1
|
Bahrami R, Nikparto N, Gharibpour F, Pourhajibagher M, Bahador A. The effect of light-emitting diode-mediated photobiomodulation therapy on orthodontic tooth movement: A literature review. Photodiagnosis Photodyn Ther 2025; 52:104488. [PMID: 39826598 DOI: 10.1016/j.pdpdt.2025.104488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
This study aims to review and analyze the impact of light-emitting diode (LED) photobiomodulation (PBM) therapy on orthodontic tooth movement. This non-invasive technique is proposed to reduce time-related side effects, such as white spot lesions, dental caries, and root resorption. Five studies were included in the review, comprising two animal studies (ages 10 and 12 weeks) and three human studies (ages ranging from 15 to 17 years). All studies applied PBM concurrently with force application using sliding mechanics for canine retraction (three studies) and molar protraction (two studies). Two studies employed LEDs with a wavelength of 850 nm, with an exposure time of 5 min daily. Another two studies used LEDs with a wavelength of 618 nm, with an exposure time of 20 min daily. In summary, these studies demonstrated that LED-mediated PBM enhanced orthodontic tooth movement by 33 % (a 1.36-fold increase) compared to the control group. The mean tooth movement per month was 1.55 ± 0.33 mm, which was higher than the control group's average of 1.06 ± 0.35 mm. Also, no studies demonstrated any side effects such as anchorage loss, root resorption, canine rotation, or tooth inclinations. In conclusion, LED-mediated PBM (at wavelengths of 618 nm and 850 nm) can accelerate orthodontic tooth movement without adverse effects, thanks to its biostimulatory properties. Given the advantages of LEDs over traditional lasers-particularly their lower cost and easier application-this method shows promise as a tool to accelerate tooth movement, potentially reducing treatment time and associated side effects.
Collapse
Affiliation(s)
- Rashin Bahrami
- Department of Orthodontics, School of Dentistry, Iran University of Medical Sciences, Tehran, Iran
| | | | - Fateme Gharibpour
- Dental Sciences Research Center, Department of Orthodontics, School of Dentistry, Guilan University of Medical Sciences, Rasht, Iran.
| | - Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Abbas Bahador
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
de Oliveira VXR, Soares PBF, Jorge GS, de Oliveira APL, Pigossi SC, de Oliveira GJPL. Effect of photobiomodulation with different wavelengths on periodontal repair in non-hyperglycemic and hyperglycemic rats. J Periodontal Res 2025; 60:246-254. [PMID: 39129240 DOI: 10.1111/jre.13332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/09/2024] [Accepted: 07/24/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Hyperglycemic conditions is associated with more severe periodontitis and poorer outcomes after nonsurgical periodontal treatment (NPT). Then, these patients are candidates for adjunctive therapy associated with NPT. This study evaluates the effect of photobiomodulation (PBMT) at different wavelengths on periodontal repair in non-hyperglycemic/hyperglycemic animals. MATERIALS AND METHODS Sixty-four rats were submitted to induction of periodontitis by ligatures. Hyperglycemia was induced in half of these animals, whereas the other half remained non-hyperglycemic. The animals were subdivided into 4 groups according to the PBMT protocol applied at the time of ligature removal (n = 8): CTR: Without PBMT; IRL: PBMT with infrared laser (808 nm); RL: PBMT with red laser (660 nm); and RL-IRL: PBMT with red (660 nm) and infrared laser (808 nm). After a period of 7 days, the animals were euthanized. The parameters assessed by microtomography were the bone volume relative to total tissue volume (BV/TV%), distance from the cemento-enamel junction to the top of the bone crest (CEJ-CB), trabecular thickness, space between trabeculae, and number of trabeculae. Additionally, the percentage of inflammatory cells, blood vessels, and connective tissue matrix were assessed by histomorphometric analysis. RESULTS PBMT reduced bone loss and increased trabecular density in hyperglycemic animals (p < .05), with RL being more effective in reducing linear bone loss (CEJ-CB), whereas RL-IRL was more effective in maintaining BV/TV%. PBMT reduced blood vessels and increased the connective tissue component in hyperglycemic animals (p < .05). RL-IRL reduced inflammatory cells regardless of the systemic condition of the animal (p < .05). CONCLUSION PBMT (RL, RL-IRL) improves the repair of periodontal tissues in hyperglycemic animals.
