1
|
Zhi Y, Guo Y, Li S, He X, Wei H, Laster K, Wu Q, Zhao D, Xie J, Ruan S, Lemoine NR, Li H, Dong Z, Liu K. FBL promotes hepatocellular carcinoma tumorigenesis and progression by recruiting YY1 to enhance CAD gene expression. Cell Death Dis 2025; 16:348. [PMID: 40289107 PMCID: PMC12034760 DOI: 10.1038/s41419-025-07684-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 04/13/2025] [Accepted: 04/17/2025] [Indexed: 04/30/2025]
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. Accumulating evidence suggests that epigenetic dysregulation contributes to the initiation and progression of HCC. We aimed to investigate key epigenetic regulators that contribute to tumorigenesis and progression, providing a theoretical basis for targeted therapy for HCC. We performed a comprehensive epigenetic analysis of differentially expressed genes in LIHC from the TCGA database. We identified fibrillarin (FBL), an rRNA 2'-O-methyltransferase, as an essential contributor to HCC. A series of in vitro and in vivo biological experiments were performed to investigate the potential mechanisms of FBL. FBL knockdown suppressed the proliferation of HCC cells. In vivo studies using cell-derived xenograft (CDX), patient-derived xenograft (PDX), and diethylnitrosamine (DEN)-induced HCC models in Fbl liver-specific knockout mice demonstrated the critical role of FBL in HCC carcinogenesis and progression. Mechanistically, FBL regulates the expression of CAD in HCC cells by recruiting YY1 to the CAD promoter region. We also revealed that fludarabine phosphate is a novel inhibitor of FBL and can inhibit HCC growth in vitro and in vivo. The antitumor activity of lenvatinib has been shown to be synergistically enhanced by fludarabine phosphate. Our study highlights the cancer-promoting role of the FBL-YY1-CAD axis in HCC and identifies fludarabine phosphate as a novel inhibitor of FBL. A schematic diagram depicting the FBL-YY1-CAD signaling pathway and its regulatory role in HCC progression.
Collapse
Affiliation(s)
- Yafei Zhi
- State Key Laboratory of Metabolic Dysregulation & Prevention and Treatment of Esophageal Cancer; The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou, China
- Innovation Center of Basic Research for Metabolic-Associated Fatty Liver Disease, Ministry of Education of China, Zhengzhou, China
- Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, China
- Cancer Chemistry International Collaboration Laboratory, Zhengzhou, China
| | - Yan Guo
- State Key Laboratory of Metabolic Dysregulation & Prevention and Treatment of Esophageal Cancer; The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Shiliang Li
- Innovation Center for AI and Drug Discovery, East China Normal University, Shanghai, China
| | - Xinyu He
- State Key Laboratory of Metabolic Dysregulation & Prevention and Treatment of Esophageal Cancer; The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Huifang Wei
- State Key Laboratory of Metabolic Dysregulation & Prevention and Treatment of Esophageal Cancer; The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Kyle Laster
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Qiong Wu
- State Key Laboratory of Metabolic Dysregulation & Prevention and Treatment of Esophageal Cancer; The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Dengyun Zhao
- State Key Laboratory of Metabolic Dysregulation & Prevention and Treatment of Esophageal Cancer; The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Jinxin Xie
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Shanshan Ruan
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Nicholas R Lemoine
- Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy; The School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China.
- Center for Cancer Biomarkers & Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK.
| | - Honglin Li
- Innovation Center for AI and Drug Discovery, East China Normal University, Shanghai, China.
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China.
- Lingang Laboratory, Shanghai, China.
| | - Zigang Dong
- State Key Laboratory of Metabolic Dysregulation & Prevention and Treatment of Esophageal Cancer; The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou, China.
- Innovation Center of Basic Research for Metabolic-Associated Fatty Liver Disease, Ministry of Education of China, Zhengzhou, China.
- Cancer Chemistry International Collaboration Laboratory, Zhengzhou, China.
| | - Kangdong Liu
- State Key Laboratory of Metabolic Dysregulation & Prevention and Treatment of Esophageal Cancer; The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.
- Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou, China.
- Innovation Center of Basic Research for Metabolic-Associated Fatty Liver Disease, Ministry of Education of China, Zhengzhou, China.
- Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, China.
