1
|
Yao J, Sun L, Gao F, Zhu W. Mesenchymal stem/stromal cells: dedicator to maintain tumor homeostasis. Hum Cell 2024; 38:21. [PMID: 39607530 DOI: 10.1007/s13577-024-01154-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024]
Abstract
Mesenchymal stem/stromal cells (MSCs) act as a factor in tumor recurrence after drug treatment with their involvement observed in various cancer types. As a constituent of the tumor microenvironment (TME), MSCs not only provide support to tumor growth but also establish connections with diverse cell populations within the TME, serving as mediators linking different tumor-associated components. MSCs play an important role in maintaining tumor progression due to their stem cell properties and remarkable differentiation capacity. Given the intensification of tumor research and the encouraging results achieved in recent years,the aim of this article is to investigate the supportive role of MSCs in tumor cells as well as in various cellular and non-cellular components of the tumor microenvironment. Furthermore, the article shows that MSCs do not have a specific anatomical ecological niche and describes the contribution of MSCs to the maintenance of tumor homeostasis on the basis of homing, plasticity and tumor-forming properties. By elucidating the critical roles of different components of TME, this study provides a comprehensive understanding of tumor therapy and may offer new insights into defeating cancer.
Collapse
Affiliation(s)
- Juncun Yao
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Li Sun
- Department of Clinical Laboratory, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu Province, People's Republic of China
| | - Feng Gao
- Department of Surgery, Jingjiang People's Hospital, Jingjiang, 214500, People's Republic of China.
| | - Wei Zhu
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China.
| |
Collapse
|
2
|
Ferrer-Diaz AI, Sinha G, Petryna A, Gonzalez-Bermejo R, Kenfack Y, Adetayo O, Patel SA, Hooda-Nehra A, Rameshwar P. Revealing role of epigenetic modifiers and DNA oxidation in cell-autonomous regulation of Cancer stem cells. Cell Commun Signal 2024; 22:119. [PMID: 38347590 PMCID: PMC10863086 DOI: 10.1186/s12964-024-01512-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/01/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Breast cancer cells (BCCs) can remain undetected for decades in dormancy. These quiescent cells are similar to cancer stem cells (CSCs); hence their ability to initiate tertiary metastasis. Dormancy can be regulated by components of the tissue microenvironment such as bone marrow mesenchymal stem cells (MSCs) that release exosomes to dedifferentiate BCCs into CSCs. The exosomes cargo includes histone 3, lysine 4 (H3K4) methyltransferases - KMT2B and KMT2D. A less studied mechanism of CSC maintenance is the process of cell-autonomous regulation, leading us to examine the roles for KMT2B and KMT2D in sustaining CSCs, and their potential as drug targets. METHODS Use of pharmacological inhibitor of H3K4 (WDR5-0103), knockdown (KD) of KMT2B or KMT2D in BCCs, real time PCR, western blot, response to chemotherapy, RNA-seq, and flow cytometry for circulating markers of CSCs and DNA hydroxylases in BC patients. In vivo studies using a dormancy model studied the effects of KMT2B/D to chemotherapy. RESULTS H3K4 methyltransferases sustain cell autonomous regulation of CSCs, impart chemoresistance, maintain cycling quiescence, and reduce migration and proliferation of BCCs. In vivo studies validated KMT2's role in dormancy and identified these genes as potential drug targets. DNA methylase (DNMT), predicted within a network with KMT2 to regulate CSCs, was determined to sustain circulating CSC-like in the blood of patients. CONCLUSION H3K4 methyltransferases and DNA methylation mediate cell autonomous regulation to sustain CSC. The findings provide crucial insights into epigenetic regulatory mechanisms underlying BC dormancy with KMT2B and KMT2D as potential therapeutic targets, along with standard care. Stem cell and epigenetic markers in circulating BCCs could monitor treatment response and this could be significant for long BC remission to partly address health disparity.
Collapse
Affiliation(s)
- Alejandra I Ferrer-Diaz
- Department of Medicine - Division of Hematology/Oncology, Rutgers, New Jersey Medical School, Newark, NJ, 07103, USA
- Rutgers School of Graduate Studies at New Jersey Medical School, Newark, NJ, USA
| | - Garima Sinha
- Department of Medicine - Division of Hematology/Oncology, Rutgers, New Jersey Medical School, Newark, NJ, 07103, USA
- Rutgers School of Graduate Studies at New Jersey Medical School, Newark, NJ, USA
| | - Andrew Petryna
- Department of Medicine - Division of Hematology/Oncology, Rutgers, New Jersey Medical School, Newark, NJ, 07103, USA
- Rutgers School of Graduate Studies at New Jersey Medical School, Newark, NJ, USA
| | | | - Yannick Kenfack
- Department of Medicine - Division of Hematology/Oncology, Rutgers, New Jersey Medical School, Newark, NJ, 07103, USA
- Rutgers School of Graduate Studies at New Jersey Medical School, Newark, NJ, USA
| | | | - Shyam A Patel
- Division of Hematology and Oncology, Department of Medicine, UMass Memorial Medical Center, UMass Chan Medical School, Worcester, MA, USA
| | - Anupama Hooda-Nehra
- Department of Medicine - Division of Hematology/Oncology, Rutgers, New Jersey Medical School, Newark, NJ, 07103, USA
- Rutgers Cancer Institute of New Jersey, Newark, NJ, USA
| | - Pranela Rameshwar
- Department of Medicine - Division of Hematology/Oncology, Rutgers, New Jersey Medical School, Newark, NJ, 07103, USA.