Collapse
Affiliation(s)
| | | | - Giovanna Savastano Jorge
- Department of Periodontology, School of Dentistry, Universidade Federal de Uberlândia - UFU, Uberlândia, Brazil
| | - Ana Paula Lima de Oliveira
- Department of Periodontology, School of Dentistry, Universidade Federal de Uberlândia - UFU, Uberlândia, Brazil
| | - Suzane Cristina Pigossi
- Department of Periodontology, School of Dentistry, Universidade Federal de Uberlândia - UFU, Uberlândia, Brazil
| | | |
Collapse
|
3
|
An Y, An L, Zhao J, Li Z, Wang J, Wu Y, Gong G, Li J, Ding C, Liu Q. Effect of photobiological regulation of green laser on orthodontic tooth retention in rats. Lasers Med Sci 2025; 40:24. [PMID: 39833493 PMCID: PMC11753330 DOI: 10.1007/s10103-025-04298-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Green lasers have a stronger effect on promoting osteoblast differentiation, which is critical for orthodontic tooth retention. This study investigated the impact of green laser photobiomodulation on orthodontic tooth retention in rats. A total of 100 male Sprague-Dawley rats were divided into two groups: Group A (control) and Group B (green laser irradiation). The left upper first molar was moved using a 0.20-mm nickel-titanium coil spring applying a force of 50 g for 3 weeks. The coil spring was then replaced with a 0.25-mm ligature wire to establish an orthodontic tooth retention model. Group B received green laser irradiation on the periodontium surrounding the molars. Retention devices were removed on days 1, 4, 10, 13, and 21. After 3 days of recurrence, the rats were sacrificed on days 4, 7, 13, 16, and 24. The left maxillary molar region was scanned using 3Shape to assess recurrence, and micro-computed tomography was used to evaluate alveolar bone density. Tissue staining was performed to observe periodontal remodeling and bone morphogenetic protein-2 (BMP-2) expression. Over time, the recurrence rate of the molar decreased significantly in both groups (P < 0.01), while alveolar bone density and BMP-2 expression increased (P < 0.01). Group B showed a lower recurrence rate and higher bone density, BMP-2 expression, and osteoblast counts than Group A. Green laser photobiomodulation promoted periodontal tissue remodeling, increased osteoblast numbers, stimulated new bone formation, and reduced the recurrence rate during orthodontic tooth retention in rats.
Collapse
Affiliation(s)
- Yang An
- Shanxi Medical University School and Hospital of Stomatology, Shanxi Bethune Hospital, Taiyuan, Shanxi, China.
| | - Li An
- Shanxi Cancer Hospital, Taiyuan, China
| | - Jianmei Zhao
- JiangduPeople's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | | | - Jun Wang
- Shanxi Bethune Hospital, Taiyuan, Shanxi, China
| | - Yang Wu
- Shanxi Bethune Hospital, Taiyuan, Shanxi, China
| | | | - Juan Li
- Jincheng People's Hospital, Jincheng, Shanxi, China
| | | | - Qingmei Liu
- Shanxi Medical University School and Hospital of Stomatology, Shanxi Bethune Hospital, Taiyuan, Shanxi, China.
| |
Collapse
|
4
|
Li T, Zhang L, Qu X, Lei B. Advanced Thermoactive Nanomaterials for Thermomedical Tissue Regeneration: Opportunities and Challenges. SMALL METHODS 2025; 9:e2400510. [PMID: 39588862 DOI: 10.1002/smtd.202400510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/06/2024] [Indexed: 11/27/2024]
Abstract
Nanomaterials usually possess remarkable properties, including excellent biocompatibility, unique physical and chemical characteristics, and bionic attributes, which make them highly promising for applications in tissue regeneration. Thermal therapy has emerged as a versatile approach for wound healing, nerve repair, bone regeneration, tumor therapy, and antibacterial tissue regeneration. By combining nanomaterials with thermal therapy, multifunctional nanomaterials with thermogenic effects and tissue regeneration capabilities can be engineered to achieve enhanced therapeutic outcomes. This study provides a comprehensive review of the effects of thermal stimulation on cellular and tissue regeneration. Furthermore, it highlights the applications of photothermal, magnetothermal, and electrothermal nanomaterials, and thermally responsive drug delivery systems in tissue engineering. In Addition, the bioactivities and biocompatibilities of several representative thermal nanomaterials are discussed. Finally, the challenges facing thermal nanomaterials are outlined, and future prospects in the field are presented with the aim of offering new opportunities and avenues for the utilization of thermal nanomaterials in tissue regeneration.
