1
|
Alural B, Genc S, Haggarty SJ. Diagnostic and therapeutic potential of microRNAs in neuropsychiatric disorders: Past, present, and future. Prog Neuropsychopharmacol Biol Psychiatry 2017; 73:87-103. [PMID: 27072377 PMCID: PMC5292013 DOI: 10.1016/j.pnpbp.2016.03.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/28/2016] [Accepted: 03/30/2016] [Indexed: 12/12/2022]
Abstract
Neuropsychiatric disorders are common health problems affecting approximately 1% of the population. Twin, adoption, and family studies have displayed a strong genetic component for many of these disorders; however, the underlying pathophysiological mechanisms and neural substrates remain largely unknown. Given the critical need for new diagnostic markers and disease-modifying treatments, expanding the focus of genomic studies of neuropsychiatric disorders to include the role of non-coding RNAs (ncRNAs) is of growing interest. Of known types of ncRNAs, microRNAs (miRNAs) are 20-25-nucleotide, single-stranded, molecules that regulate gene expression through post-transcriptional mechanisms and have the potential to coordinately regulate complex regulatory networks. In this review, we summarize the current knowledge on miRNA alteration/dysregulation in neuropsychiatric disorders, with a special emphasis on schizophrenia (SCZ), bipolar disorder (BD), and major depressive disorder (MDD). With an eye toward the future, we also discuss the diagnostic and prognostic potential of miRNAs for neuropsychiatric disorders in the context of personalized treatments and network medicine.
Collapse
Affiliation(s)
- Begum Alural
- Department of Neuroscience, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey; Izmir Biomedicine and Genome Center, Dokuz Eylul University, Izmir, Turkey
| | - Sermin Genc
- Department of Neuroscience, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey; Izmir Biomedicine and Genome Center, Dokuz Eylul University, Izmir, Turkey
| | - Stephen J Haggarty
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114, USA; Chemical Neurobiology Laboratory, Departments of Neurology and Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
2
|
Eipper-Mains JE, Eipper BA, Mains RE. Global Approaches to the Role of miRNAs in Drug-Induced Changes in Gene Expression. Front Genet 2012; 3:109. [PMID: 22707957 PMCID: PMC3374462 DOI: 10.3389/fgene.2012.00109] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 05/29/2012] [Indexed: 12/17/2022] Open
Abstract
Neurons modulate gene expression with subcellular precision through excitation-coupled local protein synthesis, a process that is regulated in part through the involvement of microRNAs (miRNAs), a class of small non-coding RNAs. The biosynthesis of miRNAs is reviewed, with special emphasis on miRNA families, the subcellular localization of specific miRNAs in neurons, and their potential roles in the response to drugs of abuse. For over a decade, DNA microarrays have dominated genome-wide gene expression studies, revealing widespread effects of drug exposure on neuronal gene expression. We review a number of recent studies that explore the emerging role of miRNAs in the biochemical and behavioral responses to cocaine. The more powerful next-generation sequencing technology offers certain advantages and is supplanting microarrays for the analysis of complex transcriptomes. Next-generation sequencing is unparalleled in its ability to identify and quantify low-abundance transcripts without prior sequence knowledge, facilitating the accurate detection and quantification of miRNAs expressed in total tissue and miRNAs localized to postsynaptic densities (PSDs). We previously identified cocaine-responsive miRNAs, synaptically enriched and depleted miRNA families, and confirmed cocaine-induced changes in protein expression for several bioinformatically predicted target genes. The miR-8 family was found to be highly enriched and cocaine-regulated at the PSD, where its members may modulate expression of cell adhesion molecules. An integrative approach that combines mRNA, miRNA, and protein expression profiling in combination with focused single gene studies and innovative behavioral paradigms should facilitate the development of more effective therapeutic approaches to treat addiction.
