1
|
Paprocka J, Kaminiów K, Kozak S, Sztuba K, Emich-Widera E. Stem Cell Therapies for Cerebral Palsy and Autism Spectrum Disorder-A Systematic Review. Brain Sci 2021; 11:1606. [PMID: 34942908 PMCID: PMC8699362 DOI: 10.3390/brainsci11121606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/27/2021] [Accepted: 12/01/2021] [Indexed: 12/05/2022] Open
Abstract
Autism spectrum disorder (ASD) and cerebral palsy (CP) are some of the most common neurodevelopmental diseases. They have multifactorial origin, which means that each case may manifest differently from the others. In patients with ASD, symptoms associated with deficits in social communication and characteristic, repetitive types of behaviors or interests are predominant, while in patients with CP, motor disability is diagnosed with accompanying cognitive impairment of various degrees. In order to minimize their adverse effects, it is necessary to promptly diagnose and incorporate appropriate management, which can significantly improve patient quality of life. One of the therapeutic possibilities is stem cell therapy, already known from other branches of medicine, with high hopes for safe and effective treatment of these diseases. Undoubtedly, in the future we will have to face the challenges that will arise due to the still existing gaps in knowledge and the heterogeneity of this group of patients. The purpose of this systematic review is to summarize briefly the latest achievements and advances in stem cell therapy for ASD and CP.
Collapse
Affiliation(s)
- Justyna Paprocka
- Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland;
| | - Konrad Kaminiów
- Students’ Scientific Society, Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (K.K.); (S.K.); (K.S.)
| | - Sylwia Kozak
- Students’ Scientific Society, Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (K.K.); (S.K.); (K.S.)
| | - Karolina Sztuba
- Students’ Scientific Society, Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (K.K.); (S.K.); (K.S.)
| | - Ewa Emich-Widera
- Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland;
| |
Collapse
|
2
|
Ray SK, Mukherjee S. Clinical Practice of Umbilical Cord Blood Stem Cells in Transplantation and Regenerative Medicine - Prodigious Promise for Imminent Times. Recent Pat Biotechnol 2021; 16:16-34. [PMID: 34702158 DOI: 10.2174/1872208315666211026103227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/22/2021] [Accepted: 09/08/2021] [Indexed: 11/22/2022]
Abstract
The umbilical cord blood is usually disposed of as an unwanted material after parturition; however, today, it is viewed as a regenerative medication so as to create the organ tissues. This cord blood gathered from the umbilical cord is made up of mesenchymal stem cells, hematopoietic stem cells, and multipotent non-hematopoietic stem cells having many therapeutic effects as these stem cells are utilized to treat malignancies, hematological ailments, inborn metabolic problem, and immune deficiencies. Presently, numerous clinical applications for human umbilical cord blood inferred stem cells, as stem cell treatment initiate new research. These cells are showing such a boon to stem cell treatment; it is nevertheless characteristic that the prospect of conservation of umbilical cord blood is gaining impetus. Current research works have demonstrated that about 80 diseases, including cancer, can be treated or relieved utilizing umbilical cord blood stem cells, and every year, many transplants have been effectively done around the world. However, in terms of factors, including patient selection, cell preparation, dosing, and delivery process, the treatment procedure for therapy with minimally manipulated stem cells can be patented. It is also worth thinking about how this patent could affect cord blood banks. Meanwhile, the utilization of cord blood cells is controversial and adult-derived cells may not be as successful, so numerous clinicians have begun working with stem cells that are acquired from umbilical cord blood. This review epitomizes a change in outlook from what has been completed with umbilical cord blood cell research and cord blood banking on the grounds that cord blood cells do not require much in the method of handling for cryopreservation or for transplantation in regenerative medicine.