Collapse
Affiliation(s)
- Ting Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Long Zhang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Xiaoyan Qu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Bo Lei
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710054, China
| |
Collapse
|
5
|
Laffitte CM, Sabino VG, Rosado MVDCS, Carvalho VLAD, Miguel MCDC, Moura CEBD, Barboza CAG. Effect of nutritional stress and photobiomodulation protocol on in vitro viability and proliferation of murine preosteoblast cells. Lasers Med Sci 2024; 39:289. [PMID: 39643747 DOI: 10.1007/s10103-024-04245-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
This study aimed to assess the impact of nutritional conditions and irradiation parameters on the viability and proliferation of murine preosteoblasts. MC3T3-E1 cells were maintained under standard culture conditions (αMEM supplemented with 10% fetal bovine serum) or nutritional deficit conditions (αMEM without serum) and irradiated or not (control) with an InGaAlP diode laser at wavelengths of 660 nm (red) or 790 nm (infrared), with doses of 1, 4, or 6 J/cm², in a single dose in continuous mode. Cell viability and proliferation were assessed 24, 48, and 72 h after irradiation using the Alamar blue reduction assay. The cell cycle and events related to cell death were evaluated via propidium iodide (PI) staining and Annexin V/PI assays, respectively, through flow cytometry. The data revealed that in cells cultured with normal nutrition (10% FBS), there was no significant difference (p > 0.05) in cell viability or proliferation among the different irradiation protocols. In contrast, in the experiments conducted under nutritional deficiency, the infrared laser at a dose of 6 J/cm² significantly increased (p < 0.05) cell viability and proliferation compared with those of the control group at 72 h. The data were confirmed by cell cycle and cell death events (Annexin V/PI) assays. These results suggest that in vitro PBM yields more consistent biostimulatory effects on pre-osteoblasts subjected to nutritional deficiency, highlighting the need for attention to simulate these conditions in studies with laser therapy in in vitro bone disease models and in in vitro experiments using PBM for bone tissue engineering.
Collapse
|
6
|
Escobar LM, Grajales M, Bendahan Z, Jaimes S, Baldión P. Osteoblastic differentiation and changes in the redox state in pulp stem cells by laser treatment. Lasers Med Sci 2024; 39:87. [PMID: 38443654 PMCID: PMC10914891 DOI: 10.1007/s10103-024-04016-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 02/05/2024] [Indexed: 03/07/2024]
Abstract
The aim of this study was to determine the effect of low-level laser therapy (LLLT) on cell proliferation, mitochondrial membrane potential changes (∆Ψm), reactive oxygen species (ROS), and osteoblast differentiation of human dental pulp stem cells (hDPSCs). These cells were irradiated with 660- and 940-nm lasers for 5 s, 50 s, and 180 s. Cell proliferation was assessed using the resazurin assay, cell differentiation by RUNX2 and BMP2 expression, and the presence of calcification nodules using alizarin-red S staining. ROS was determined by the dichlorofluorescein-diacetate technique and changes in ∆Ψm by the tetramethylrhodamine-ester assay. Data were analyzed by a Student's t-test and Mann-Whitney U test. The 940-nm wavelength for 5 and 50 s increased proliferation at 4 days postirradiation. After 8 days, a significant decrease in proliferation was observed in all groups. Calcification nodules were evident in all groups, with a greater staining intensity in cells treated with a 940-nm laser for 50 s, an effect that correlated with increased RUNX2 and BMP2 expression. ROS production and Δψm increased independently of irradiation time. In conclusion, photobiomodulation (PBM) with LLLT induced morphological changes and reduced cell proliferation rate, which was associated with osteoblastic differentiation and increased ROS and Δψm, independent of wavelength and time.
Collapse
Affiliation(s)
- Lina M Escobar
- Grupo de Investigaciones Básicas y Aplicadas en Odontología, IBAPO Facultad de Odontología, Universidad Nacional de Colombia, Carrera 30 No. 45-03, Bloque 210, 111321, Bogotá, Colombia.
