1
|
Gao ZX, He T, Zhang P, Hu X, Ge M, Xu YQ, Wang P, Pan HF. Epigenetic regulation of immune cells in systemic lupus erythematosus: insight from chromatin accessibility. Expert Opin Ther Targets 2024; 28:637-649. [PMID: 38943564 DOI: 10.1080/14728222.2024.2375372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/28/2024] [Indexed: 07/01/2024]
Abstract
INTRODUCTION Systemic Lupus Erythematosus (SLE) is a multi-dimensional autoimmune disease involving numerous tissues throughout the body. The chromatin accessibility landscapes in immune cells play a pivotal role in governing their activation, function, and differentiation. Aberrant modulation of chromatin accessibility in immune cells is intimately associated with the onset and progression of SLE. AREAS COVERED In this review, we described the chromatin accessibility landscapes in immune cells, summarized the recent evidence of chromatin accessibility related to the pathogenesis of SLE, and discussed the potential of chromatin accessibility as a valuable option to identify novel therapeutic targets for this disease. EXPERT OPINION Dynamic changes in chromatin accessibility are intimately related to the pathogenesis of SLE and have emerged as a new direction for exploring its epigenetic mechanisms. The differently accessible chromatin regions in immune cells often contain binding sites for transcription factors (TFs) and cis-regulatory elements such as enhancers and promoters, which may be potential therapeutic targets for SLE. Larger scale cohort studies and integrating epigenomic, transcriptomic, and metabolomic data can provide deeper insights into SLE chromatin biology in the future.
Collapse
Affiliation(s)
- Zhao-Xing Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Department of Epidemiology, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Tian He
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Department of Epidemiology, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Peng Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Department of Epidemiology, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Xiao Hu
- Department of Epidemiology, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
- Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Man Ge
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Department of Epidemiology, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Yi-Qing Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Department of Epidemiology, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Peng Wang
- Department of Epidemiology, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
- Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Department of Epidemiology, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| |
Collapse
|
2
|
Nikolova-Ganeva K, Vasilev V, Kerezieva S, Tchorbanov A. Impact of folic acid on regulatory B lymphocytes from patients with systemic lupus erythematosus in vitro. Int J Rheum Dis 2023; 26:298-304. [PMID: 36385742 DOI: 10.1111/1756-185x.14496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/16/2022] [Accepted: 10/31/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Epigenetic modifications of genomes are of particular interest as numerous studies indicate the correlation between DNA methylation and the development of systemic lupus. As a major methyl group donor, folic acid is an important participant in this process. The aim of this study is to determine the effect of low or high dose folate co-culturing with peripheral blood mononuclear cells (PBMCs) on the secretion of interleukin (IL)10 from regulatory cells from lupus patients or from healthy volunteers. METHODS PBMCs from lupus patients and healthy volunteers were isolated and separated CD19+ B cell populations were cultured in the presence of 4 μg/mL or of 16 μg/mL of folic acid and the DNA methylation level as well as the percentages of B lymphocytes were measured. In another experiment, PBMCs were stimulated in vitro for IL10 production with 1 μg/mL recombinant human CD40L and with 2.5 μg/mL unmethylated CpG dinucleotides and cultured in the presence of 4 μg/mL or of 16 μg/mL of folic acid. RESULTS Although co-culturing with low or high folic acid concentrations had no effect on the methylation level of B lymphocytes, particular patients showed an increase in the population of CD19+ IL10+ as well as of CD19- IL10+ cells. CONCLUSION The observed increase may be a consequence of additional indirect or direct methylation of DNA in specific loci of the targeted cells. However, further analysis would clarify the exact mechanism of action of folate and would reveal its immunomodulating potential in this autoimmune disease.