| |
Collapse
|
3
|
Nakashima K, Kunisaki Y, Hosokawa K, Gotoh K, Yao H, Yuta R, Semba Y, Nogami J, Kikushige Y, Stumpf PS, MacArthur BD, Kang D, Akashi K, Ohga S, Arai F. POT1a deficiency in mesenchymal niches perturbs B-lymphopoiesis. Commun Biol 2023; 6:996. [PMID: 37773433 PMCID: PMC10541440 DOI: 10.1038/s42003-023-05374-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 09/18/2023] [Indexed: 10/01/2023] Open
Abstract
Protection of telomeres 1a (POT1a) is a telomere binding protein. A decrease of POT1a is related to myeloid-skewed haematopoiesis with ageing, suggesting that protection of telomeres is essential to sustain multi-potency. Since mesenchymal stem cells (MSCs) are a constituent of the hematopoietic niche in bone marrow, their dysfunction is associated with haematopoietic failure. However, the importance of telomere protection in MSCs has yet to be elucidated. Here, we show that genetic deletion of POT1a in MSCs leads to intracellular accumulation of fatty acids and excessive ROS and DNA damage, resulting in impaired osteogenic-differentiation. Furthermore, MSC-specific POT1a deficient mice exhibited skeletal retardation due to reduction of IL-7 producing bone lining osteoblasts. Single-cell gene expression profiling of bone marrow from POT1a deficient mice revealed that B-lymphopoiesis was selectively impaired. These results demonstrate that bone marrow microenvironments composed of POT1a deficient MSCs fail to support B-lymphopoiesis, which may underpin age-related myeloid-bias in haematopoiesis.
Collapse
Affiliation(s)
- Kentaro Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuya Kunisaki
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, Japan.
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan.
| | - Kentaro Hosokawa
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuhito Gotoh
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hisayuki Yao
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryosuke Yuta
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuichiro Semba
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, Japan
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Jumpei Nogami
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, Japan
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Yoshikane Kikushige
- Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, Japan
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Patrick S Stumpf
- Joint Research Center for Computational Biomedicine, RWTH Aachen University, Aachen, Germany
| | - Ben D MacArthur
- Centre for Human Development, Stem Cells and Regeneration, Faculty of Medicine, University of Southampton, Southampton, UK
- Mathematical Sciences, University of Southampton, Southampton, UK
- The Alan Turing Institute, London, UK
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Fumio Arai
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
4
|
Granata V, Crisafulli L, Nastasi C, Ficara F, Sobacchi C. Bone Marrow Niches and Tumour Cells: Lights and Shadows of a Mutual Relationship. Front Immunol 2022; 13:884024. [PMID: 35603212 PMCID: PMC9121377 DOI: 10.3389/fimmu.2022.884024] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/12/2022] [Indexed: 12/23/2022] Open
Abstract
The bone marrow (BM) niche is the spatial structure within the intra-trabecular spaces of spongious bones and of the cavity of long bones where adult haematopoietic stem cells (HSCs) maintain their undifferentiated and cellular self-renewal state through the intervention of vascular and nervous networks, metabolic pathways, transcriptional and epigenetic regulators, and humoral signals. Within the niche, HSCs interact with various cell types such as osteoblasts, endothelial cells, macrophages, and mesenchymal stromal cells (MSCs), which maintain HSCs in a quiescent state or sustain their proliferation, differentiation, and trafficking, depending on body needs. In physiological conditions, the BM niche permits the daily production of all the blood and immune cells and their admittance/ingress/progression into the bloodstream. However, disruption of this delicate microenvironment promotes the initiation and progression of malignancies such as those included in the spectrum of myeloid neoplasms, also favouring resistance to pharmacological therapies. Alterations in the MSC population and in the crosstalk with HSCs owing to tumour-derived factors contribute to the formation of a malignant niche. On the other hand, cells of the BM microenvironment cooperate in creating a unique milieu favouring metastasization of distant tumours into the bone. In this framework, the pro-tumorigenic role of MSCs is well-documented, and few evidence suggest also an anti-tumorigenic effect. Here we will review recent advances regarding the BM niche composition and functionality in normal and in malignant conditions, as well as the therapeutic implications of the interplay between its diverse cellular components and malignant cells.
Collapse
Affiliation(s)
- Valentina Granata
- IRCCS Humanitas Research Hospital, Milan, Italy
- Milan Unit, CNR-IRGB, Milan, Italy
| | - Laura Crisafulli
- IRCCS Humanitas Research Hospital, Milan, Italy
- Milan Unit, CNR-IRGB, Milan, Italy
| | - Claudia Nastasi
- Laboratory of Cancer Pharmacology, Department of Oncology, IRCCS Mario Negri Pharmacological Research Institute, Milan, Italy
| | - Francesca Ficara
- IRCCS Humanitas Research Hospital, Milan, Italy
- Milan Unit, CNR-IRGB, Milan, Italy
| | - Cristina Sobacchi
- IRCCS Humanitas Research Hospital, Milan, Italy
- Milan Unit, CNR-IRGB, Milan, Italy
- *Correspondence: Cristina Sobacchi,
| |
Collapse
|