1
|
Nazir SS, Goel D, Vohora D. A network pharmacology-based approach to decipher the pharmacological mechanisms of Salvia officinalis in neurodegenerative disorders. Metab Brain Dis 2025; 40:190. [PMID: 40266402 DOI: 10.1007/s11011-025-01599-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 03/31/2025] [Indexed: 04/24/2025]
Abstract
The present study aimed to assess the pharmacological mechanism of Salvia officinalis in Neurodegenerative disorders using a network pharmacology approach followed by molecular docking analysis. Phytoconstituents of S.officinalis were obtained from various databases, followed by the screening of active ingredients using the Swiss ADME web tool. Potential targets of active ingredients were identified using PubChem & SwissTargetPrediction. Genes related to Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD) were gathered using online databases. Besides, the correlation between active ingredient targets and disease-associated genes was linked. Networks were constructed, visualized, and analyzed using Cytoscape. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genome (KEGG) pathway enrichment analysis were performed using DAVID database. Decisively, Autodock was used for molecular docking. The results of network analysis identified 9 key active ingredients based on topological analysis of the active ingredient-candidate targets network. Also, the analysis revealed a shared target of 9 key active ingredients of S. officinalis that interacted with 133 AD-related targets whereas only 6 active ingredients interacted with 85 and 58 targets of PD and HD respectively. The core genes from the network were AKT1, BACE1, CASP3, MAPK1, TNF, and IL6. Furthermore, GO and KEGG enrichment analysis showed that FOXO, TNF, MAPK, PI3K-Akt, Rap 1, and neurotrophin signalling pathways as enriched, which were further evaluated by molecular docking suggesting the protective role of S. officinalis in neurodegenerative diseases. Our research reveals the therapeutic benefits of S. officinalis, which might play a crucial role in modulating neurodegenerative diseases.
Collapse
Affiliation(s)
- Sheikh Sana Nazir
- Neurobehavioral Pharmacology Laboratory, Department of Pharmacology, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, 110062, New Delhi, India
| | - Divya Goel
- Neurobehavioral Pharmacology Laboratory, Department of Pharmacology, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, 110062, New Delhi, India
| | - Divya Vohora
- Neurobehavioral Pharmacology Laboratory, Department of Pharmacology, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, 110062, New Delhi, India.
| |
Collapse
|
2
|
Fernandes M, Spanetta M, Vetrugno G, Nuccetelli M, Placidi F, Castelli A, Manfredi N, Izzi F, Laganà G, Bernardini S, Mercuri NB, Liguori C. The potential role of interleukin-6 in the association between inflammation and cognitive performance in obstructive sleep apnea. Brain Behav Immun Health 2024; 42:100875. [PMID: 39881817 PMCID: PMC11776075 DOI: 10.1016/j.bbih.2024.100875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 09/02/2024] [Accepted: 09/28/2024] [Indexed: 01/31/2025] Open
Abstract
Background Interleukin-6 (IL-6) represents one of the main molecules involved in inflammatory responses, which can be altered in either patients with cognitive impairment or obstructive sleep apnea (OSA). The present study aimed to evaluate serum IL-6 levels and cognitive performance in patients with severe OSA (Apnea-Hypopnea Index - AHI >30/h). Methods Thirty patients with severe OSA were compared to 15 controls similar in age, sex, and Body Mass Index. All patients underwent a sleep medicine interview, including the Epworth Sleepiness Scale (ESS), a polygraphic cardiorespiratory recording, the Montreal Cognitive Assessment (MoCA), and a blood sample for serum IL-6 assessment. Results OSA patients presented higher IL-6 serum levels (Md = 7.38) than controls (Md = 2.20, p < 0.001). Moreover, OSA patients showed lower MoCA (Md = 27.00) and higher ESS scores (Md = 8.00) than controls (Md = 30.00, p < 0.001; Md = 4.00, p = 0.004, respectively). Higher IL-6 serum levels were associated with lower oxygen saturation parameters and MoCA scores. Conclusions This study documented an association between inflammation, featured by higher IL-6 serum levels, and both nocturnal hypoxemia and cognitive impairment in OSA patients. Therefore, the increase in IL-6 levels may represent the result of vascular damage and neuroinflammation due to intermittent nocturnal hypoxia and further causing neurocognitive dysfunction in OSA.
