1
|
Crane AT, Aravalli RN, Asakura A, Grande AW, Krishna VD, Carlson DF, Cheeran MCJ, Danczyk G, Dutton JR, Hackett PB, Hu WS, Li L, Lu WC, Miller ZD, O'Brien TD, Panoskaltsis-Mortari A, Parr AM, Pearce C, Ruiz-Estevez M, Shiao M, Sipe CJ, Toman NG, Voth J, Xie H, Steer CJ, Low WC. Interspecies Organogenesis for Human Transplantation. Cell Transplant 2019; 28:1091-1105. [PMID: 31426664 PMCID: PMC6767879 DOI: 10.1177/0963689719845351] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Blastocyst complementation combined with gene editing is an emerging approach in the
field of regenerative medicine that could potentially solve the worldwide problem of organ
shortages for transplantation. In theory, blastocyst complementation can generate fully
functional human organs or tissues, grown within genetically engineered livestock animals.
Targeted deletion of a specific gene(s) using gene editing to cause deficiencies in organ
development can open a niche for human stem cells to occupy, thus generating human
tissues. Within this review, we will focus on the pancreas, liver, heart, kidney, lung,
and skeletal muscle, as well as cells of the immune and nervous systems. Within each of
these organ systems, we identify and discuss (i) the common causes of organ failure; (ii)
the current state of regenerative therapies; and (iii) the candidate genes to knockout and
enable specific exogenous organ development via the use of blastocyst complementation. We
also highlight some of the current barriers limiting the success of blastocyst
complementation.
Collapse
Affiliation(s)
- Andrew T Crane
- Department of Neurosurgery, University of Minnesota, Minneapolis, USA
| | - Rajagopal N Aravalli
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, USA
| | - Atsushi Asakura
- Stem Cell Institute, University of Minnesota, Minneapolis, USA.,Department of Neurology, University of Minnesota, Minneapolis, USA
| | - Andrew W Grande
- Department of Neurosurgery, University of Minnesota, Minneapolis, USA
| | | | | | - Maxim C-J Cheeran
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, USA
| | - Georgette Danczyk
- Department of Neurosurgery, University of Minnesota, Minneapolis, USA
| | - James R Dutton
- Stem Cell Institute, University of Minnesota, Minneapolis, USA.,Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, USA
| | - Perry B Hackett
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, USA
| | - Wei-Shou Hu
- Department of Chemical Engineering and Material Science, University of Minnesota, Minneapolis, USA
| | - Ling Li
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, USA
| | - Wei-Cheng Lu
- Department of Neurosurgery, University of Minnesota, Minneapolis, USA
| | - Zachary D Miller
- Department of Neurosurgery, University of Minnesota, Minneapolis, USA
| | - Timothy D O'Brien
- Stem Cell Institute, University of Minnesota, Minneapolis, USA.,Department of Veterinary Population Medicine, University of Minnesota, St. Paul, USA
| | | | - Ann M Parr
- Department of Neurosurgery, University of Minnesota, Minneapolis, USA.,Stem Cell Institute, University of Minnesota, Minneapolis, USA
| | - Clairice Pearce
- Department of Neurosurgery, University of Minnesota, Minneapolis, USA
| | | | - Maple Shiao
- Department of Neurosurgery, University of Minnesota, Minneapolis, USA
| | | | - Nikolas G Toman
- Department of Neurosurgery, University of Minnesota, Minneapolis, USA
| | - Joseph Voth
- Department of Neurosurgery, University of Minnesota, Minneapolis, USA
| | - Hui Xie
- Department of Neurosurgery, University of Minnesota, Minneapolis, USA
| | - Clifford J Steer
- Stem Cell Institute, University of Minnesota, Minneapolis, USA.,Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, USA.,Department of Medicine, University of Minnesota, Minneapolis, USA
| | - Walter C Low
- Department of Neurosurgery, University of Minnesota, Minneapolis, USA.,Stem Cell Institute, University of Minnesota, Minneapolis, USA
| |
Collapse
|
2
|
Understanding the role of mammalian sterile 20-like kinase 1 (MST1) in cardiovascular disorders. J Mol Cell Cardiol 2018; 114:141-149. [DOI: 10.1016/j.yjmcc.2017.11.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/08/2017] [Accepted: 11/14/2017] [Indexed: 12/27/2022]