| | - Marggie Grajales
- Departamento de Salud Oral, Facultad de Odontología, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Zita Bendahan
- Unidad de Manejo Integral de Malformaciones Craneofaciales UMIMC, Facultad de Odontología, Universidad El Bosque, Bogotá, Colombia
| | - Sully Jaimes
- Grupo de Investigaciones Básicas y Aplicadas en Odontología, IBAPO Facultad de Odontología, Universidad Nacional de Colombia, Carrera 30 No. 45-03, Bloque 210, 111321, Bogotá, Colombia
| | - Paula Baldión
- Departamento de Salud Oral, Facultad de Odontología, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
7
|
Gonçalves A, Monteiro F, Oliveira S, Costa I, Catarino SO, Carvalho Ó, Padrão J, Zille A, Pinho T, Silva FS. Optimization of a Photobiomodulation Protocol to Improve the Cell Viability, Proliferation and Protein Expression in Osteoblasts and Periodontal Ligament Fibroblasts for Accelerated Orthodontic Treatment. Biomedicines 2024; 12:180. [PMID: 38255285 PMCID: PMC10813108 DOI: 10.3390/biomedicines12010180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Numerous pieces of evidence have supported the therapeutic potential of photobiomodulation (PBM) to modulate bone remodeling on mechanically stimulated teeth, proving PBM's ability to be used as a coadjuvant treatment to accelerate orthodontic tooth movement (OTM). However, there are still uncertainty and discourse around the optimal PBM protocols, which hampers its optimal and consolidated clinical applicability. Given the differential expression and metabolic patterns exhibited in the tension and compression sides of orthodontically stressed teeth, it is plausible that different types of irradiation may be applied to each side of the teeth. In this sense, this study aimed to design and implement an optimization protocol to find the most appropriate PBM parameters to stimulate specific bone turnover processes. To this end, three levels of wavelength (655, 810 and 940 nm), two power densities (5 and 10 mW/cm2) and two regimens of single and multiple sessions within three consecutive days were tested. The biological response of osteoblasts and periodontal ligament (PDL) fibroblasts was addressed by monitoring the PBM's impact on the cellular metabolic activity, as well as on key bone remodeling mediators, including alkaline phosphatase (ALP), osteoprotegerin (OPG) and receptor activator of nuclear factor κ-B ligand (RANK-L), each day. The results suggest that daily irradiation of 655 nm delivered at 10 mW/cm2, as well as 810 and 940 nm light at 5 mW/cm2, lead to an increase in ALP and OPG, potentiating bone formation. In addition, irradiation of 810 nm at 5 mW/cm2 delivered for two consecutive days and suspended by the third day promotes a downregulation of OPG expression and a slight non-significant increase in RANK-L expression, being suitable to stimulate bone resorption. Future studies in animal models may clarify the impact of PBM on bone formation and resorption mediators for longer periods and address the possibility of testing different stimulation periodicities. The present in vitro study offers valuable insights into the effectiveness of specific PBM protocols to promote osteogenic and osteoclastogenesis responses and therefore its potential to stimulate bone formation on the tension side and bone resorption on the compression side of orthodontically stressed teeth.
Collapse
Affiliation(s)
- Aline Gonçalves
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), CESPU, 4585-116 Gandra, Portugal; (A.G.); (I.C.); (T.P.)
- Center for MicroElectroMechanical Systems (CMEMS), University of Minho, Campus Azurém, 4800-058 Guimarães, Portugal; (S.O.); (S.O.C.); (Ó.C.); (F.S.S.)
| | - Francisca Monteiro
- Center for MicroElectroMechanical Systems (CMEMS), University of Minho, Campus Azurém, 4800-058 Guimarães, Portugal; (S.O.); (S.O.C.); (Ó.C.); (F.S.S.)
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Sofia Oliveira
- Center for MicroElectroMechanical Systems (CMEMS), University of Minho, Campus Azurém, 4800-058 Guimarães, Portugal; (S.O.); (S.O.C.); (Ó.C.); (F.S.S.)
| | - Inês Costa
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), CESPU, 4585-116 Gandra, Portugal; (A.G.); (I.C.); (T.P.)
| | - Susana O. Catarino
- Center for MicroElectroMechanical Systems (CMEMS), University of Minho, Campus Azurém, 4800-058 Guimarães, Portugal; (S.O.); (S.O.C.); (Ó.C.); (F.S.S.)
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Óscar Carvalho
- Center for MicroElectroMechanical Systems (CMEMS), University of Minho, Campus Azurém, 4800-058 Guimarães, Portugal; (S.O.); (S.O.C.); (Ó.C.); (F.S.S.)
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Jorge Padrão
- Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, Azurém Campus, 4800-058 Guimarães, Portugal; (J.P.); (A.Z.)
| | - Andrea Zille
- Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, Azurém Campus, 4800-058 Guimarães, Portugal; (J.P.); (A.Z.)
| | - Teresa Pinho
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), CESPU, 4585-116 Gandra, Portugal; (A.G.); (I.C.); (T.P.)
- IBMC—Instituto Biologia Molecular e Celular, i3S—Instituto de Inovação e Investigação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Filipe S. Silva
- Center for MicroElectroMechanical Systems (CMEMS), University of Minho, Campus Azurém, 4800-058 Guimarães, Portugal; (S.O.); (S.O.C.); (Ó.C.); (F.S.S.)