Collapse
Affiliation(s)
- Mariana Fernandes
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133, Rome, Italy
| | | | - Giorgio Vetrugno
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133, Rome, Italy
| | - Marzia Nuccetelli
- Department of Clinical Biochemistry and Molecular Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Fabio Placidi
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133, Rome, Italy
- Sleep Medicine Centre, Neurology Unit, University Hospital of Rome “Tor Vergata”, 00133, Rome, Italy
| | - Alessandro Castelli
- Sleep Medicine Centre, Neurology Unit, University Hospital of Rome “Tor Vergata”, 00133, Rome, Italy
| | - Natalia Manfredi
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133, Rome, Italy
| | - Francesca Izzi
- Sleep Medicine Centre, Neurology Unit, University Hospital of Rome “Tor Vergata”, 00133, Rome, Italy
| | - Giuseppina Laganà
- Department of Orthodontics, Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133, Rome, Italy
| | - Sergio Bernardini
- Department of Clinical Biochemistry and Molecular Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Nicola Biagio Mercuri
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133, Rome, Italy
- Sleep Medicine Centre, Neurology Unit, University Hospital of Rome “Tor Vergata”, 00133, Rome, Italy
| | - Claudio Liguori
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133, Rome, Italy
- Sleep Medicine Centre, Neurology Unit, University Hospital of Rome “Tor Vergata”, 00133, Rome, Italy
| |
Collapse
|
3
|
Dzamko N. Cytokine activity in Parkinson's disease. Neuronal Signal 2023; 7:NS20220063. [PMID: 38059210 PMCID: PMC10695743 DOI: 10.1042/ns20220063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 12/08/2023] Open
Abstract
The contribution of the immune system to the pathophysiology of neurodegenerative Parkinson's disease (PD) is increasingly being recognised, with alterations in the innate and adaptive arms of the immune system underlying central and peripheral inflammation in PD. As chief modulators of the immune response, cytokines have been intensely studied in the field of PD both in terms of trying to understand their contribution to disease pathogenesis, and if they may comprise much needed therapeutic targets for a disease with no current modifying therapy. This review summarises current knowledge on key cytokines implicated in PD (TNFα, IL-6, IL-1β, IL-10, IL-4 and IL-1RA) that can modulate both pro-inflammatory and anti-inflammatory effects. Cytokine activity in PD is clearly a complicated process mediated by substantial cross-talk of signalling pathways and the need to balance pro- and anti-inflammatory effects. However, understanding cytokine activity may hold promise for unlocking new insight into PD and how it may be halted.
Collapse
Affiliation(s)
- Nicolas Dzamko
- School of Medical Sciences, Faculty of Medicine and Health and the Charles Perkins Centre, University of Sydney, Camperdown, NSW, 2050, Australia
| |
Collapse
|
4
|
Russ T, Enders L, Zbiegly JM, Potru PS, Wurm J, Spittau B. 2,4-Dichlorophenoxyacetic Acid Induces Degeneration of mDA Neurons In Vitro. Biomedicines 2023; 11:2882. [PMID: 38001883 PMCID: PMC10669833 DOI: 10.3390/biomedicines11112882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023] Open
Abstract
Background: Parkinson's disease (PD) affects 1-2% of the population over the age of 60 and the majority of PD cases are sporadic, without any family history of the disease. Neuroinflammation driven by microglia has been shown to promote the progression of midbrain dopaminergic (mDA) neuron loss through the release of neurotoxic factors. Interestingly, the risk of developing PD is significantly higher in distinct occupations, such as farming and agriculture, and is linked to the use of pesticides and herbicides. Methods: The neurotoxic features of 2,4-Dichlorophenoxyacetic acid (2,4D) at concentrations of 10 µM and 1 mM were analyzed in two distinct E14 midbrain neuron culture systems and in primary microglia. Results: The application of 1 mM 2,4D resulted in mDA neuron loss in neuron-enriched cultures. Notably, 2,4D-induced neurotoxicity significantly increased in the presence of microglia in neuron-glia cultures, suggesting that microglia-mediated neurotoxicity could be one mechanism for progressive neuron loss in this in vitro setup. However, 2,4D alone was unable to trigger microglia reactivity. Conclusions: Taken together, we demonstrate that 2,4D is neurotoxic for mDA neurons and that the presence of glia cells enhances 2,4D-induced neuron death. These data support the role of 2,4D as a risk factor for the development and progression of PD and further suggest the involvement of microglia during 2,4D-induced mDA neuron loss.
Collapse
Affiliation(s)
- Tamara Russ
- Medical School OWL, Anatomy and Cell Biology, Bielefeld University, 33615 Bielefeld, Germany; (T.R.)
- Institute of Anatomy, University of Rostock, 18051 Rostock, Germany
| | - Lennart Enders
- Institute for Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany (J.M.Z.)
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Julia M. Zbiegly
- Institute for Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany (J.M.Z.)
- UK Dementia Research Institute and Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0SL, UK
| | - Phani Sankar Potru
- Medical School OWL, Anatomy and Cell Biology, Bielefeld University, 33615 Bielefeld, Germany; (T.R.)
