1
|
Boghossian JA, Joseph B, Slepian MJ, Armstrong DG. Remote Ischemic Conditioning Promising Potential in Wound Repair in Diabetes?. J Am Podiatr Med Assoc 2017; 107:313-317. [PMID: 28880591 DOI: 10.7547/15-172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Remote ischemic conditioning involves the use of a blood pressure cuff or similar device to induce brief (3-5 min) episodes of limb ischemia. This, in turn, seems to activate a group of distress signals that has shown the potential ability to improve healing of the heart muscle and other organ systems. Until recently, this has not been tested in people with diabetic foot ulcers. The purpose of this review was to provide background on remote ischemic conditioning and recent data to potentially support its use as an adjunct to healing diabetic foot ulcers and other types of tissue loss. We believe that this inexpensive therapy has the potential to be deployed and incorporated into a variety of other therapies to prime patients for healing and to reduce morbidity in patients with this common, complex, and costly complication.
Collapse
Affiliation(s)
- Jano A. Boghossian
- Southern Arizona Limb Salvage Alliance, Department of Surgery, University of Arizona College of Medicine, Tucson, AZ. Mr. Boghossian is now with College of Podiatric Medicine, Western University of Health Sciences, Pomona, CA
| | - Bellal Joseph
- Southern Arizona Limb Salvage Alliance, Department of Surgery, University of Arizona College of Medicine, Tucson, AZ. Mr. Boghossian is now with College of Podiatric Medicine, Western University of Health Sciences, Pomona, CA
| | - Marvin J. Slepian
- Southern Arizona Limb Salvage Alliance, Department of Surgery, University of Arizona College of Medicine, Tucson, AZ. Mr. Boghossian is now with College of Podiatric Medicine, Western University of Health Sciences, Pomona, CA
- Arizona Center for Accelerated Biomedical Innovation, University of Arizona College of Medicine, Tucson, AZ
| | - David G. Armstrong
- Southern Arizona Limb Salvage Alliance, Department of Surgery, University of Arizona College of Medicine, Tucson, AZ. Mr. Boghossian is now with College of Podiatric Medicine, Western University of Health Sciences, Pomona, CA
- Arizona Center for Accelerated Biomedical Innovation, University of Arizona College of Medicine, Tucson, AZ
| |
Collapse
|
2
|
Cherry-Allen KM, Gidday JM, Lee JM, Hershey T, Lang CE. Remote Limb Ischemic Conditioning at Two Cuff Inflation Pressures Yields Learning Enhancements in Healthy Adults. J Mot Behav 2016; 49:337-348. [PMID: 27732431 DOI: 10.1080/00222895.2016.1204268] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The authors tested whether 2 doses of remote limb ischemic conditioning (RLIC), induced via blood pressure cuff inflation, enhanced motor and cognitive learning to an equal extent, and explored a panel of blood biomarkers of RLIC. Thirty-two young adults were randomized to 3 groups and underwent a 7-day protocol of RLIC/sham followed by motor and cognitive training, with follow-up. Both RLIC groups had greater motor learning and a trend toward greater cognitive learning compared with the sham group. RLIC at the lower inflation pressure was as effective as RLIC with the higher inflation pressure. No significant candidate blood biomarkers were found. RLIC could be a well-tolerated method to enhance learning and improve rehabilitation outcomes in people with neurological conditions.