Collapse
Affiliation(s)
- Jodi E Eipper-Mains
- Department of Genetics and Developmental Biology, University of Connecticut Health Center Farmington, CT, USA
| | | | | |
Collapse
|
3
|
Wang T, Bray SM, Warren ST. New perspectives on the biology of fragile X syndrome. Curr Opin Genet Dev 2012; 22:256-63. [PMID: 22382129 DOI: 10.1016/j.gde.2012.02.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 01/06/2012] [Accepted: 02/03/2012] [Indexed: 01/03/2023]
Abstract
Fragile X syndrome (FXS) is a trinucleotide repeat disorder caused by a CGG repeat expansion in FMR1, and loss of its protein product FMRP. Recent studies have provided increased support for the role of FMRP in translational repression via ribosomal stalling and the microRNA pathway. In neurons, particular focus has been placed on identifying the signaling pathways such as PI3K and mTOR downstream of group 1 metabotropic glutamate receptors (mGluR1/5) that regulate FMRP. New evidence also suggests that loss of FMRP causes presynaptic dysfunction and abnormal adult neurogenesis. In addition, studies on FXS stem cells especially induced pluripotent stem (iPS) cells and new sequencing efforts hold out promise for deeper understanding of the silencing process and mutation spectrum of FMR1.
Collapse
Affiliation(s)
- Tao Wang
- Genetics and Molecular Biology Graduate Program, Emory University, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
4
|
Non-coding RNAs--novel targets in neurotoxicity. Neurotoxicology 2012; 33:530-44. [PMID: 22394481 DOI: 10.1016/j.neuro.2012.02.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 02/17/2012] [Accepted: 02/18/2012] [Indexed: 12/24/2022]
Abstract
Over the past ten years non-coding RNAs (ncRNAs) have emerged as pivotal players in fundamental physiological and cellular processes and have been increasingly implicated in cancer, immune disorders, and cardiovascular, neurodegenerative, and metabolic diseases. MicroRNAs (miRNAs) represent a class of ncRNA molecules that function as negative regulators of post-transcriptional gene expression. miRNAs are predicted to regulate 60% of all human protein-coding genes and as such, play key roles in cellular and developmental processes, human health, and disease. Relative to counterparts that lack bindings sites for miRNAs, genes encoding proteins that are post-transcriptionally regulated by miRNAs are twice as likely to be sensitive to environmental chemical exposure. Not surprisingly, miRNAs have been recognized as targets or effectors of nervous system, developmental, hepatic, and carcinogenic toxicants, and have been identified as putative regulators of phase I xenobiotic-metabolizing enzymes. In this review, we give an overview of the types of ncRNAs and highlight their roles in neurodevelopment, neurological disease, activity-dependent signaling, and drug metabolism. We then delve into specific examples that illustrate their importance as mediators, effectors, or adaptive agents of neurotoxicants or neuroactive pharmaceutical compounds. Finally, we identify a number of outstanding questions regarding ncRNAs and neurotoxicity.
Collapse
|
5
|
Fragile X mental retardation protein and stem cells. Results Probl Cell Differ 2011. [PMID: 22009351 DOI: 10.1007/978-3-642-21649-7_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Stem cells, which can self-renew and produce different cell types, are regulated by both extrinsic signals and intrinsic factors. Fragile X syndrome, one of the most common forms of inherited mental retardation, is caused by the functional loss of fragile X mental retardation protein (FMRP). FMRP is a selective RNA-binding protein that forms a messenger ribonucleoprotein (mRNP) complex that associates with polyribosomes. Recently, the role of Fmrp in stem cell biology has been explored in both Drosophila and the mouse. In this chapter, we discuss the role of FMRP in regulating the proliferation and differentiation of stem cells.