- Institute of Anatomy, University of Rostock, 18051 Rostock, Germany
| | - Johannes Wurm
- Medical School OWL, Anatomy and Cell Biology, Bielefeld University, 33615 Bielefeld, Germany; (T.R.)
- Institute of Anatomy, University of Rostock, 18051 Rostock, Germany
| | - Björn Spittau
- Medical School OWL, Anatomy and Cell Biology, Bielefeld University, 33615 Bielefeld, Germany; (T.R.)
- Institute of Anatomy, University of Rostock, 18051 Rostock, Germany
- Institute for Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany (J.M.Z.)
| |
Collapse
|
5
|
de la Monte SM, Tong M, Hapel AJ. Concordant and Discordant Cerebrospinal Fluid and Plasma Cytokine and Chemokine Responses in Mild Cognitive Impairment and Early-Stage Alzheimer's Disease. Biomedicines 2023; 11:2394. [PMID: 37760836 PMCID: PMC10525668 DOI: 10.3390/biomedicines11092394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Neuroinflammation may be a pathogenic mediator and biomarker of neurodegeneration at the boundary between mild cognitive impairment (MCI) and early-stage Alzheimer's disease (AD). Whether neuroinflammatory processes are endogenous to the central nervous system (CNS) or originate from systemic (peripheral blood) sources could impact strategies for therapeutic intervention. To address this issue, we measured cytokine and chemokine immunoreactivities in simultaneously obtained lumbar puncture cerebrospinal fluid (CSF) and serum samples from 39 patients including 18 with MCI or early AD and 21 normal controls using a 27-plex XMAP bead-based enzyme-linked immunosorbent assay (ELISA). The MCI/AD combined group had significant (p < 0.05 or better) or statistically trend-wise (0.05 ≤ p ≤ 0.10) concordant increases in CSF and serum IL-4, IL-5, IL-9, IL-13, and TNF-α and reductions in GM-CSF, b-FGF, IL-6, IP-10, and MCP-1; CSF-only increases in IFN-y and IL-7 and reductions in VEGF and IL-12p70; serum-only increases in IL-1β, MIP-1α, and eotaxin and reductions in G-CSF, IL-2, IL-8 and IL-15; and discordant CSF-serum responses with reduced CSF and increased serum PDGF-bb, IL-17a, and RANTES. The results demonstrate simultaneously parallel mixed but modestly greater pro-inflammatory compared to anti-inflammatory or neuroprotective responses in CSF and serum. In addition, the findings show evidence that several cytokines and chemokines are selectively altered in MCI/AD CSF, likely corresponding to distinct neuroinflammatory responses unrelated to systemic pathologies. The aggregate results suggest that early management of MCI/AD neuroinflammation should include both anti-inflammatory and pro-neuroprotective strategies to help prevent disease progression.
Collapse
Affiliation(s)
- Suzanne M. de la Monte
- Departments of Pathology (Neuropathology), Neurology, and Neurosurgery, Rhode Island Hospital, The Alpert Medical School of Brown University, Providence, RI 02903, USA
- Department of Medicine, Rhode Island Hospital, The Alpert Medical School of Brown University, Providence, RI 02903, USA;
| | - Ming Tong
- Department of Medicine, Rhode Island Hospital, The Alpert Medical School of Brown University, Providence, RI 02903, USA;
| | - Andrew J. Hapel
- Department of Genome Biology, John Curtin School of Medical Research, Australian National University, Canberra 2601, Australia;
| |
Collapse
|
6
|
Xiao R, Lei C, Zhang Y, Zhang M. Interleukin-6 in retinal diseases: From pathogenesis to therapy. Exp Eye Res 2023:109556. [PMID: 37385535 DOI: 10.1016/j.exer.2023.109556] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/03/2023] [Accepted: 06/25/2023] [Indexed: 07/01/2023]
Abstract
Interleukin-6 (IL-6) is a pleiotropic cytokine that participates in immunomodulation, inflammation, increases vascular permeability, hematopoiesis, and stimulates cell proliferation, among other biological processes. It exerts effects primarily through the classic and trans-signaling pathways. Many studies have demonstrated that IL-6 plays a critical role in the development of retinal diseases including diabetic retinopathy, uveitis, age-related macular degeneration, glaucoma, retinal vein occlusion, central serous chorioretinopathy and proliferative vitreoretinopathy. Thus, the progressive development of drugs targeting IL-6 and IL-6 receptor may play a role in the treatment of multiple retinal diseases. In this article, we comprehensively review the IL-6's biological functions of and its mechanisms in the pathogenesis of various retinal diseases. Furthermore, we summarize the drugs targeting IL-6 and its receptor and prospect their potential application in retinal diseases, hoping to provide new ideas for the treatment of retinal diseases.