Collapse
Affiliation(s)
- Kalina Nikolova-Ganeva
- Department of Immunology, Laboratory of Experimental Immunology, The "Stephan Angeloff" Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Vasil Vasilev
- Department of Nephrology, University Hospital "Tsaritsa Yoanna - ISUL", Medical University - Sofia, Sofia, Bulgaria
| | - Simona Kerezieva
- Department of Nephrology, University Hospital "Tsaritsa Yoanna - ISUL", Medical University - Sofia, Sofia, Bulgaria
| | - Andrey Tchorbanov
- Department of Immunology, Laboratory of Experimental Immunology, The "Stephan Angeloff" Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
3
|
Xue D, Zou W, Liu D, Li L, Chen T, Yang Z, Chen Y, Wang X, Lu W, Lin G. Cytotoxicity and transcriptome changes triggered by CuInS 2/ZnS quantum dots in human glial cells. Neurotoxicology 2021; 88:134-143. [PMID: 34785253 DOI: 10.1016/j.neuro.2021.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 11/03/2021] [Accepted: 11/12/2021] [Indexed: 01/27/2023]
Abstract
As a newly developed cadmium-free quantum dot (QD), CuInS2/ZnS has great application potential in many fields, but its biological safety has not been fully understood. In this study, the in vitro toxicity of CuInS2/ZnS QDs on U87 human glioma cell line was explored. The cells were treated with different concentrations of QDs (12.5, 25, 50 and 100 μg/mL), and the uptake of QDs by the U87 cells was detected by fluorescence imaging and flow cytometry. The cell viability was observed by MTT assay, and the gene expression profile was analyzed by transcriptome sequencing. These results showed that QDs could enter the cells and mainly located in the cytoplasm. The uptake rate was over 90 % when the concentration of QDs reached 25 μg/mL. The cell viability (50 and 100 μg/mL) increased at 24 h (P < 0.05), but no significant difference after 48 h and 72 h treatment. The results of differential transcription showed that coding RNA accounted for the largest proportion (62.15 %), followed by long non-coding RNA (18.65 %). Total 220 genes were up-regulated and 1515 genes were down-regulated, and significantly altered gene functions included nucleosome, chromosome-DNA binding, and chromosome assembly. In conclusion, CuInS2/ZnS QDs could enter U87 cells, did not reduce the cell viability, but would obviously alter the gene expression profile. These findings provide valuable information for a proper understanding of the toxicity risk of CuInS2/ZnS QD and promote the rational utilization of QDs in the future.
Collapse
Affiliation(s)
- Dahui Xue
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, China; School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Wenyi Zou
- School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Dongmeng Liu
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, China; School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Li Li
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, China; School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Tingting Chen
- School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Zhiwen Yang
- School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Yajing Chen
- School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Xiaomei Wang
- School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Wencan Lu
- Department of Spine Surgery, Shenzhen University General Hospital, Shenzhen, 518060, China.
| | - Guimiao Lin
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, China; School of Basic Medical Sciences, Health Science Center, Shenzhen University, Shenzhen, China.
| |
Collapse
|
4
|
Abstract
Type 1 diabetes (T1D) is an autoimmune disease that resulted from the severe destruction of the insulin-producing β cells in the pancreases of individuals with a genetic predisposition. Genome-wide studies have identified HLA and other risk genes associated with T1D susceptibility in humans. However, evidence obtained from the incomplete concordance of diabetes incidence among monozygotic twins suggests that environmental factors also play critical roles in T1D pathogenesis. Epigenetics is a rapidly growing field that serves as a bridge to link T1D risk genes and environmental exposures, thereby modulating the expression of critical genes relevant to T1D development beyond the changes of DNA sequences. Indeed, there is compelling evidence that epigenetic changes induced by environmental insults are implicated in T1D pathogenesis. Herein, we sought to summarize the recent progress in terms of epigenetic mechanisms in T1D initiation and progression, and discuss their potential as biomarkers and therapeutic targets in the T1D setting.
Collapse
|
5
|
Calcineurin and Systemic Lupus Erythematosus: The Rationale for Using Calcineurin Inhibitors in the Treatment of Lupus Nephritis. Int J Mol Sci 2021; 22:ijms22031263. [PMID: 33514066 PMCID: PMC7865978 DOI: 10.3390/ijms22031263] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 12/18/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with a broad spectrum of clinical presentations that can affect almost all organ systems. Lupus nephritis (LN) is a severe complication that affects approximately half of the systemic erythematosus lupus (SLE) patients, which significantly increases the morbidity and the mortality risk. LN is characterized by the accumulation of immune complexes, ultimately leading to renal failure. Aberrant activation of T cells plays a critical role in the pathogenesis of both SLE and LN and is involved in the production of inflammatory cytokines, the recruitment of inflammatory cells to the affected tissues and the co-stimulation of B cells. Calcineurin is a serine-threonine phosphatase that, as a consequence of the T cell hyperactivation, induces the production of inflammatory mediators. Moreover, calcineurin is also involved in the alterations of the podocyte phenotype, which contribute to proteinuria and kidney damage observed in LN patients. Therefore, calcineurin inhibitors have been postulated as a potential treatment strategy in LN, since they reduce T cell activation and promote podocyte cytoskeleton stabilization, both being key aspects in the development of LN. Here, we review the role of calcineurin in SLE and the latest findings about calcineurin inhibitors and their mechanisms of action in the treatment of LN.
