejunal alteration, and TNF-α and IL-10 concentrations, but 17-DMAG did not affect the hemorrhage-induced increases in p53 and IL-6 concentration. 17-DMAG treatment by itself upregulated HSP-70, Bcl-2, and p53. CONCLUSION Since 17-DMAG is water soluble, bioactive, and not toxic, 17-DMAG may prove useful as a prophylactic drug for hemorrhage.
Collapse
Affiliation(s)
- Juliann G Kiang
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Uniformed Services University, Bethesda, Maryland, USA
- Department of Radiation Biology, Uniformed Services University, Bethesda, Maryland, USA
- Department of Medicine, Uniformed Services University, Bethesda, Maryland, USA
| | - Neil G Agravante
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Uniformed Services University, Bethesda, Maryland, USA
| | - Joan T Smith
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Uniformed Services University, Bethesda, Maryland, USA
| | - Phillip D Bowman
- US Army Institute of Surgical Research, Fort Sam Houston, Texas, USA
| |
Collapse
|
7
|
Rosenkranz K, Meier C. Umbilical cord blood cell transplantation after brain ischemia--from recovery of function to cellular mechanisms. Ann Anat 2011; 193:371-9. [PMID: 21514122 DOI: 10.1016/j.aanat.2011.03.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 03/10/2011] [Accepted: 03/10/2011] [Indexed: 01/14/2023]
Abstract
Cell transplantation has been proposed as a potential approach to the treatment of neurological disorders. One cell population of interest consists of human umbilical cord blood (hUCB) cells, which have previously been shown to be useful for reparative medicine in haematological diseases. However, hUCB cells are also capable of differentiating into various non-haematopoietic cells, including those of the neural lineage. Moreover, hUCB cells can secrete numerous neurotrophic factors and modulate immune function and inflammatory reaction. Several studies on animal models of ischemic brain injury have demonstrated the potential of hUCB cells to minimize damage and promote recovery after ischemic brain injury.This review focuses on the treatment of both stroke and perinatal hypoxic-ischemic brain injury using hUCB cells. We discuss the therapeutic effects demonstrated after hUCB cell transplantation and emphasize possible mechanisms counteracting pathophysiological events of ischemia, thus leading to the generation of a regenerative environment that allows neural plasticity and functional recovery. The therapeutic functional effects of hUCB cells observed in animal models make the transplantation of hUCB cells a promising experimental approach in the treatment of ischemic brain injury. Together with its availability, low risk of transplantation, immaturity of cells, and simple route of application, hUCB transplantation may stand a good chance of being translated into a clinical setting for the therapy of ischemic brain injury.
Collapse
Affiliation(s)
- Katja Rosenkranz
- Department of Functional Proteomics, Ruhr-University Bochum, Bochum, Germany
| | | |
Collapse
|