Collapse
|
6
|
Qureshi IA, Mehler MF. Non-coding RNA networks underlying cognitive disorders across the lifespan. Trends Mol Med 2011; 17:337-46. [PMID: 21411369 PMCID: PMC3115489 DOI: 10.1016/j.molmed.2011.02.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 02/04/2011] [Accepted: 02/08/2011] [Indexed: 02/06/2023]
Abstract
Non-coding RNAs (ncRNAs) and their associated regulatory networks are increasingly being implicated in mediating a complex repertoire of neurobiological functions. Cognitive and behavioral processes are proving to be no exception. In this review, we discuss the emergence of many novel, diverse and rapidly expanding classes and subclasses of short and long ncRNAs. We briefly review the life cycles and molecular functions of these ncRNAs. We also examine how ncRNA circuitry mediates brain development, plasticity, stress responses and aging, and highlight its potential roles in the pathophysiology of cognitive disorders, including neural developmental and age-associated neurodegenerative diseases, as well as those that manifest throughout the lifespan.
Collapse
Affiliation(s)
- Irfan A. Qureshi
- Rosyln and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
- Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
- Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Mark F. Mehler
- Rosyln and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
- Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
- Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| |
Collapse
|
7
|
Wang WX, Huang Q, Hu Y, Stromberg AJ, Nelson PT. Patterns of microRNA expression in normal and early Alzheimer's disease human temporal cortex: white matter versus gray matter. Acta Neuropathol 2011; 121:193-205. [PMID: 20936480 PMCID: PMC3073518 DOI: 10.1007/s00401-010-0756-0] [Citation(s) in RCA: 263] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 09/26/2010] [Accepted: 09/27/2010] [Indexed: 10/19/2022]
Abstract
MicroRNA (miRNA) expression was assessed in human cerebral cortical gray matter (GM) and white matter (WM) in order to provide the first insights into the difference between GM and WM miRNA repertoires across a range of Alzheimer's disease (AD) pathology. RNA was isolated separately from GM and WM portions of superior and middle temporal cerebral cortex (N = 10 elderly females, postmortem interval < 4 h). miRNA profiling experiments were performed using state-of-the-art Exiqon(©) LNA-microarrays. A subset of miRNAs that appeared to be strongly expressed according to the microarrays did not appear to be conventional miRNAs according to Northern blot analyses. Some well-characterized miRNAs were substantially enriched in WM as expected. However, most of the miRNA expression variability that correlated with the presence of early AD-related pathology was seen in GM. We confirm that downregulation of a set of miRNAs in GM (including several miR-15/107 genes and miR-29 paralogs) correlated strongly with the density of diffuse amyloid plaques detected in adjacent tissue. A few miRNAs were differentially expressed in WM, including miR-212 that is downregulated in AD and miR-424 which is upregulated in AD. The expression of certain miRNAs correlates with other miRNAs across different cases, and particular subsets of miRNAs are coordinately expressed in relation to AD-related pathology. These data support the hypothesis that patterns of miRNA expression in cortical GM may contribute to AD pathogenetically, because the aggregate change in miRNA expression observed early in the disease would be predicted to cause profound changes in gene expression.