Collapse
|
6
|
Guo G, Shi X, Wang H, Ye L, Tong X, Yan K, Ding N, Chen C, Zhang H, Xue X. Epitranscriptomic N4-Acetylcytidine Profiling in CD4 + T Cells of Systemic Lupus Erythematosus. Front Cell Dev Biol 2020; 8:842. [PMID: 32984334 PMCID: PMC7483482 DOI: 10.3389/fcell.2020.00842] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/05/2020] [Indexed: 12/19/2022] Open
Abstract
The emerging epitranscriptome plays an essential role in autoimmune disease. As a novel mRNA modification, N4-acetylcytidine (ac4C) could promote mRNA stability and translational efficiency. However, whether epigenetic mechanisms of RNA ac4C modification are involved in systemic lupus erythematosus (SLE) remains unclear. Herein, we detected eleven modifications in CD4+ T cells of SLE patients using mass spectrometry (LC-MS/MS). Furthermore, using samples from four CD4+ T cell pools, we identified lower modification of ac4C mRNA in SLE patients as compared to that in healthy controls (HCs). Meanwhile, significantly lower mRNA acetyltransferase NAT10 expression was detected in lupus CD4+ T cells by RT-qPCR. We then illustrated the transcriptome-wide ac4C profile in CD4+ T cells of SLE patients by ac4C-RIP-Seq and found ac4C distribution in mRNA transcripts to be highly conserved and enriched in mRNA coding sequence regions. Using bioinformatics analysis, the 3879 and 4073 ac4C hyper-acetylated and hypoacetylated peaks found in SLE samples, respectively, were found to be significantly involved in SLE-related function enrichments, including multiple metabolic and transcription-related processes, ROS-induced cellular signaling, apoptosis signaling, and NF-κB signaling. Moreover, we demonstrated the ac4C-modified regulatory network of gene biological functions in lupus CD4+ T cells. Notably, we determined that the 26 upregulated genes with hyperacetylation played essential roles in autoimmune diseases and disease-related processes. Additionally, the unique ac4C-related transcripts, including USP18, GPX1, and RGL1, regulate mRNA catabolic processes and translational initiation. Our study identified novel dysregulated ac4C mRNAs associated with critical immune and inflammatory responses, that have translational potential in lupus CD4+ T cells. Hence, our findings reveal transcriptional significance and potential therapeutic targets of mRNA ac4C modifications in SLE pathogenesis.
Collapse
Affiliation(s)
- Gangqiang Guo
- School of Life Sciences and Technology, Tongji University, Shanghai, China.,Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xinyu Shi
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Huijing Wang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lele Ye
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xinya Tong
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Kejing Yan
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ning Ding
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chaosheng Chen
- Department of Nephrology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Huidi Zhang
- Department of Nephrology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiangyang Xue
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
7
|
Guo G, Wang H, Shi X, Ye L, Yan K, Chen Z, Zhang H, Jin Z, Xue X. Disease Activity-Associated Alteration of mRNA m 5 C Methylation in CD4 + T Cells of Systemic Lupus Erythematosus. Front Cell Dev Biol 2020; 8:430. [PMID: 32582707 PMCID: PMC7291606 DOI: 10.3389/fcell.2020.00430] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/08/2020] [Indexed: 01/17/2023] Open
Abstract
Epigenetic processes including RNA methylation, post-translational modifications, and non-coding RNA expression have been associated with the heritable risks of systemic lupus erythematosus (SLE). In this study, we aimed to explore the dysregulated expression of 5-methylcytosine (m5C) in CD4+ T cells from patients with SLE and the potential function of affected mRNAs in SLE pathogenesis. mRNA methylation profiles were ascertained through chromatography-coupled triple quadrupole mass spectrometry in CD4+ T cells from two pools of patients with SLE exhibiting stable activity, two pools with moderate-to-major activity, and two pools of healthy controls (HCs). Simultaneously, mRNA methylation profiles and expression profiling were performed using RNA-Bis-Seq and RNA-Seq, respectively. Integrated mRNA methylation and mRNA expression bioinformatics analysis was comprehensively performed. mRNA methyltransferase NSUN2 expression was validated in CD4+ T cells from 27 patients with SLE and 28 HCs using real-time polymerase chain reaction and western blot analyses. Hypomethylated-mRNA profiles of NSUN2-knockdown HeLa cells and of CD4+ T cells of patients with SLE were jointly analyzed using bioinformatics. Eleven methylation modifications (including elevated Am, 3′OMeA, m1A, and m6A and decreased Ψ, m3C, m1G, m5U, and t6A levels) were detected in CD4+ T cells of patients with SLE. Additionally, decreased m5C levels, albeit increased number of m5C-containing mRNAs, were observed