- Cancer Chemistry International Collaboration Laboratory, Zhengzhou, China.
| |
Collapse
|
2
|
Priya P, Shivashankar VB, Rangarajan PN. Synthetic transcription factors establish the function of nine amino acid transactivation domains of Komagataella phaffii Mxr1. J Biol Chem 2025; 301:108211. [PMID: 39855340 PMCID: PMC11872449 DOI: 10.1016/j.jbc.2025.108211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/09/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
The zinc finger (ZF) transcription factor Mxr1 (methanol expression regulator 1) of the methylotrophic yeast Komagataella phaffii (formerly Pichia pastoris) harbors a DNA-binding domain consisting of two C2H2 ZFs (Mxr1ZF) between amino acids 36 and 101 and a previously identified nine amino acid transactivation domain (9aaTAD) between residues 365 and 373 (TAD A, QELESSLNA). Beyond this, 21 putative 9aaTADs (designated TAD B-V) located between amino acids 401 and 1155 remain to be characterized. Here, we demonstrate that a compact synthetic transcription factor composed of Mxr1ZF and three tandem copies of TAD A can activate the transcription of Mxr1 target genes for ethanol and methanol metabolism with specificity and efficiency comparable to the full-length protein. Expression of individual synthetic transcription factors containing Mxr1ZF and each of the 20 putative 9aaTADs in K. phaffii Δmxr1 strain revealed that 10 of these putative TADs are functional, capable of reversing the growth defect of the mutant and activating transcription of target genes required for ethanol and methanol metabolism. Functional analysis indicates that Mxr1 9aaTADs rely on General Control Nondepressible 5 (Gcn5), a histone acetyltransferase, for transactivation. These findings suggest that recruitment of Gcn5-mediated histone acetylation at target promoters is a critical step in transcriptional activation by Mxr1 9aaTADs. This study represents the first comprehensive characterization of 9aaTADs in a K. phaffii ZF transcription factor, providing insights into their mechanism and potential applications in synthetic biology.
Collapse
Affiliation(s)
- Prachi Priya
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | | - Pundi N Rangarajan
- Department of Biochemistry, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
3
|
Knight A, Houser J, Otasevic T, Juran V, Vybihal V, Smrcka M, Piskacek M. Myc 9aaTAD activation domain binds to mediator of transcription with superior high affinity. Mol Med 2024; 30:211. [PMID: 39538178 PMCID: PMC11558822 DOI: 10.1186/s10020-024-00896-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/12/2024] [Indexed: 11/16/2024] Open
Abstract
The overexpression of MYC genes is frequently found in many human cancers, including adult and pediatric malignant brain tumors. Targeting MYC genes continues to be challenging due to their undruggable nature. Using our prediction algorithm, the nine-amino-acid activation domain (9aaTAD) has been identified in all four Yamanaka factors, including c-Myc. The predicted activation function was experimentally demonstrated for all these short peptides in transactivation assay. We generated a set of c-Myc constructs (1-108, 69-108 and 98-108) in the N-terminal regions and tested their ability to initiate transcription in one hybrid assay. The presence and absence of 9aaTAD (region 100-108) in the constructs strongly correlated with their activation functions (5-, 3- and 67-times respectively). Surprisingly, we observed co-activation function of the myc region 69-103, called here acetyl-TAD, previously described by Faiola et al. (Mol Cell Biol 25:10220-10234, 2005) and characterized in this study as a new domain collaborating with the 9aaTAD. We discovered strong interactions on a nanomolar scale between the Myc-9aaTAD activation domains and the KIX domain of CBP coactivator. We showed conservation of the 9aaTADs in the MYC family. In summary for the c-Myc oncogene, the acetyl-TAD and the 9aaTAD domains jointly mediated activation function. The c-Myc protein is largely intrinsically disordered and therefore difficult to target with small-molecule inhibitors. For the c-Myc driven tumors, the strong c-Myc interaction with the KIX domain represents a promising druggable target.
Collapse
Affiliation(s)
- Andrea Knight
- School of Life Science, Faculty of Science and Engineering, Anglia Ruskin University, East Road, Cambridge, CB1 1PT, UK.
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University Brno, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic.
- Department of Neurosurgery, University Hospital Brno, and Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| | - Josef Houser
- Central European Institute of Technology (CEITEC), Masaryk University Brno, Brno, Czech Republic
- National Centre for Biomolecular Research (NCBR), Faculty of Science, Masaryk University Brno, Brno, Czech Republic
- Core Facility Biomolecular Interactions and Crystallization (CF BIC), Masaryk University Brno, Brno, Czech Republic
| | - Tomas Otasevic
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University Brno, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
| | - Vilem Juran
- Department of Neurosurgery, University Hospital Brno, and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Vaclav Vybihal
- Department of Neurosurgery, University Hospital Brno, and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Martin Smrcka
- Department of Neurosurgery, University Hospital Brno, and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Martin Piskacek
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University Brno, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic.