Collapse
Affiliation(s)
| | - Sukhes Mukherjee
- Department of Biochemistry. All India Institute of Medical Sciences. Bhopal, Madhya Pradesh-462020. 0
| |
Collapse
|
3
|
Siddesh SE, Gowda DM, Jain R, Gulati A, Patil GS, Anudeep TC, Jeyaraman N, Muthu S, Jeyaraman M. Placenta-derived mesenchymal stem cells (P-MSCs) for COVID-19 pneumonia-a regenerative dogma. Stem Cell Investig 2021; 8:3. [PMID: 33688491 PMCID: PMC7937692 DOI: 10.21037/sci-2020-034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 01/20/2021] [Indexed: 02/05/2023]
Abstract
With a robust rise in the number of COVID-19 cases, the World Health Organization (WHO) has declared COVID-19 as a pandemic on 11th March 2020. COVID-19 pandemic has invited global researchers from various biomedical and biotechnological researchers to plan various treatment modalities for combating this pandemic crisis. At present, there is the unavailability of specific treatment modality; however, researchers have thrown light into the exploration of mesenchymal stem cells (MSCs) to therapeutically perquisite in ameliorating immune-mediated progressive worsening in COVID-19 infected patients. Cellular therapy (CT) has revolutionized the treatment of untreatable diseases with a better clinical and functional outcome. Placenta, being considered as medical waste, contains a variety of stem cells, and hence placenta-derived MSCs (P-MSCs) owe potentiality for extrapolation to combat COVID-19 pandemic. The usage of P-MSCs in combating the COVID-19 pandemic has plausible challenges in terms of isolation, harvesting, expansion, characterization, and involvement of ethical concerns. This article provides an insight into dealing COVID-19 pandemic with P-MSCs as cell-based therapy embracing immunomodulatory and immune-privileged potentials and future prospects. Advocating prospective randomized controlled clinical trials ethically will concretely supplement for its efficacy and safety concerns.
Collapse
Affiliation(s)
| | - Dheemant Muniswamy Gowda
- Department of Dermatology, Rajarajeswari Medical College and Hospital, Bengaluru, Karnataka, India
| | - Rashmi Jain
- School of Medical Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
- Indian Stem Cell Study Group ISCSG, Lucknow, Uttar Pradesh, India
| | - Arun Gulati
- Indian Stem Cell Study Group ISCSG, Lucknow, Uttar Pradesh, India
- Department of Orthopaedics, Kalpana Chawla Government Medical College and Hospital, Karnal, Haryana, India
| | | | - Talagavadi Channaiah Anudeep
- Indian Stem Cell Study Group ISCSG, Lucknow, Uttar Pradesh, India
- Department of Plastic Surgery, Topiwala National Medical College and BYL Nair Ch. Hospital, Mumbai, Maharashtra, India
| | - Naveen Jeyaraman
- Indian Stem Cell Study Group ISCSG, Lucknow, Uttar Pradesh, India
- Department of Orthopaedics, Kasturba Medical College, MAHE University, Manipal, Karnataka, India
| | - Sathish Muthu
- Indian Stem Cell Study Group ISCSG, Lucknow, Uttar Pradesh, India
- Orthopaedic Research Group, Coimbatore, Tamil Nadu, India
| | - Madhan Jeyaraman
- Indian Stem Cell Study Group ISCSG, Lucknow, Uttar Pradesh, India
- Department of Orthopaedics, School of Medical Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
4
|
Jiao L, Sui Y, Yang G, Wang P, Li Q, Chen J, Liu L, Yang C. The construction of the evaluation system of nurses' post-training and the application of the system in 25 grade-A general hospitals in China. Nurs Open 2021; 8:482-497. [PMID: 33318856 PMCID: PMC7729556 DOI: 10.1002/nop2.651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/29/2020] [Accepted: 09/09/2020] [Indexed: 11/08/2022] Open
Abstract
Aims To make the evaluation more scientific, structured and systematic, this study aims to develop an evaluation index system for nurses training and to explore clinical effect of system. Design The evaluation index system of nurses' post-training was constructed using the Delphi method. Methods Introducing the system, we used the pre-work training of new nurses as an example for discussing the specific implementation scheme of the system. Twenty-five tertiary and first-class general hospitals in 14 provinces and municipalities were evaluated on the spot, and the application effect of the system was evaluated comprehensively. Results The index system consisted of three first-grade indexes, seven second-grade indexes and 23 third-grade indexes. There were three levels in teaching and training ability, and the distance had statistical significance.