in CD4+ T cells of patients with SLE compared with that in CD4+ T cells of HCs. m5C site distribution in mRNA transcripts was highly conserved and enriched in mRNA translation initiation sites. In particular, hypermethylated m5C or/and significantly up-regulated genes in SLE were significantly involved in immune-related and inflammatory pathways, including immune system, cytokine signaling pathway, and interferon signaling. Compared to that in HCs, NSUN2 expression was significantly lower in SLE CD4+ T cells. Notably, hypomethylated m5C genes in SLE and in NSUN2-knockdown HeLa cells revealed linkage between eukaryotic translation elongation and termination, and mRNA metabolism. Our study identified novel aberrant m5C mRNAs relevant to critical immune pathways in CD4+ T cells from patients with SLE. These data provide valuable perspectives for future studies of the multifunctionality and post-transcriptional significance of mRNA m5C modification in SLE.
Collapse
Affiliation(s)
- Gangqiang Guo
- School of Life Sciences and Technology, Tongji University, Shanghai, China.,Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Huijing Wang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xinyu Shi
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lele Ye
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.,Department of Gynecologic Oncology, Wenzhou Central Hospital, Wenzhou, China
| | - Kejing Yan
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhiyuan Chen
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Huidi Zhang
- Department of Nephrology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Zibing Jin
- Laboratory for Stem Cell and Retinal Regeneration, Institute of Stem Cell Research, Division of Ophthalmic Genetics, The Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiangyang Xue
- Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
8
|
Tanaka A, Leung PSC, Gershwin ME. The Genetics and Epigenetics of Primary Biliary Cholangitis. Clin Liver Dis 2018; 22:443-455. [PMID: 30259846 DOI: 10.1016/j.cld.2018.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Both genetic background and environmental factors contribute to primary biliary cholangitis (PBC). Recent innovative technologies, such as genome-wide association studies, identified a remarkable number of susceptible nonhuman leukocyte antigen genes contributing to the development of PBC; however, they are primarily indicators of active immunologic responses commonly involved in autoimmune reactions. Thus, recent studies have focused on epigenetic mechanisms that would link genetic predisposition and environmental triggering factors. In PBC, methylation profiling and altered X chromosome architecture have been intensively explored in conjunction with a striking female predominance. Further, microRNAs have been found to be associated with the etiology of PBC.
Collapse
Affiliation(s)
- Atsushi Tanaka
- Department of Medicine, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Patrick S C Leung
- Division of Rheumatology, Allergy and Clinical Immunology, UC Davis School of Medicine, 451 Health Sciences Drive, Suite 6510, Davis 95616, CA
| | - Merrill Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, UC Davis School of Medicine, 451 Health Sciences Drive, Suite 6510, Davis 95616, CA.
| |
Collapse
|
9
|
Abstract
The number of peer-reviewed articles published during the 2016 solar year and retrieved using the "autoimmunity" key word remained stable while gaining a minimal edge among the immunology articles. Nonetheless, the quality of the publications has been rising significantly and, importantly, acquisitions have become available through scientific journals dedicated to immunology or autoimmunity. Major discoveries have been made in the fields of systemic lupus erythematosus, rheumatoid arthritis, autoimmunity of the central nervous system, vasculitis, and seronegative spondyloarthrithritides. Selected examples include the role of IL17-related genes and long noncoding RNAs in systemic lupus erythematosus or the effects of anti-pentraxin 3 (PTX3) in the treatment of this paradigmatic autoimmune condition. In the case of rheumatoid arthritis, there have been reports of the role of induced regulatory T cells (iTregs) or fibrocytes and T cell interactions with exciting implications. The large number of studies dealing with neuroimmunology pointed to Th17 cells, CD56(bright) NK cells, and low-level TLR2 ligands as involved in multiple sclerosis, along with a high salt intake or the micriobiome-derived Lipid 654. Lastly, we focused on the rare vasculitides to which numerous studies were devoted and suggested that unsuspected cell populations, including monocytes, mucosal-associated invariant T cells, and innate lymphoid cells, may be crucial to ANCA-associated manifestations. This brief and arbitrary discussion of the findings published in 2016 is representative of a promising background for developments that will enormously impact the work of laboratory scientists and physicians at an exponential rate.