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| |
Collapse
|
8
|
Takeuchi Y, Aoki A, Hiratsuka K, Chui C, Ichinose A, Aung N, Kitanaka Y, Hayashi S, Toyoshima K, Iwata T, Arakawa S. Application of Different Wavelengths of LED Lights in Antimicrobial Photodynamic Therapy for the Treatment of Periodontal Disease. Antibiotics (Basel) 2023; 12:1676. [PMID: 38136710 PMCID: PMC10740818 DOI: 10.3390/antibiotics12121676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Therapeutic light has been increasingly used in clinical dentistry for surgical ablation, disinfection, bio-stimulation, reduction in inflammation, and promotion of wound healing. Photodynamic therapy (PDT), a type of phototherapy, has been used to selectively destroy tumor cells. Antimicrobial PDT (a-PDT) is used to inactivate causative bacteria in infectious oral diseases, such as periodontitis. Several studies have reported that this minimally invasive technique has favorable therapeutic outcomes with a low probability of adverse effects. PDT is based on the photochemical reaction between light, a photosensitizer, and oxygen, which affects its efficacy. Low-power lasers have been predominantly used in phototherapy for periodontal treatments, while light-emitting diodes (LEDs) have received considerable attention as a novel light source in recent years. LEDs can emit broad wavelengths of light, from infrared to ultraviolet, and the lower directivity of LED light appears to be suitable for plaque control over large and complex surfaces. In addition, LED devices are small, lightweight, and less expensive than lasers. Although limited evidence exists on LED-based a-PDT for periodontitis, a-PDT using red or blue LED light could be effective in attenuating bacteria associated with periodontal diseases. LEDs have the potential to provide a new direction for light therapy in periodontics.
Collapse
Affiliation(s)
- Yasuo Takeuchi
- Department of Lifetime Oral Health Care Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan;
| | - Akira Aoki
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (A.I.); (S.H.); (K.T.); (T.I.)
| | - Koichi Hiratsuka
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, Chiba 271-8587, Japan;
| | | | - Akiko Ichinose
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (A.I.); (S.H.); (K.T.); (T.I.)
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan
| | - Nay Aung
- Laser Light Dental Clinic Periodontal and Implant Center, Yangon 11241, Myanmar;
| | - Yutaro Kitanaka
- Department of Oral Diagnosis and General Dentistry, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan;
| | - Sakura Hayashi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (A.I.); (S.H.); (K.T.); (T.I.)
| | - Keita Toyoshima
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (A.I.); (S.H.); (K.T.); (T.I.)
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan; (A.I.); (S.H.); (K.T.); (T.I.)
| | - Shinich Arakawa
- Department of Lifetime Oral Health Care Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan;
| |
Collapse
|
9
|
Liu X, Hou Y, Yang M, Xin X, Deng Y, Fu R, Xiang X, Cao N, Liu X, Yu W, Yang B, Zhou Y. N-Acetyl-l-cysteine-Derived Carbonized Polymer Dots with ROS Scavenging via Keap1-Nrf2 Pathway Regulate Alveolar Bone Homeostasis in Periodontitis. Adv Healthc Mater 2023; 12:e2300890. [PMID: 37279380 DOI: 10.1002/adhm.202300890] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/30/2023] [Indexed: 06/08/2023]
Abstract
Periodontitis is a type of chronic inflammatory oral disease characterized by the destruction of periodontal connective tissue and progressive alveolar bone resorption. As oxidative stress is the key cause of periodontitis in the early periodontal microenvironment, antioxidative therapy has been considered a viable treatment for periodontitis. However, more stable and effective reactive oxygen species (ROS)-scavenging nanomedicines are still highly needed due to the instability of traditional antioxidants. Herein, a new type of N-acetyl-l-cysteine (NAC)-derived red fluorescent carbonized polymer dots (CPDs) has been synthesized with excellent biocompatibility, which can serve as an extracellular antioxidant to scavenge ROS effectively. Moreover, NAC-CPDs can promote osteogenic differentiation in human periodontal ligament cells (hPDLCs) under H2 O2 stimulation. In addition, NAC-CPDs are capable of targeted accumulation in alveolar bone in vivo, reducing the level of alveolar bone resorption in periodontitis mice, as well as performing fluorescence imaging in vitro and in vivo. In terms of mechanism, NAC-CPDs may regulate redox homeostasis and promote bone formation in the periodontitis microenvironment by modulating the kelch-like ECH-associated protein l (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. This study provides a new strategy for the application of CPDs theranostic nanoplatform for periodontitis.