Collapse
Affiliation(s)
- Linlin Jiao
- Key Laboratory of Clinical NursingNursing DepartmentLiaocheng People's HospitalLiaochengChina
| | - Yuanda Sui
- Department of Critical Care MedicineLiaocheng People's HospitalLiaochengChina
| | - Guihua Yang
- Nursing DepartmentLiaocheng People's HospitalLiaochengChina
| | - Pulin Wang
- Booking Information CenterLiaocheng People's HospitalLiaochengChina
| | - Qiaofeng Li
- Nursing DepartmentLiaocheng People's HospitalLiaochengChina
| | - Junhong Chen
- Breast CenterLiaocheng People's HospitalLiaochengChina
| | - Lili Liu
- Internal Medicine‐Cardiovascular DepartmentLiaocheng People's HospitalLiaochengChina
| | - Chunling Yang
- Nursing DepartmentLiaocheng People's HospitalLiaochengChina
| |
Collapse
|
5
|
Park M, Koh H, Lee YH. Repurposing the public cord blood bank inventory in Korea to enhance cord blood use. Transfus Apher Sci 2019; 58:332-336. [PMID: 31053332 DOI: 10.1016/j.transci.2019.03.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/11/2019] [Accepted: 03/16/2019] [Indexed: 11/26/2022]
Abstract
To enhance public cord blood (CB) use, we examined the current status of CB banking and tried to suggest revision of the banking standard. We retrospectively analyzed the use of stored public CB units between 2011 and 2016 using data from the CB information center in Korea. A total of 19,871 CB units were registered, and 363 units were selected for transplantation. The transplanted CB units contained significantly higher numbers of CD34+ cells than the average numbers in the stored CB units (5.5 × 10^6 vs. 3.2 × 10^6, p < 0.01). They also contained more total nucleated cells (TNCs) than the average of the stored CB units (13.7 × 10^8 vs. 10.7 × 10^8, p < 0.01). Only 49% of the stored CB units contained>10 × 10^8 TNCs, while 81% of the units transplanted contained >10 × 10^8 TNCs. The average length of cryopreservation of the transplanted CB units was 4.58 years and 95% of them had been stored for less than 10 years. During the study period, 18,763 CB units were requested for research, but only 5,888 were released. This discrepancy was mostly due to errors in regulatory and/or networking elements of the CB supply system. The data suggest that preserving CB units for less than 10 years and increasing the required minimum TNC count to 10 × 10^8 would produce an inventory containing units that were more useful for CBT. CB units that did not meet the requisite quality standards could be used for research, and systems for their fair distribution to researchers are needed.
Collapse
Affiliation(s)
- Meerim Park
- Center for Pediatric Cancer, National Cancer Center, Goyang, Republic of Korea
| | - Hani Koh
- Department of Pediatrics, Hanyang University Medical Center, Seoul, Republic of Korea
| | - Young-Ho Lee
- Department of Pediatrics, Hanyang University Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Abstract
The pace of advances in the world of science have created new opportunities and insights that give us new and more understanding of our nature and environment. Among the different fields of science, new medical sciences have drawn a great deal of attention among medical science researchers and the society. The hope for finding treatments for incurable diseases and further improvement of man's health is growing thanks to new medical technologies. Among the novel medical fields that have been extensively covered by medical and academic societies are cell therapy and gene therapy that are categorized under regenerative medicine. The present paper is an attempt to introduce the prospect of a curative cell-based therapy and new cellular and gene therapy drugs that have been recently approved by FDA (food and drug administration). Cellular and gene therapy are two very close fields of regenerative medicine and sciences which their targets and applications can be discussed together. What adds to the importance of this new field of science is the possibility to translate the hope for treatment of incurable diseases into actual treatments. What follows delves deeper into this new field of science and the drugs.