Collapse
Affiliation(s)
- Carlo Selmi
- Division of Rheumatology and Clinical Immunology, Humanitas Research Hospital, via A. Manzoni 56, 20089, Rozzano, Milan, Italy.
- Department of Medical Biotechnologies and Translational Medicine (BIOMETRA), University of Milan, Milan, Italy.
| |
Collapse
|
10
|
Zhao M, Li MY, Gao XF, Jia SJ, Gao KQ, Zhou Y, Zhang HH, Huang Y, Wang J, Wu HJ, Lu QJ. Downregulation of BDH2 modulates iron homeostasis and promotes DNA demethylation in CD4 + T cells of systemic lupus erythematosus. Clin Immunol 2017; 187:113-121. [PMID: 29113828 DOI: 10.1016/j.clim.2017.11.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 12/31/2022]
Abstract
DNA hypomethylation plays an important role in the pathogenesis of systemic lupus erythematosus (SLE). Here we investigated whether 3-hydroxy butyrate dehydrogenase 2 (BDH2), a modulator of intracellular iron homeostasis, was involved in regulating DNA hypomethylation and hyper-hydroxymethylation in lupus CD4+ T cells. Our results showed that BDH2 expression was decreased, intracellular iron was increased, global DNA hydroxymethylation level was elevated, while methylation level was reduced in lupus CD4+ T cells compared with healthy controls. The decreased BDH2 contributed to DNA hyper-hydroxymethylation and hypomethylation via increasing intracellular iron in CD4+ T cells, which led to overexpression of immune related genes. Moreover, we showed that BDH2 was the target gene of miR-21. miR-21 promoted DNA demethylation in CD4+ T cells through inhibiting BDH2 expression. Our data demonstrated that the dysregulation of iron homeostasis in CD4+ T cells induced by BDH2 deficiency contributes to DNA demethylation and self-reactive T cells in SLE.
Collapse
Affiliation(s)
- Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.
| | - Meng-Ying Li
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Xiao-Fei Gao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Su-Jie Jia
- Department of Pharmaceutics, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Ke-Qin Gao
- Department of Pharmaceutics, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Yin Zhou
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Hui-Hui Zhang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Yi Huang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Jing Wang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Hai-Jing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Qian-Jin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
11
|
Ma WT, Chang C, Gershwin ME, Lian ZX. Development of autoantibodies precedes clinical manifestations of autoimmune diseases: A comprehensive review. J Autoimmun 2017; 83:95-112. [PMID: 28739356 DOI: 10.1016/j.jaut.2017.07.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/30/2017] [Accepted: 07/01/2017] [Indexed: 12/21/2022]
Abstract
The etiology of autoimmune diseases is due to a combination of genetic predisposition and environmental factors that alter the expression of immune regulatory genes through various mechanisms including epigenetics. Both humoral and cellular elements of the adaptive immune system play a role in the pathogenesis of autoimmune diseases and the presence of autoantibodies have been detected in most but not all autoimmune diseases before the appearance of clinical symptoms. In some cases, the presence or levels of these autoantibodies portends not only the risk of developing a corresponding autoimmune disease, but occasionally the severity as well. This observation is intriguing because it suggests that we can, to some degree, predict who may or may not develop autoimmune diseases. However, the role of autoantibodies in the pathogenesis of autoimmune diseases, whether they actually affect disease progression or are merely an epiphenomenon is still not completely clear in many autoimmune diseases. Because of these gaps in our knowledge, the ability to accurately predict a future autoimmune disease can only be considered a relative risk factor. Importantly, it raises the critical question of defining other events that may drive a patient from a preclinical to a clinical phase of disease.