Collapse
Affiliation(s)
- Xinchan Liu
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
| | - Yubo Hou
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
| | - Mingxi Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130021, P. R. China
| | - Xirui Xin
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
| | - Yu Deng
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
| | - Ruobing Fu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
| | - Xingchen Xiang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
| | - Niuben Cao
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
| | - Xiaomeng Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
| | - Weixian Yu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
- Department of Periodontology, Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130021, P. R. China
| | - Yanmin Zhou
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
| |
Collapse
|
10
|
Xu C, Wang Z, Liu Y, Wei B, Liu X, Duan K, Zhou P, Xie Z, Wu M, Guan J. Extracellular vesicles derived from bone marrow mesenchymal stem cells loaded on magnetic nanoparticles delay the progression of diabetic osteoporosis via delivery of miR-150-5p. Cell Biol Toxicol 2023; 39:1257-1274. [PMID: 36112264 PMCID: PMC10425527 DOI: 10.1007/s10565-022-09744-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 06/20/2022] [Indexed: 11/02/2022]
Abstract
Extracellular vesicles derived from bone marrow mesenchymal stem cells (BMSC-EVs) are emerged as carriers of therapeutic targets against bone disorders, yet its isolation and purification are limited with recent techniques. Magnetic nanoparticles (MNPs) can load EVs with a unique targeted drug delivery system. We constructed gold-coated magnetic nanoparticles (GMNPs) by decorating the surface of the Fe3O4@SiO2 core and a silica shell with poly(ethylene glycol) (PEG)-aldehyde (CHO) and examined the role of BMSC-EVs loaded on GMNPs in diabetic osteoporosis (DO). The osteoporosis-related differentially expressed miR-150-5p was singled out by microarray analysis. DO models were then established in Sprague-Dawley rats by streptozotocin injection, where poor expression of miR-150-5p was validated in the bone tissues. Next, GMNPE was prepared by combining GMNPs with anti-CD63, after which osteoblasts were co-cultured with the GMNPE-BMSC-EVs. The re-expression of miR-150-5p facilitated osteogenesis in osteoblasts. GMNPE could promote the enrichment of EVs in the bone tissues of DO rats. BMSC-EVs delivered miR-150-5p to osteoblasts, where miR-150-5p targeted MMP14 and consequently activated Wnt/β-catenin pathway. This effect contributed to the enhancement of osteoblast proliferation and maturation. Furthermore, GMNPE enhanced the EV-based delivery of miR-150-5p to regulate the MMP14/Wnt/β-catenin axis, resulting in promotion of osteogenesis. Overall, our findings suggest the potential of GMNP-BMSC-EVs to strengthen osteoblast proliferation and maturation in DO, showing promise as an appealing drug delivery strategy against DO. 1. GMNPs-BMSCs-EVs-miR-150-5p promotes the osteogenesis of DO rats. 2. miR-150-5p induces osteoblast proliferation and maturation by targeting MMP14. 3. Inhibition of MMP14 activates Wnt/β-catenin and increases osteogenesis. 4. miR-150-5p activates the Wnt/β-catenin pathway by downregulating MMP14.
Collapse
Affiliation(s)
- Chen Xu
- Department of Orthopedics, the First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233000, Anhui Province, People's Republic of China
- Anhui Province Key Laboratory of Tissue Transplantation (Bengbu Medical College), Bengbu, 233000, Anhui Province, People's Republic of China
- Jinan University, Guangzhou, 510000, Guangdong Province, People's Republic of China
| | - Zhaodong Wang
- Department of Orthopedics, the First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233000, Anhui Province, People's Republic of China
| | - Yajun Liu
- Department of Orthopedics, the First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233000, Anhui Province, People's Republic of China
| | - Bangguo Wei
- Department of Orthopedics, the First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233000, Anhui Province, People's Republic of China
| | - Xiangyu Liu
- Department of Orthopedics, the First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233000, Anhui Province, People's Republic of China
| | - Keyou Duan
- Department of Orthopedics, the First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233000, Anhui Province, People's Republic of China
| | - Pinghui Zhou
- Department of Orthopedics, the First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233000, Anhui Province, People's Republic of China
- Anhui Province Key Laboratory of Tissue Transplantation (Bengbu Medical College), Bengbu, 233000, Anhui Province, People's Republic of China
| | - Zhao Xie
- Third Military Medical University of Chinese PLA, Chongqing, 400038, People's Republic of China
| | - Min Wu
- Department of Orthopedics, the First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233000, Anhui Province, People's Republic of China.
| | - Jianzhong Guan
- Department of Orthopedics, the First Affiliated Hospital of Bengbu Medical College, No. 287, Changhuai Road, Bengbu, 233000, Anhui Province, People's Republic of China.