Collapse
Affiliation(s)
- Ali Golchin
- Student Research Committee, Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Tahereh Zarnoosheh Farahany
- Department of Biology, School of Advanced Technologies in Medicine, Islamic Azad University Medical Branch of Tehran, Tehran, Iran
| |
Collapse
|
7
|
Jiao Y, Li XY, Liu J. A New Approach to Cerebral Palsy Treatment: Discussion of the Effective Components of Umbilical Cord Blood and its Mechanisms of Action. Cell Transplant 2018; 28:497-509. [PMID: 30384766 PMCID: PMC7103597 DOI: 10.1177/0963689718809658] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cerebral palsy (CP) includes a group of persistent non-progressive disorders
affecting movement, muscle tone, and/or posture. The total economic loss during
the life-span of an individual with CP places a heavy financial burden on such
patients and their families worldwide; however, a complete cure is still
lacking. Umbilical cord blood (UCB)-based interventions are emerging as a
scientifically plausible treatment and possible cure for CP. Stem cells have
been used in many experimental CP animal models and achieved good results.
Compared with other types of stem cells, those from UCB have advantages in terms
of treatment safety and efficacy, ethics, non-neoplastic proliferation,
accessibility, ease of preservation, and regulation of immune responses, based
on findings in animal models and clinical trials. Currently, the use of
UCB-based interventions for CP is limited as the components of UCB are complex
and possess different therapeutic mechanisms. These can be categorized by three
aspects: homing and neuroregeneration, trophic factor secretion, and
neuroprotective effects. Our review summarizes the features of active components
of UCB and their therapeutic mechanism of action. This review highlights current
research findings and clinical evidence regarding UCB that contribute to
treatment suggestions, inform decision-making for therapeutic interventions, and
help to direct future research.
Collapse
Affiliation(s)
- Yang Jiao
- 1 Stem Cell Clinical Research Center, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Xiao-Yan Li
- 1 Stem Cell Clinical Research Center, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P.R. China
| | - Jing Liu
- 1 Stem Cell Clinical Research Center, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P.R. China
| |
Collapse
|
8
|
Dessels C, Alessandrini M, Pepper MS. Factors Influencing the Umbilical Cord Blood Stem Cell Industry: An Evolving Treatment Landscape. Stem Cells Transl Med 2018; 7:643-650. [PMID: 29777574 PMCID: PMC6127225 DOI: 10.1002/sctm.17-0244] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 04/03/2018] [Indexed: 12/19/2022] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) is common practice today for life threatening malignant and non-malignant diseases of the blood and immune systems. Umbilical cord blood (UCB) is rich in hematopoietic stem cells (HSCs) and is an attractive alternative to harvesting HSCs from bone marrow or when mobilized into peripheral blood. One of the most appealing attributes of UCB is that it can be banked for future use and hence provides an off-the-shelf solution for patients in urgent need of a transplantation. This has led to the establishment of publicly funded and private UCB banks, as seen by the rapid growth of the UCB industry in the early part of this century. However, from about 2010, the release of UCB units for treatment purposes plateaued and started to decrease year-on-year from 2013 to 2016. Our interest has been to investigate the factors contributing to these changes. Key drivers influencing the UCB industry include the emergence of haploidentical HSCT and the increasing use of UCB units for regenerative medicine purposes. Further influencing this dynamic is the high cost associated with UCB transplantation, the economic impact of sustaining public bank operations and an active private UCB banking sector. We foresee that these factors will continue in a tug-of-war fashion to shape and finally determine the fate of the UCB industry. Stem Cells Translational Medicine 2018 Stem Cells Translational Medicine 2018;7:643-650.
Collapse
Affiliation(s)
- Carla Dessels
- Institute for Cellular and Molecular Medicine, Department of Immunology, and South African Medical Research Council Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Marco Alessandrini
- Institute for Cellular and Molecular Medicine, Department of Immunology, and South African Medical Research Council Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.,Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Michael Sean Pepper
- Institute for Cellular and Molecular Medicine, Department of Immunology, and South African Medical Research Council Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|