Collapse
Affiliation(s)
- Wen-Tao Ma
- Chronic Disease Laboratory, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou 510006, China; Liver Immunology Laboratory, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China; College of Veterinary Medicine, Northwest Agriculture and Forestry University, Yangling 712100, China
| | - Christopher Chang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA.
| | - Zhe-Xiong Lian
- Chronic Disease Laboratory, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou 510006, China; Liver Immunology Laboratory, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China; Innovation Center for Cell Signaling Network, Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui, China.
| |
Collapse
|
12
|
Tanakaa A, Leung PS, Young HA, Gershwin ME. Toward solving the etiological mystery of primary biliary cholangitis. Hepatol Commun 2017; 1:275-287. [PMID: 29057387 PMCID: PMC5646686 DOI: 10.1002/hep4.1044] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Primary biliary cholangitis (PBC) is considered a model autoimmune disease due to its signature anti‐mitochondrial antibody (AMA) autoantibody, female predominance, and relatively specific portal infiltration and cholestasis. The identification and cloning of the major mitochondrial autoantigens recognized by AMA have served as an immunologic platform to identify the earliest events involved in loss of tolerance. Despite the relatively high concordance rate in identical twins, genome‐wide association studies have not proven clinically useful and have led to suggestions of epigenetic events. To understand the natural history and etiology of PBC, several murine models have been developed, including spontaneous models, models induced by chemical xenobiotic immunization, and by “designer” mice with altered interferon metabolism. Herein, we describe five such models, including 1) NOD.c3c4 mice, 2) dominant negative form of transforming growth factor receptor type II mice, 3) interleukin‐2R α−/− mice, 4) adenylate‐uridylate‐rich element Del−/− mice, and 5) 2‐octynoic acid‐conjugated bovine serum albumin immunized mice. Individually there is no perfect murine model, but collectively the models point to loss of tolerance to PDC‐E2, the major mitochondrial autoantigen, as the earliest event that occurs before clinical disease is manifest. Although there is no direct association of AMA titer and PBC disease progression, it is noteworthy that the triad of PBC monocytes, biliary apotopes, and AMA leads to an intense proinflammatory cytokine burst. Further, the recurrence of PBC after liver transplantation indicates that, due to major histocompatibility complex restriction, disease activity must include not only adaptive immunity but also innate immune mechanisms. We postulate that successful treatment of PBC may require a personalized approach with therapies designed for different stages of disease. (Hepatology Communications 2017;1:275–287)
Collapse
Affiliation(s)
- Atsushi Tanakaa
- Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Patrick Sc Leung
- Division of Rheumatology Allergy and Clinical Immunology, University of California School of Medicine, Davis, CA, USA
| | - Howard A Young
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD, USA
| | - M Eric Gershwin
- Division of Rheumatology Allergy and Clinical Immunology, University of California School of Medicine, Davis, CA, USA
| |
Collapse
|
13
|
Mok CC. Biological and targeted therapies of systemic lupus erythematosus: evidence and the state of the art. Expert Rev Clin Immunol 2017; 13:677-692. [PMID: 28443384 DOI: 10.1080/1744666x.2017.1323635] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Chi Chiu Mok
- Department of Medicine, Tuen Mun Hospital, Hong Kong SAR, China
| |
Collapse
|
14
|
Generali E, Ceribelli A, Stazi MA, Selmi C. Lessons learned from twins in autoimmune and chronic inflammatory diseases. J Autoimmun 2017; 83:51-61. [PMID: 28431796 DOI: 10.1016/j.jaut.2017.04.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 04/10/2017] [Indexed: 12/16/2022]
Abstract
Autoimmunity and chronic inflammation recognize numerous shared factors and, as a result, the resulting diseases frequently coexist in the same patients or respond to the same treatments. Among the convenient truths of autoimmune and chronic inflammatory diseases, there is now agreement that these are complex conditions in which the individual genetic predisposition provides a rate of heritability. The concordance rates in monozygotic and dizygotic twins allows to estimate the weight of the environment in determining disease susceptibility, despite recent data supporting that only a minority of immune markers depend on hereditary factors. Concordance rates in monozygotic and dizygotic twins should be evaluated over an observation period to minimize the risk of false negatives and this is well represented by type I diabetes mellitus. Further, concordance rates in monozygotic twins should be compared to those in dizygotic twins, which share 50% of their genes, as in regular siblings, but also young-age environmental factors. Twin studies have been extensively performed in several autoimmune conditions and cumulatively suggest that some diseases, i.e. celiac disease and psoriasis, are highly genetically determined, while rheumatoid arthritis or systemic sclerosis have a limited role for genetics. These observations are necessary to interpret data gathered by genome-wide association studies of polymorphisms and DNA methylation in MZ twins. New high-throughput technological platforms are awaited to provide new insights into the mechanisms of disease discordance in twins beyond strong associations such as those with HLA alleles.