- Anhui Province Key Laboratory of Tissue Transplantation (Bengbu Medical College), Bengbu, 233000, Anhui Province, People's Republic of China.
- Jinan University, Guangzhou, 510000, Guangdong Province, People's Republic of China.
| |
Collapse
|
11
|
Jia Z, Ma H, Liu J, Yan X, Liu T, Cheng YY, Li X, Wu S, Zhang J, Song K. Preparation and Characterization of Polylactic Acid/Nano Hydroxyapatite/Nano Hydroxyapatite/Human Acellular Amniotic Membrane (PLA/nHAp/HAAM) Hybrid Scaffold for Bone Tissue Defect Repair. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1937. [PMID: 36903052 PMCID: PMC10003763 DOI: 10.3390/ma16051937] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/06/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Bone tissue engineering is a novel and efficient repair method for bone tissue defects, and the key step of the bone tissue engineering repair strategy is to prepare non-toxic, metabolizable, biocompatible, bone-induced tissue engineering scaffolds of suitable mechanical strength. Human acellular amniotic membrane (HAAM) is mainly composed of collagen and mucopolysaccharide; it has a natural three-dimensional structure and no immunogenicity. In this study, a polylactic acid (PLA)/Hydroxyapatite (nHAp)/Human acellular amniotic membrane (HAAM) composite scaffold was prepared and the porosity, water absorption and elastic modulus of the composite scaffold were characterized. After that, the cell-scaffold composite was constructed using newborn Sprague Dawley (SD) rat osteoblasts to characterize the biological properties of the composite. In conclusion, the scaffolds have a composite structure of large and small holes with a large pore diameter of 200 μm and a small pore diameter of 30 μm. After adding HAAM, the contact angle of the composite decreases to 38.7°, and the water absorption reaches 249.7%. The addition of nHAp can improve the scaffold's mechanical strength. The degradation rate of the PLA+nHAp+HAAM group was the highest, reaching 39.48% after 12 weeks. Fluorescence staining showed that the cells were evenly distributed and had good activity on the composite scaffold; the PLA+nHAp+HAAM scaffold has the highest cell viability. The adhesion rate to HAAM was the highest, and the addition of nHAp and HAAM could promote the rapid adhesion of cells to scaffolds. The addition of HAAM and nHAp can significantly promote the secretion of ALP. Therefore, the PLA/nHAp/HAAM composite scaffold can support the adhesion, proliferation and differentiation of osteoblasts in vitro which provide sufficient space for cell proliferation, and is suitable for the formation and development of solid bone tissue.
Collapse
Affiliation(s)
- Zhilin Jia
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
- Department of Hematology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Hailin Ma
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jiaqi Liu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xinyu Yan
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Tianqing Liu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yuen Yee Cheng
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Xiangqin Li
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Shuo Wu
- Department of Medical Oncology, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| | - Jingying Zhang
- Key Laboratory of 3D Printing Technology in Stomatology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Kedong Song
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
12
|
Interferon-gamma regulates the levels of bone formation effectors in a stage-dependent manner. Mol Biol Rep 2022; 49:12007-12015. [DOI: 10.1007/s11033-022-07993-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 09/29/2022] [Indexed: 11/26/2022]
|
13
|
Shi W, Wang Z, Bian L, Wu Y, HuiYa M, Zhou Y, Zhang Z, Wang Q, Zhao P, Lu X. Periodic Heat Stress Licenses EMSC Differentiation into Osteoblasts via YAP Signaling Pathway Activation. Stem Cells Int 2022; 2022:3715471. [PMID: 35355590 PMCID: PMC8960005 DOI: 10.1155/2022/3715471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/16/2021] [Accepted: 01/15/2022] [Indexed: 11/18/2022] Open
Abstract
Background The repair and regeneration of large bone defects represent highly challenging tasks in bone tissue engineering. Although recent studies have shown that osteogenesis is stimulated by periodic heat stress, the thermal regulation of osteogenic differentiation in ectomesenchymal stem cells (EMSCs) is not well studied. Methods and Results In this study, the direct effects of periodic heat stress on the differentiation of EMSCs into osteoblasts were investigated. EMSCs derived from rat nasal respiratory mucosa were seeded onto culture plates, followed by 1 h of heat stress at 41°C every 7 days during osteogenic differentiation. Based on the results of the present study, periodic heating increases alkaline phosphatase (ALP) activity, upregulates osteogenic-related proteins, and promotes EMSC mineralization. In particular, increased YAP nuclear translocation and YAP knockdown inhibited osteogenic differentiation induced by heat stress. Furthermore, the expression and activity of transglutaminase 2 (TG2) were significantly increased after YAP nuclear translocation. Conclusion Together, these results indicate that YAP plays a key role in regulating cellular proteostasis under stressful cellular conditions by modulating the TG2 response.