|
3
|
Gonzalez JP, Kyrychenko S, Kyrychenko V, Schneider JS, Granier CJ, Himelman E, Lahey KC, Zhao Q, Yehia G, Tao YX, Bhaumik M, Shirokova N, Fraidenraich D. Small Fractions of Muscular Dystrophy Embryonic Stem Cells Yield Severe Cardiac and Skeletal Muscle Defects in Adult Mouse Chimeras. Stem Cells 2016; 35:597-610. [PMID: 27734557 DOI: 10.1002/stem.2518] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 09/10/2016] [Accepted: 09/26/2016] [Indexed: 01/10/2023]
Abstract
Duchenne muscular dystrophy (DMD) is characterized by the loss of the protein dystrophin, leading to muscle fragility, progressive weakening, and susceptibility to mechanical stress. Although dystrophin-negative mdx mouse models have classically been used to study DMD, phenotypes appear mild compared to patients. As a result, characterization of muscle pathology, especially in the heart, has proven difficult. We report that injection of mdx embryonic stem cells (ESCs) into Wild Type blastocysts produces adult mouse chimeras with severe DMD phenotypes in the heart and skeletal muscle. Inflammation, regeneration and fibrosis are observed at the whole organ level, both in dystrophin-negative and dystrophin-positive portions of the chimeric tissues. Skeletal and cardiac muscle function are also decreased to mdx levels. In contrast to mdx heterozygous carriers, which show no significant phenotypes, these effects are even observed in chimeras with low levels of mdx ESC incorporation (10%-30%). Chimeric mice lack typical compensatory utrophin upregulation, and show pathological remodeling of Connexin-43. In addition, dystrophin-negative and dystrophin-positive isolated cardiomyocytes show augmented calcium response to mechanical stress, similar to mdx cells. These global effects highlight a novel role of mdx ESCs in triggering muscular dystrophy even when only low amounts are present. Stem Cells 2017;35:597-610.
Collapse
Affiliation(s)
- J Patrick Gonzalez
- Department of Cell Biology and Molecular Medicine, Newark, New Jersey, USA
| | - Sergii Kyrychenko
- Department of Pharmacology, Physiology and Neuroscience, Newark, New Jersey, USA
| | - Viktoriia Kyrychenko
- Department of Pharmacology, Physiology and Neuroscience, Newark, New Jersey, USA
| | - Joel S Schneider
- Department of Cell Biology and Molecular Medicine, Newark, New Jersey, USA
| | - Celine J Granier
- Department of Pediatrics, Rutgers Biomedical and Health Sciences, Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Eric Himelman
- Department of Cell Biology and Molecular Medicine, Newark, New Jersey, USA
| | - Kevin C Lahey
- Department of Cell Biology and Molecular Medicine, Newark, New Jersey, USA
| | - Qingshi Zhao
- Department of Cell Biology and Molecular Medicine, Newark, New Jersey, USA
| | - Ghassan Yehia
- Genome Editing Core Facility, Office of Research Advancement, New Brunswick, New Jersey, USA
| | - Yuan-Xiang Tao
- Department of Cell Biology and Molecular Medicine, Newark, New Jersey, USA.,Department of Pharmacology, Physiology and Neuroscience, Newark, New Jersey, USA.,Department of Anesthesiology, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, New Jersey, USA
| | - Mantu Bhaumik
- Department of Pediatrics, Rutgers Biomedical and Health Sciences, Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Natalia Shirokova
- Department of Pharmacology, Physiology and Neuroscience, Newark, New Jersey, USA
| | - Diego Fraidenraich
- Department of Cell Biology and Molecular Medicine, Newark, New Jersey, USA
| |
Collapse
|
4
|
Li P, Chen Y, Mak KK, Wong CK, Wang CC, Yuan P. Functional role of Mst1/Mst2 in embryonic stem cell differentiation. PLoS One 2013; 8:e79867. [PMID: 24224013 PMCID: PMC3818222 DOI: 10.1371/journal.pone.0079867] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 09/26/2013] [Indexed: 02/07/2023] Open
Abstract