Collapse
Affiliation(s)
- Elena Generali
- Division of Rheumatology and Clinical Immunology, Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Angela Ceribelli
- Division of Rheumatology and Clinical Immunology, Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Maria Antonietta Stazi
- Italian Twin Registry, Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Carlo Selmi
- Division of Rheumatology and Clinical Immunology, Humanitas Research Hospital, Rozzano, Milan, Italy; BIOMETRA Department, University of Milan, Milan, Italy.
| |
Collapse
|
15
|
Xiang Z, Yang Y, Chang C, Lu Q. The epigenetic mechanism for discordance of autoimmunity in monozygotic twins. J Autoimmun 2017; 83:43-50. [PMID: 28412046 DOI: 10.1016/j.jaut.2017.04.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 04/05/2017] [Indexed: 12/12/2022]
Abstract
Monozygotic twins share an identical DNA sequence but are not truly "identical". In fact, when it comes to health and disease, they may often display some level of phenotypic discordance. The cause of this discordance is often unknown. Epigenetic modifications such as DNA methylation, histone modification, and microRNAs-mediated regulation regulate gene expression and are sensitive to external stimuli. These modifications may be seen to bridge the gap between genetics and the environment. Over the years, the importance of epigenetics as a primary mechanism for the role that the environment plays in defining phenotype has been increasingly appreciated. Mechanisms of epigenetics include DNA methylation, histone modifications and microRNAs. Discordance rates in monozygotic twins vary depending on the specific condition, from 11% in SLE to 64% in psoriasis and 77% in PBC. Other autoimmune diseases in which discordance is found among monozygotic twins has also been studied include type 1 diabetes, multiple sclerosis, rheumatoid arthritis, dermatomyositis and systemic sclerosis. In some cases, the differences in various epigenetic modifications is slight, even though the concordance rate is low, suggesting that epigenetics is not the only factor that needs to be considered. Nonetheless, the study of phenotypic discordance in monozygotic twins may shed light on the pathogenesis of autoimmune diseases and contribute to the development of new methodologies for the diagnosis and treatment of these diseases.
Collapse
Affiliation(s)
- Zhongyuan Xiang
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yuanqing Yang
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Christopher Chang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, 451 Health Sciences Drive, Suite 6510, Davis, CA 95616, United States
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China.
| |
Collapse
|
16
|
Hedrich CM, Mäbert K, Rauen T, Tsokos GC. DNA methylation in systemic lupus erythematosus. Epigenomics 2017; 9:505-525. [PMID: 27885845 PMCID: PMC6040049 DOI: 10.2217/epi-2016-0096] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/12/2016] [Indexed: 12/18/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease facilitated by aberrant immune responses directed against cells and tissues, resulting in inflammation and organ damage. In the majority of patients, genetic predisposition is accompanied by additional factors conferring disease expression. While the exact molecular mechanisms remain elusive, epigenetic alterations in immune cells have been demonstrated to play a key role in disease pathogenesis through the dysregulation of gene expression. Since epigenetic marks are dynamic, allowing cells and tissues to differentiate and adjust, they can be influenced by environmental factors and also be targeted in therapeutic interventions. Here, we summarize reports on DNA methylation patterns in SLE, underlying molecular defects and their effect on immune cell function. We discuss the potential of DNA methylation as biomarker or therapeutic target in SLE.
Collapse
Affiliation(s)
- Christian M Hedrich
- Pediatric Rheumatology & Immunology, Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Katrin Mäbert
- Pediatric Rheumatology & Immunology, Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Thomas Rauen
- Department of Nephrology & Clinical Immunology, RWTH University Hospital, Aachen, Germany
| | - George C Tsokos
- Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
17
|
Ceribelli A, De Santis M, Isailovic N, Gershwin ME, Selmi C. The Immune Response and the Pathogenesis of Idiopathic Inflammatory Myositis: a Critical Review. Clin Rev Allergy Immunol 2017; 52:58-70. [PMID: 26780034 DOI: 10.1007/s12016-016-8527-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The pathogenesis of idiopathic inflammatory myositis (IIMs, including polymyositis and dermatomyositis) remains largely enigmatic, despite advances in the study of the role played by innate immunity, adaptive immunity, genetic predisposition, and environmental factors in an orchestrated response. Several factors are involved in the inflammatory state that characterizes the different forms of IIMs which share features and mechanisms but are clearly different with respect to the involved sites and characteristics of the inflammation. Cellular and non-cellular mechanisms of both the immune and non-immune systems have been identified as key regulators of inflammation in polymyositis/dermatomyositis, particularly at different stages of disease, leading to the fibrotic state that characterizes the end stage. Among these, a special role is played by an interferon signature and complement cascade with different mechanisms in polymyositis and dermatomyositis; these differences can be identified also histologically in muscle biopsies. Numerous cellular components of the adaptive and innate immune response are present in the site of tissue inflammation, and the complexity of idiopathic inflammatory myositis is further supported by the involvement of non-immune mechanisms such as hypoxia and autophagy. The aim of this comprehensive review is to describe the major pathogenic mechanisms involved in the onset of idiopathic inflammatory myositis and to report on the major working hypothesis with therapeutic implications.