Collapse
Affiliation(s)
- Kendra M Cherry-Allen
- a Program in Physical Therapy , Washington University School of Medicine , St. Louis , Missouri
| | - Jeff M Gidday
- b Department of Neurological Surgery , Washington University School of Medicine , St. Louis , Missouri.,c Department of Cell Biology and Physiology , Washington University School of Medicine , St. Louis , Missouri.,d Department of Ophthalmology and Visual Sciences , Washington University School of Medicine , St. Louis , Missouri.,e Department of Ophthalmology , Louisiana State University School of Medicine , New Orleans
| | - Jin-Moo Lee
- f Department of Neurology , Washington University School of Medicine , St. Louis , Missouri
| | - Tamara Hershey
- f Department of Neurology , Washington University School of Medicine , St. Louis , Missouri.,g Department of Psychiatry , Washington University School of Medicine , St. Louis , Missouri.,h Department of Radiology , Washington University School of Medicine , St. Louis , Missouri
| | - Catherine E Lang
- a Program in Physical Therapy , Washington University School of Medicine , St. Louis , Missouri.,f Department of Neurology , Washington University School of Medicine , St. Louis , Missouri.,i Program in Occupational Therapy , Washington University School of Medicine , St. Louis , Missouri
| |
Collapse
|
3
|
Epps JA, Smart NA. Remote ischaemic conditioning in the context of type 2 diabetes and neuropathy: the case for repeat application as a novel therapy for lower extremity ulceration. Cardiovasc Diabetol 2016; 15:130. [PMID: 27613524 PMCID: PMC5018170 DOI: 10.1186/s12933-016-0444-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 08/19/2016] [Indexed: 02/07/2023] Open
Abstract
An emerging treatment modality for reducing damage caused by ischaemia–reperfusion injury is ischaemic conditioning. This technique induces short periods of ischaemia that have been found to protect against a more significant ischaemic insult. Remote ischaemic conditioning (RIC) can be administered more conveniently and safely, by inflation of a pneumatic blood pressure cuff to a suprasystolic pressure on a limb. Protection is then transferred to a remote organ via humoral and neural pathways. The diabetic state is particularly vulnerable to ischaemia–reperfusion injury, and ischaemia is a significant cause of many diabetic complications, including the diabetic foot. Despite this, studies utilising ischaemic conditioning and RIC in type 2 diabetes have often been disappointing. A newer strategy, repeat RIC, involves the repeated application of short periods of limb ischaemia over days or weeks. It has been demonstrated that this improves endothelial function, skin microcirculation, and modulates the systemic inflammatory response. Repeat RIC was recently shown to be beneficial for healing in lower extremity diabetic ulcers. This article summarises the mechanisms of RIC, and the impact that type 2 diabetes may have upon these, with the role of neural mechanisms in the context of diabetic neuropathy a focus. Repeat RIC may show more promise than RIC in type 2 diabetes, and its potential mechanisms and applications will also be explored. Considering the high costs, rates of chronicity and serious complications resulting from diabetic lower extremity ulceration, repeat RIC has the potential to be an effective novel advanced therapy for this condition.
Collapse
Affiliation(s)
- J A Epps
- School of Science and Technology, The University of New England, Armidale, NSW, 2351, Australia
| | - N A Smart
- School of Science and Technology, The University of New England, Armidale, NSW, 2351, Australia.
| |
Collapse
|
4
|
Shaked G, Czeiger D, Abu Arar A, Katz T, Harman-Boehm I, Sebbag G. Intermittent cycles of remote ischemic preconditioning augment diabetic foot ulcer healing. Wound Repair Regen 2016; 23:191-6. [PMID: 26083360 DOI: 10.1111/wrr.12269] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 02/09/2015] [Indexed: 01/13/2023]
Abstract
The morbidity and mortality caused by diabetic foot ulcer (DFU) are still significant. Conservative treatment of DFU is often ineffective. Treatment modalities using stem cells directly into the DFU or systematically have been introduced recently. Ischemic preconditioning (IPC) has been proved to be a cheap, simple, and safe method which can augment stem cells number in the peripheral blood circulation. This study's purpose was to test whether IPC can improve DFU healing. Forty diabetic patients were enrolled and divided into study and control groups. All patients received their regular treatment. The study group patients received in addition brief, transient cycles of IPC while the control group patients received a sham procedure only. The procedure was repeated every 2 weeks to complete a follow-up period of 6 weeks. The ulcers were photographed to measure wound area, and the degree of granulation tissue was assessed. No serious adverse events were noted. Twenty-two patients from the study group and 12 from the control group completed the entire follow-up. The ratio of patients who reached complete healing of their ulcer was 9/22 (41%) in the study group compared with 0/12 (0%) in the control group, p = 0.01. Furthermore, the mean remaining ulcer area at the end of the follow-up was significantly smaller in the study group, 25 ± 6% of the initial area vs. 61 ± 10% in the control group, p = 0.007. The degree of granulation increased after one cycle of treatment in 8/24 (33%) study patients compared to 3/16 (19%) in the control group, p = 0.47. Remote, repeated IPC significantly improves the healing of DFU. This simple, safe, inexpensive treatment method should be considered to be routinely applied to diabetic patients with DFU in addition to other regular treatment modalities.