The Hippo pathway is an evolutionary conserved pathway that involves cell proliferation, differentiation, apoptosis and organ size regulation. Mst1 and Mst2 are central components of this pathway that are essential for embryonic development, though their role in controlling embryonic stem cells (ES cells) has yet to be exploited. To further understand the Mst1/Mst2 function in ES cell pluripotency and differentiation, we derived Mst1/Mst2 double knockout (Mst-/-) ES cells to completely perturb Hippo signaling. We found that Mst-/- ES cells express higher level of Nanog than wild type ES cells and show differentiation resistance after LIF withdrawal. They also proliferate faster than wild type ES cells. Although Mst-/- ES cells can form embryoid bodies (EBs), their differentiation into tissues of three germ layers is distorted. Intriguingly, Mst-/- ES cells are unable to form teratoma. Mst-/- ES cells can differentiate into mesoderm lineage, but further differentiation to cardiac lineage cells is significantly affected. Microarray analysis revealed that ligands of non-canonical Wnt signaling, which is critical for cardiac progenitor specification, are significantly repressed in Mst-/- EBs. Taken together our results showed that Mst1/Mst2 are required for proper cardiac lineage cell development and teratoma formation.
Collapse
Affiliation(s)
- Peng Li
- Department of Chemical Pathology, the Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Ying Chen
- Li Ka Shing Institute of Health Sciences, the Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Kinglun Kingston Mak
- School of Biomedical Sciences, the Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- CUHK Shenzhen Research Institute, the Chinese University of Hong Kong, Shenzhen, Guangdong, China
- Key Laboratories for Regenerative Medicine, Ministry of Education, the Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Chun Kwok Wong
- Department of Chemical Pathology, the Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
- CUHK Shenzhen Research Institute, the Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Chi Chiu Wang
- Li Ka Shing Institute of Health Sciences, the Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
- School of Biomedical Sciences, the Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- CUHK Shenzhen Research Institute, the Chinese University of Hong Kong, Shenzhen, Guangdong, China
- Fetal Medicine Unit, Department of Obstetrics and Gynaecology, the Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Ping Yuan
- Department of Chemical Pathology, the Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, the Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
- School of Biomedical Sciences, the Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- CUHK Shenzhen Research Institute, the Chinese University of Hong Kong, Shenzhen, Guangdong, China
| |
Collapse
|
5
|
Kotha S, Goyal D, Bitra A, Thota N, Kruger G, Anand R. Diversity oriented approach to triazole based peptidomimetics as mammalian sterile 20 kinase inhibitors. RSC Adv 2013. [DOI: 10.1039/c3ra44318c] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
6
|
[Advances in the molecular pathogenesis of hypertrophic cardiomyopathy]. YI CHUAN = HEREDITAS 2011; 33:549-57. [PMID: 21684859 DOI: 10.3724/sp.j.1005.2011.00549] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Hypertrophic Cardiomyopathy (HCM) is a primary cardiac disorder characterized by asymmetric thickening of the septum and left ventricular wall. HCM affects 1 in 500 individuals in the general population, and it is the most common cause of sudden death in the young and athletes. The clinic phenotype of HCM is highly variable with respect to age at onset, degree of symptoms, and risk of sudden death. HCM is usually inherited as a Mendelian autosomal dominant trait. To date, over 900 mutations have been reported in HCM, which were mainly located in 13 genes encoding cardiac sarcomere protein, e.g., MYH7, MYBPC3, and TnT. In addition, more and more mitochondrial DNA mutations were reported to be associated with the pathogenesis of HCM. Based on the description of the clinical phenotype and morphological characteristics, this review focuses on the research in the molecular pathogenic mechanism of HCM and its recent advances.
Collapse
|