Collapse
Affiliation(s)
- Wentao Shi
- Jiangnan University Affiliated Hospital, Wuxi, Jiangsu Province 214122, China
| | - Zhe Wang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province 212001, China
| | - Lu Bian
- Jiangnan University Affiliated Hospital, Wuxi, Jiangsu Province 214122, China
| | - Yiqing Wu
- Jiangnan University Affiliated Hospital, Wuxi, Jiangsu Province 214122, China
| | - Mei HuiYa
- Jiangnan University Affiliated Hospital, Wuxi, Jiangsu Province 214122, China
| | - Yanjun Zhou
- School of Medicine, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Zhijian Zhang
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province 212001, China
| | - Qing Wang
- Affiliated Wuxi Second Hospital, Nanjing Medical University, Wuxi, Jiangsu Province 214122, China
| | - Peng Zhao
- School of Medicine, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Xiaojie Lu
- Jiangnan University Affiliated Hospital, Wuxi, Jiangsu Province 214122, China
- School of Medicine, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| |
Collapse
|
14
|
Agas D, Hanna R, Benedicenti S, De Angelis N, Sabbieti MG, Amaroli A. Photobiomodulation by Near-Infrared 980-nm Wavelengths Regulates Pre-Osteoblast Proliferation and Viability through the PI3K/Akt/Bcl-2 Pathway. Int J Mol Sci 2021; 22:ijms22147586. [PMID: 34299204 PMCID: PMC8304212 DOI: 10.3390/ijms22147586] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/28/2021] [Accepted: 07/09/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND bone tissue regeneration remains a current challenge. A growing body of evidence shows that mitochondrial dysfunction impairs osteogenesis and that this organelle may be the target for new therapeutic options. Current literature illustrates that red and near-infrared light can affect the key cellular pathways of all life forms through interactions with photoacceptors within the cells' mitochondria. The current study aims to provide an understanding of the mechanisms by which photobiomodulation (PBM) by 900-nm wavelengths can induce in vitro molecular changes in pre-osteoblasts. METHODS The PubMed, Scopus, Cochrane, and Scholar databases were used. The manuscripts included in the narrative review were selected according to inclusion and exclusion criteria. The new experimental set-up was based on irradiation with a 980-nm laser and a hand-piece with a standard Gaussian and flat-top beam profile. MC3T3-E1 pre-osteoblasts were irradiated at 0.75, 0.45, and 0.20 W in continuous-wave emission mode for 60 s (spot-size 1 cm2) and allowed to generate a power density of 0.75, 0.45, and 0.20 W/cm2 and a fluence of 45, 27, and 12 J/cm2, respectively. The frequency of irradiation was once, three times (alternate days), or five times (every day) per week for two consecutive weeks. Differentiation, proliferation, and cell viability and their markers were investigated by immunoblotting, immunolabelling, fluorescein-FragELTM-DNA, Hoechst staining, and metabolic activity assays. RESULTS AND CONCLUSIONS The 980-nm wavelength can photobiomodulate the pre-osteoblasts, regulating their metabolic schedule. The cellular signal activated by 45 J/cm2, 0.75 W and 0.75 W/cm2 consist of the PI3K/Akt/Bcl-2 pathway; differentiation markers were not affected, nor do other parameters seem to stimulate the cells. Our previous and present data consistently support the window effect of 980 nm, which has also been described in extracted mitochondria, through activation of signalling PI3K/Akt/Bcl-2 and cyclin family, while the Wnt and Smads 2/3-β-catenin pathway was induced by 55 J/cm2, 0.9 W and 0.9 W/cm2.
Collapse
Affiliation(s)
- Dimitrios Agas
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, 62032 Macerata, Italy; (D.A.); (M.G.S.)
| | - Reem Hanna
- Department of Oral Surgery, Dental Institute, King’s College Hospital NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK;
- Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy; (S.B.); (N.D.A.)
| | - Stefano Benedicenti
- Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy; (S.B.); (N.D.A.)
| | - Nicola De Angelis
- Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy; (S.B.); (N.D.A.)
| | - Maria Giovanna Sabbieti
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, 62032 Macerata, Italy; (D.A.); (M.G.S.)
| | - Andrea Amaroli
- Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy; (S.B.); (N.D.A.)
- Department of Orthopaedic Dentistry, First Moscow State Medical University (Sechenov University), 11991 Moscow, Russia
- Correspondence:
| |
Collapse
|