| |
Collapse
|
4
|
Gawriyski L, Tan Z, Liu X, Chowdhury I, Malaymar Pinar D, Zhang Q, Weltner J, Jouhilahti EM, Wei GH, Kere J, Varjosalo M. Interaction network of human early embryonic transcription factors. EMBO Rep 2024; 25:1589-1622. [PMID: 38297188 PMCID: PMC10933267 DOI: 10.1038/s44319-024-00074-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 02/02/2024] Open
Abstract
Embryonic genome activation (EGA) occurs during preimplantation development and is characterized by the initiation of de novo transcription from the embryonic genome. Despite its importance, the regulation of EGA and the transcription factors involved in this process are poorly understood. Paired-like homeobox (PRDL) family proteins are implicated as potential transcriptional regulators of EGA, yet the PRDL-mediated gene regulatory networks remain uncharacterized. To investigate the function of PRDL proteins, we are identifying the molecular interactions and the functions of a subset family of the Eutherian Totipotent Cell Homeobox (ETCHbox) proteins, seven PRDL family proteins and six other transcription factors (TFs), all suggested to participate in transcriptional regulation during preimplantation. Using mass spectrometry-based interactomics methods, AP-MS and proximity-dependent biotin labeling, and chromatin immunoprecipitation sequencing we derive the comprehensive regulatory networks of these preimplantation TFs. By these interactomics tools we identify more than a thousand high-confidence interactions for the 21 studied bait proteins with more than 300 interacting proteins. We also establish that TPRX2, currently assigned as pseudogene, is a transcriptional activator.
Collapse
Affiliation(s)
- Lisa Gawriyski
- University of Helsinki, Institute of Biotechnology, Helsinki, Finland
- Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Zenglai Tan
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Xiaonan Liu
- University of Helsinki, Institute of Biotechnology, Helsinki, Finland
| | | | - Dicle Malaymar Pinar
- University of Helsinki, Institute of Biotechnology, Helsinki, Finland
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey
| | - Qin Zhang
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine & Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cancer Institute, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Jere Weltner
- Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Eeva-Mari Jouhilahti
- Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Gong-Hong Wei
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
- Ministry of Education Key Laboratory of Metabolism and Molecular Medicine & Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cancer Institute, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College of Fudan University, Shanghai, China
| | - Juha Kere
- Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Karolinska Institutet, Department of Biosciences and Nutrition, Huddinge, Sweden
| | - Markku Varjosalo
- University of Helsinki, Institute of Biotechnology, Helsinki, Finland.
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
5
|
Bjarnason S, McIvor JAP, Prestel A, Demény KS, Bullerjahn JT, Kragelund BB, Mercadante D, Heidarsson PO. DNA binding redistributes activation domain ensemble and accessibility in pioneer factor Sox2. Nat Commun 2024; 15:1445. [PMID: 38365983 PMCID: PMC10873366 DOI: 10.1038/s41467-024-45847-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 02/01/2024] [Indexed: 02/18/2024] Open
Abstract
More than 1600 human transcription factors orchestrate the transcriptional machinery to control gene expression and cell fate. Their function is conveyed through intrinsically disordered regions (IDRs) containing activation or repression domains but lacking quantitative structural ensemble models prevents their mechanistic decoding. Here we integrate single-molecule FRET and NMR spectroscopy with molecular simulations showing that DNA binding can lead to complex changes in the IDR ensemble and accessibility. The C-terminal IDR of pioneer factor Sox2 is highly disordered but its conformational dynamics are guided by weak and dynamic charge interactions with the folded DNA binding domain. Both DNA and nucleosome binding induce major rearrangements in the IDR ensemble without affecting DNA binding affinity. Remarkably, interdomain interactions are redistributed in complex with DNA leading to variable exposure of two activation domains critical for transcription. Charged intramolecular interactions allowing for dynamic redistributions may be common in transcription factors and necessary for sensitive tuning of structural ensembles.
Collapse
Affiliation(s)
- Sveinn Bjarnason
- Department of Biochemistry, Science Institute, University of Iceland, Sturlugata 7, 102, Reykjavík, Iceland
| | - Jordan A P McIvor
- School of Chemical Science, University of Auckland, Auckland, New Zealand
| | - Andreas Prestel
- Department of Biology, REPIN and Structural Biology and NMR Laboratory, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark
| | - Kinga S Demény
- Department of Biochemistry, Science Institute, University of Iceland, Sturlugata 7, 102, Reykjavík, Iceland
| | - Jakob T Bullerjahn
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438, Frankfurt am Main, Germany
| | - Birthe B Kragelund
- Department of Biology, REPIN and Structural Biology and NMR Laboratory, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark
| | - Davide Mercadante
- School of Chemical Science, University of Auckland, Auckland, New Zealand.
| | - Pétur O Heidarsson
- Department of Biochemistry, Science Institute, University of Iceland, Sturlugata 7, 102, Reykjavík, Iceland.