Collapse
Affiliation(s)
| | | | | | | | - Ilana Harman-Boehm
- Department of Internal Medicine C and the Diabetes Unit, Soroka University Medical Center and Ben-Gurion University, Beer Sheva, Israel
| | | |
Collapse
|
5
|
Abstract
Stem cell transplantation therapy has emerged as a promising regenerative medicine for ischemic stroke and other neurodegenerative disorders. However, many issues and problems remain to be resolved before successful clinical applications of the cell-based therapy. To this end, some recent investigations have sought to benefit from well-known mechanisms of ischemic/hypoxic preconditioning. Ischemic/hypoxic preconditioning activates endogenous defense mechanisms that show marked protective effects against multiple insults found in ischemic stroke and other acute attacks. As in many other cell types, a sub-lethal hypoxic exposure significantly increases the tolerance and regenerative properties of stem cells and progenitor cells. So far, a variety of preconditioning triggers have been tested on different stem cells and progenitor cells. Preconditioned stem cells and progenitors generally show much better cell survival, increased neuronal differentiation, enhanced paracrine effects leading to increased trophic support, and improved homing to the lesion site. Transplantation of preconditioned cells helps to suppress inflammatory factors and immune responses, and promote functional recovery. Although the preconditioning strategy in stem cell therapy is still an emerging research area, accumulating information from reports over the last few years already indicates it as an attractive, if not essential, prerequisite for transplanted cells. It is expected that stem cell preconditioning and its clinical applications will attract more attention in both the basic research field of preconditioning as well as in the field of stem cell translational research. This review summarizes the most important findings in this active research area, covering the preconditioning triggers, potential mechanisms, mediators, and functional benefits for stem cell transplant therapy.
Collapse
Affiliation(s)
- Shan Ping Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
6
|
Biomarkers for ischemic preconditioning: finding the responders. J Cereb Blood Flow Metab 2014; 34:933-41. [PMID: 24643082 PMCID: PMC4050240 DOI: 10.1038/jcbfm.2014.42] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 02/11/2014] [Indexed: 12/27/2022]
Abstract
Ischemic preconditioning is emerging as an innovative and novel cytoprotective strategy to counter ischemic vascular disease. At the root of the preconditioning response is the upregulation of endogenous defense systems to achieve ischemic tolerance. Identifying suitable biomarkers to show that a preconditioning response has been induced remains a translational research priority. Preconditioning leads to a widespread genomic and proteonomic response with important effects on hemostatic, endothelial, and inflammatory systems. The present article summarizes the relevant preclinical studies defining the mechanisms of preconditioning, reviews how the human preconditioning response has been investigated, and which of these bioresponses could serve as a suitable biomarker. Human preconditioning studies have investigated the effects of preconditioning on coagulation, endothelial factors, and inflammatory mediators as well as on genetic expression and tissue blood flow imaging. A biomarker for preconditioning would significantly contribute to define the optimal preconditioning stimulus and the extent to which such a response can be elicited in humans and greatly aid in dose selection in the design of phase II trials. Given the manifold biologic effects of preconditioning a panel of multiple serum biomarkers or genomic assessments of upstream regulators may most accurately reflect the full spectrum of a preconditioning response.
Collapse
|
7
|
Wu J, Feng X, Huang H, Shou Z, Zhang X, Wang R, Chen Y, Chen J. Remote ischemic conditioning enhanced the early recovery of renal function in recipients after kidney transplantation: a randomized controlled trial. J Surg Res 2014; 188:303-8. [DOI: 10.1016/j.jss.2013.06.058] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/22/2013] [Accepted: 06/26/2013] [Indexed: 02/02/2023]
|
8
|
Ischemic preconditioning increases endothelial progenitor cell number to attenuate partial nephrectomy-induced ischemia/reperfusion injury. PLoS One 2013; 8:e55389. [PMID: 23383174 PMCID: PMC3561290 DOI: 10.1371/journal.pone.0055389] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 12/21/2012] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVES The objective of this study was to investigate the role of endothelial progenitor cells (EPCs) in the modulation of ischemia-reperfusion injury (IRI) in a partial nephrectomy (PN) rat model using early-phase ischemic preconditioning (IPC). MATERIALS AND METHODS Ninety male Sprague-Dawley rats were randomly divided into three groups following right-side nephrectomy: Sham-operated rats (surgery without vascular clamping); PN rats (renal blood vessels were clamped for 40 min and PN was performed); and IPC rats (pretreated with 15 min ischemia and 10 min reperfusion). At 1, 3, 6, 12, 24 h, and 3 days after reperfusion, the pool of circulating EPCs and kidneys were harvested. The extent of renal injury was assessed, along with EPC number, cell proliferation, angiogenesis, and vascular growth factor expression. RESULTS Pretreated rats exhibited significant improvements in renal function and morphology. EPC numbers in the kidneys were increased at 12 h following reperfusion in the IPC group as compared to the PN or Sham groups. Cell proliferation (including endothelial and tubular epithelial cells) and angiogenesis in peritubular capillaries were markedly increased in kidneys treated with IPC. In addition, vascular endothelial growth factor-A (VEGF-A) and stromal cell-derived factor-1α (SDF-1α) expression in the kidneys of pretreated rats was increased compared to rats subjected to PN. CONCLUSIONS OUR INVESTIGATION SUGGESTED THAT: (1) the early phase of IPC may attenuate renal IRI induced by PN; (2) EPCs play an important role in renal protection, involving promotion of cell proliferation and angiogenesis through release of several angiogenic factors.
Collapse
|