Collapse
Affiliation(s)
- Angela Ceribelli
- Division of Rheumatology and Clinical Immunology, Humanitas Research Hospital, via A. Manzoni 56, 20089, Rozzano, MI, Italy
- BIOMETRA Department, University of Milan, Milan, Italy
| | - Maria De Santis
- Division of Rheumatology and Clinical Immunology, Humanitas Research Hospital, via A. Manzoni 56, 20089, Rozzano, MI, Italy
| | - Natasa Isailovic
- Division of Rheumatology and Clinical Immunology, Humanitas Research Hospital, via A. Manzoni 56, 20089, Rozzano, MI, Italy
| | - M Eric Gershwin
- Division of Rheumatology, Allergy, and Clinical Immunology, University of California Davis, Davis, CA, USA
| | - Carlo Selmi
- Division of Rheumatology and Clinical Immunology, Humanitas Research Hospital, via A. Manzoni 56, 20089, Rozzano, MI, Italy.
- BIOMETRA Department, University of Milan, Milan, Italy.
| |
Collapse
|
18
|
Generali E, Folci M, Selmi C, Riboldi P. Immune-Mediated Heart Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1003:145-171. [PMID: 28667558 DOI: 10.1007/978-3-319-57613-8_8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The heart involvement in systemic autoimmune diseases represents a growing burden for patients and health systems. Cardiac function can be impaired as a consequence of systemic conditions and manifests with threatening clinical pictures or chronic myocardial damage. Direct injuries are mediated by the presence of inflammatory infiltrate which, even though unusual, is one of the most danger manifestations requiring prompt recognition and treatment. On the other hand, a not well-managed inflammatory status leads to accelerated atherosclerosis that precipitates ischemic disease. All cardiac structures may be damaged with different grades of intensity; moreover, lesions can appear simultaneously or more frequently at a short distance from each other leading to the onset of varied clinical pictures. The pathogenesis of heart damages in systemic autoimmune conditions is not yet completely understood for the great part of situations, even if several mechanisms have been investigated. The principal biochemical circuits refer to the damaging role of autoantibodies on cardiac tissues and the precipitation of immune complexes on endocardium. These events are finally responsible of inflammatory infiltration which leads to subsequent worsening of the previous damage. For these reasons, it appears of paramount importance a regular and deepened cardiovascular assessment to prevent a progressive evolution toward heart failure in patient affected by autoimmune diseases.
Collapse
Affiliation(s)
- Elena Generali
- Rheumatology and Clinical Immunology, Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Marco Folci
- Allergy, Clinical Immunology and Rheumatology Unit, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Carlo Selmi
- Rheumatology and Clinical Immunology, Humanitas Research Hospital, Rozzano, Milan, Italy.,BIOMETRA Department, University of Milan, Milan, Italy
| | - Piersandro Riboldi
- Allergy, Clinical Immunology and Rheumatology Unit, IRCCS Istituto Auxologico Italiano, Milan, Italy.
| |
Collapse
|
19
|
Doria A, Gershwin ME, Selmi C. From old concerns to new advances and personalized medicine in lupus: The end of the tunnel is approaching. J Autoimmun 2016; 74:1-5. [DOI: 10.1016/j.jaut.2016.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 08/23/2016] [Indexed: 12/11/2022]
|
20
|
|
21
|
Critical Link Between Epigenetics and Transcription Factors in the Induction of Autoimmunity: a Comprehensive Review. Clin Rev Allergy Immunol 2016; 50:333-44. [DOI: 10.1007/s12016-016-8534-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|