| |
Collapse
|
6
|
Houser J, Jendruchova K, Knight A, Piskacek M. The NFkB activation domain is 14-amino-acid-long variant of the 9aaTAD. Biochem J 2023; 480:297-306. [PMID: 36825663 DOI: 10.1042/bcj20220605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 02/25/2023]
Abstract
The nine-amino-acid transactivation domains (9aaTAD) was identified in numerous transcription factors including Gal4, p53, E2A, MLL, c-Myc, N-Myc, and also in SP, KLF, and SOX families. Most of the 9aaTAD domains interact with the KIX domain of transcription mediators MED15 and CBP to activate transcription. The NFkB activation domain occupied the same position on the KIX domain as the 9aaTADs of MLL, E2A, and p53. Binding of the KIX domain is established by the two-point interaction involving 9aaTAD positions p3-4 and p6-7. The NFkB primary binding region (positions p3-4) is almost identical with MLL and E2A, but secondary NFkB binding region differs by the position and engages the distal NFkB region p10-11. Thus, the NFkB activation domain is five amino acids longer than the other 9aaTADs. The NFkB activation domain includes an additional region, which we called the Omichinski Insert extending activation domain length to 14 amino acids. By deletion, we demonstrated that Omichinski Insert is an entirely non-essential part of NFkB activation domain. In summary, we recognized the NFkB activation domain as prolonged 9aaTAD conserved in evolution from humans to amphibians.
Collapse
Affiliation(s)
- Josef Houser
- Central European Institute of Technology (CEITEC), Masaryk University Brno, Brno, Czech Republic
- National Centre for Biomolecular Research (NCBR), Faculty of Science, Masaryk University Brno, Brno, Czech Republic
- Core Facility Biomolecular Interactions and Crystallization (CF BIC), Masaryk University Brno, Brno, Czech Republic
| | - Kristina Jendruchova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University Brno, Kamenice 5, 625 00 Brno, Czech Republic
| | - Andrea Knight
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University Brno, Kamenice 5, 625 00 Brno, Czech Republic
- Department of Neurosurgery, University Hospital Brno, Brno, Czech Republic
- Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Martin Piskacek
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University Brno, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
7
|
Knight A, Piskacek M. Cryptic inhibitory regions nearby activation domains. Biochimie 2022; 200:19-26. [PMID: 35561946 DOI: 10.1016/j.biochi.2022.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/23/2022] [Accepted: 05/05/2022] [Indexed: 11/27/2022]
Abstract
Previously, the Nine amino acid TransActivation Domain (9aaTAD) was identified in the Gal4 region 862-870 (DDVYNYLFD). Here, we identified 9aaTADs in the distal Gal4 orthologs by our prediction algorithm and found their conservation in the family. The 9aaTAD function as strong activators was demonstrated. We identified adjacent Gal4 region 871-811 (DEDTPPNPKKE) as a natural 9aaTAD inhibitory domain located at the extreme Gal4 terminus. Moreover, we identified conserved Gal4 region 172-185 (FDWSEEDDMSDGLP), which was capable to reverse the 9aaTAD inhibition. In conclusion, our results uncover the existence of the cryptic inhibitory domains, which need to be carefully implemented in all functional studies with transcription factors to avoid incorrect conclusions.
Collapse
Affiliation(s)
- Andrea Knight
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University Brno, Kamenice 5, 625 00, Brno, Czech Republic
| | - Martin Piskacek
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University Brno, Kamenice 5, 625 00, Brno, Czech Republic.
| |
Collapse
|
8
|
EZH2 noncanonically binds cMyc and p300 through a cryptic transactivation domain to mediate gene activation and promote oncogenesis. Nat Cell Biol 2022; 24:384-399. [PMID: 35210568 PMCID: PMC9710513 DOI: 10.1038/s41556-022-00850-x] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 01/14/2022] [Indexed: 12/20/2022]
Abstract
Canonically, EZH2 serves as the catalytic subunit of PRC2, which mediates H3K27me3 deposition and transcriptional repression. Here, we report that in acute leukaemias, EZH2 has additional noncanonical functions by binding cMyc at non-PRC2 targets and uses a hidden transactivation domain (TAD) for (co)activator recruitment and gene activation. Both canonical (EZH2-PRC2) and noncanonical (EZH2-TAD-cMyc-coactivators) activities of EZH2 promote oncogenesis, which explains the slow and ineffective antitumour effect of inhibitors of the catalytic function of EZH2. To suppress the multifaceted activities of EZH2, we used proteolysis-targeting chimera (PROTAC) to develop a degrader, MS177, which achieved effective, on-target depletion of EZH2 and interacting partners (that is, both canonical EZH2-PRC2 and noncanonical EZH2-cMyc complexes). Compared with inhibitors of the enzymatic function of EZH2, MS177 is fast-acting and more potent in suppressing cancer growth. This study reveals noncanonical oncogenic roles of EZH2, reports a PROTAC for targeting the multifaceted tumorigenic functions of EZH2 and presents an attractive strategy for treating EZH2-dependent cancers.
Collapse
|