Collapse
Affiliation(s)
- Wang-Xia Wang
- Division of Neuropathology, Department of Pathology, Sanders-Brown Center on Aging, Rm 311, Sanders-Brown Center Building, University of Kentucky Medical Center, University of Kentucky, 800 S. Limestone, Lexington, KY 40536-0230, USA
| | - Qingwei Huang
- Division of Neuropathology, Department of Pathology, Sanders-Brown Center on Aging, Rm 311, Sanders-Brown Center Building, University of Kentucky Medical Center, University of Kentucky, 800 S. Limestone, Lexington, KY 40536-0230, USA
| | - Yanling Hu
- Division of Neuropathology, Department of Pathology, Sanders-Brown Center on Aging, Rm 311, Sanders-Brown Center Building, University of Kentucky Medical Center, University of Kentucky, 800 S. Limestone, Lexington, KY 40536-0230, USA
| | - Arnold J. Stromberg
- Division of Neuropathology, Department of Pathology, Sanders-Brown Center on Aging, Rm 311, Sanders-Brown Center Building, University of Kentucky Medical Center, University of Kentucky, 800 S. Limestone, Lexington, KY 40536-0230, USA
| | - Peter T. Nelson
- Division of Neuropathology, Department of Pathology, Sanders-Brown Center on Aging, Rm 311, Sanders-Brown Center Building, University of Kentucky Medical Center, University of Kentucky, 800 S. Limestone, Lexington, KY 40536-0230, USA
| |
Collapse
|
8
|
Structural studies of the tandem Tudor domains of fragile X mental retardation related proteins FXR1 and FXR2. PLoS One 2010; 5:e13559. [PMID: 21072162 PMCID: PMC2970552 DOI: 10.1371/journal.pone.0013559] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 09/29/2010] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Expansion of the CGG trinucleotide repeat in the 5'-untranslated region of the FMR1, fragile X mental retardation 1, gene results in suppression of protein expression for this gene and is the underlying cause of Fragile X syndrome. In unaffected individuals, the FMRP protein, together with two additional paralogues (Fragile X Mental Retardation Syndrome-related Protein 1 and 2), associates with mRNA to form a ribonucleoprotein complex in the nucleus that is transported to dendrites and spines of neuronal cells. It is thought that the fragile X family of proteins contributes to the regulation of protein synthesis at sites where mRNAs are locally translated in response to stimuli. METHODOLOGY/PRINCIPAL FINDINGS Here, we report the X-ray crystal structures of the non-canonical nuclear localization signals of the FXR1 and FXR2 autosomal paralogues of FMRP, which were determined at 2.50 and 1.92 Å, respectively. The nuclear localization signals of the FXR1 and FXR2 comprise tandem Tudor domain architectures, closely resembling that of UHRF1, which is proposed to bind methylated histone H3K9. CONCLUSIONS The FMRP, FXR1 and FXR2 proteins comprise a small family of highly conserved proteins that appear to be important in translational regulation, particularly in neuronal cells. The crystal structures of the N-terminal tandem Tudor domains of FXR1 and FXR2 revealed a conserved architecture with that of FMRP. Biochemical analysis of the tandem Tudor domains reveals their ability to preferentially recognize trimethylated peptides in a sequence-specific manner. ENHANCED VERSION This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the web plugin are available in Text S1.
Collapse
|
9
|
Rosales-Reynoso MA, Ochoa-Hernández AB, Aguilar-Lemarroy A, Jave-Suárez LF, Troyo-Sanromán R, Barros-Núñez P. Gene expression profiling identifies WNT7A as a possible candidate gene for decreased cancer risk in fragile X syndrome patients. Arch Med Res 2010; 41:110-118.e2. [PMID: 20470940 DOI: 10.1016/j.arcmed.2010.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2009] [Accepted: 01/25/2010] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND AIMS Although sporadic cases of cancer in patients with fragile X syndrome (FXS) have been reported, extensive studies carried out in Denmark and Finland concluded that cancer incidence in these patients is lower than in the general population. On the other hand, the FMR1 protein, which is involved in the translation process, is absent in FXS patients. Hence, it is reasonable to assume that these patients exhibit an abnormal expression of some proteins involved in regulating tumor suppressor genes and/or oncogenes, thus explaining its decreased cancer frequency. We undertook this study to analyze the expression of oncogenes and tumor suppressor genes in fragile X syndrome patients. METHODS Molecular analysis of the FMR1 gene was achieved in 10 male patients and controls. Total RNA from peripheral blood was used to evaluate expression of oncogenes and tumor suppressor genes included in a 10,000 gene microarray library. Quantitative real-time PCR was utilized to confirm genes with differential expression. RESULTS Among 27 genes showing increased expression in FXS patients, only eight genes exhibited upregulation in at least 50% of them. Among these, ARMCX2 and PPP2R5C genes are tumor suppressor related. Likewise, 23/65 genes showed decreased expression in >50% of patients. Among them, WNT7A gene is a ligand of the beta-catenin pathway, which is widely related to oncogenic processes. Decreased expression of WNT7A was confirmed by quantitative RT-PCR. Expression of c-Myc, c-Jun, cyclin-D and PPARdelta genes, as target of the beta-catenin pathway, was moderately reduced in FXS patients. CONCLUSIONS Results suggest that this diminished expression of the WNT7A gene may be related to a supposed protection of FXS patients to develop cancer.
Collapse
Affiliation(s)
- Mónica Alejandra Rosales-Reynoso
- División de Medicina Molecular, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, México.
| | | | | | | | | | | |
Collapse
|
10
|
Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 2010; 11:597-610. [PMID: 20661255 DOI: 10.1038/nrg2843] [Citation(s) in RCA: 3647] [Impact Index Per Article: 243.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are a large family of post-transcriptional regulators of gene expression that are approximately 21 nucleotides in length and control many developmental and cellular processes in eukaryotic organisms. Research during the past decade has identified major factors participating in miRNA biogenesis and has established basic principles of miRNA function. More recently, it has become apparent that miRNA regulators themselves are subject to sophisticated control. Many reports over the past few years have reported the regulation of miRNA metabolism and function by a range of mechanisms involving numerous protein-protein and protein-RNA interactions. Such regulation has an important role in the context-specific functions of miRNAs.
Collapse
Affiliation(s)
- Jacek Krol
- Friedrich Miescher Institute for Biomedical Research, 4002 Basel, Switzerland
| | | | | |
Collapse
|
11
|
Abstract
Motor neurons are large, highly polarised cells with very long axons and a requirement for precise spatial and temporal gene expression. Neurodegenerative disorders characterised by selective motor neuron vulnerability include various forms of amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA). A rapid expansion in knowledge on the pathophysiology of motor neuron degeneration has occurred in recent years, largely through the identification of genes leading to familial forms of ALS and SMA. The major emerging theme is that motor neuron degeneration can result from mutation in genes that encode factors important for ribonucleoprotein biogenesis and RNA processing, including splicing regulation, transcript stabilisation, translational repression and localisation of mRNA. Complete understanding of how these pathways interact and elucidation of specialised mechanisms for mRNA targeting and processing in motor neurons are likely to produce new targets for therapy in ALS and related disorders.
Collapse
|
12
|
Cazzin C, Ring CJA. Recent advances in the manipulation of murine gene expression and its utility for the study of human neurological disease. Biochim Biophys Acta Mol Basis Dis 2009; 1802:796-807. [PMID: 20004244 DOI: 10.1016/j.bbadis.2009.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 11/24/2009] [Accepted: 11/25/2009] [Indexed: 12/11/2022]
Abstract
Transgenic mouse models have vastly contributed to our knowledge of the genetic and molecular pathways underlying the pathogenesis of neurological disorders that affect millions of people worldwide. Not only have they allowed the generation of disease models mimicking the human pathological state but they have also permitted the exploration of the pathological role of specific genes through the generation of knock-out and knock-in models. Classical constitutive transgenic mice have several limitations however, due to behavioral adaptation process occurring and conditional mouse models are time-consuming and often lack extensive spatial or temporal control of gene manipulation. These limitations could be overcome by means of innovative methods that are now available such as RNAi, viral vectors and large cloning DNA vectors. These tools have been extensively used for the generation of mouse models and are characterized by the superior control of transgene expression that has been proven invaluable in the assessment of novel treatments for neurological diseases and to further investigate the molecular processes underlying the etiopathology of neurological disorders. Furthermore, in association with classical transgenic mouse models, they have allowed the validation of innovative therapeutic strategies for the treatment of human neurological disorders. This review describes how these tools have overcome the limitations of classical transgenic mouse models and how they have been of value for the study of human neurological diseases.
Collapse
Affiliation(s)
- Chiara Cazzin
- Biology Department A&S DPU, Neuroscience CEDD, GlaxoSmithKline, Medicines Research Center, Verona, Italy.
| | | |
Collapse
|