Collapse
Affiliation(s)
- Ruihan Xiao
- Department of Ophthalmology and Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chunyan Lei
- Department of Ophthalmology and Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yi Zhang
- Department of Ophthalmology and Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meixia Zhang
- Department of Ophthalmology and Research Laboratory of Macular Disease, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
7
|
Kummer KK, Zeidler M, Kalpachidou T, Kress M. Role of IL-6 in the regulation of neuronal development, survival and function. Cytokine 2021; 144:155582. [PMID: 34058569 DOI: 10.1016/j.cyto.2021.155582] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 12/17/2022]
Abstract
The pleiotropic cytokine interleukin-6 (IL-6) is emerging as a molecule with both beneficial and destructive potentials. It can exert opposing actions triggering either neuron survival after injury or causing neurodegeneration and cell death in neurodegenerative or neuropathic disorders. Importantly, neurons respond differently to IL-6 and this critically depends on their environment and whether they are located in the peripheral or the central nervous system. In addition to its hub regulator role in inflammation, IL-6 is recently emerging as an important regulator of neuron function in health and disease, offering exciting possibilities for more mechanistic insight into the pathogenesis of mental, neurodegenerative and pain disorders and for developing novel therapies for diseases with neuroimmune and neurogenic pathogenic components.
Collapse
Affiliation(s)
- Kai K Kummer
- Institute of Physiology, Medical University of Innsbruck, Austria
| | | | | | - Michaela Kress
- Institute of Physiology, Medical University of Innsbruck, Austria.
| |
Collapse
|
8
|
Ferrari E, Cardinale A, Picconi B, Gardoni F. From cell lines to pluripotent stem cells for modelling Parkinson's Disease. J Neurosci Methods 2020; 340:108741. [PMID: 32311374 DOI: 10.1016/j.jneumeth.2020.108741] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 03/25/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder characterized by loss of dopaminergic (DAergic) neurons in the substantia nigra (SN) that contributes to the main motor symptoms of the disease. At present, even if several advancements have been done in the last decades, the molecular and cellular mechanisms involved in the pathogenesis are far to be fully understood. Accordingly, the establishment of reliable in vitro experimental models to investigate the early events of the pathogenesis represents a key issue in the field. However, to mimic and reproduce in vitro the complex neuronal circuitry involved in PD-associated degeneration of DAergic neurons still remains a highly challenging issue. Here we will review the in vitro PD models used in the last 25 years of research, ranging from cell lines, primary rat or mice neuronal cultures to the more recent use of human induced pluripotent stem cells (hiPSCs) and, finally, the development of 3D midbrain organoids.
Collapse
Affiliation(s)
- Elena Ferrari
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | | | - Barbara Picconi
- Università Telematica San Raffaele, Rome, Italy; IRCCS San Raffaele Pisana, Rome, Italy.
| | - Fabrizio Gardoni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy.
| |
Collapse
|
9
|
Valiati FE, Hizo GH, Pinto JV, Kauer-Sant`Anna M. The Possible Role of Telomere Length and Chemokines in the Aging Process: A Transdiagnostic Review in Psychiatry. CURRENT PSYCHIATRY RESEARCH AND REVIEWS 2019. [DOI: 10.2174/1573400515666190719155906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:Psychiatric disorders are common, reaching a worldwide prevalence of 29.2%. They are associated with a high risk of premature death and with accelerated aging in clinical, molecular and neuroimaging studies. Recently, there is strong evidence suggesting a possible role of telomere length and chemokines in aging processes in psychiatric disorders.Objective:We aimed to review the literature on telomere length and chemokines and its association with early aging in mental illnesses on a transdiagnostic approach.Results:The review highlights the association between psychiatric disorders and early aging. Several independent studies have reported shorter telomere length and dysregulations on levels of circulating chemokines in schizophrenia, bipolar disorder, major depressive disorder, and anxiety disorders, suggesting a complex interaction between these markers in a transdiagnostic level. However, studies have investigated the inflammatory markers and telomere shortening separately and associated with a particular diagnosis, rather than as a transdiagnostic biological feature.Conclusion:There is consistent evidence supporting the relationship between accelerated aging, telomere length, and chemokines in mental disorders, but they have been studied individually. Thus, more research is needed to improve the knowledge of accelerated senescence and its biomarkers in psychiatry, not only individually in each diagnosis, but also based on a transdiagnostic perspective. Moreover, further research should try to elucidate how the intricate association between the chemokines and telomeres together may contribute to the aging process in psychiatric disorders.
Collapse
Affiliation(s)
- Fernanda Endler Valiati
- Laboratory of Molecular Psychiatry, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Gabriel Henrique Hizo
- Laboratory of Molecular Psychiatry, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Jairo Vinícius Pinto
- Laboratory of Molecular Psychiatry, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Márcia Kauer-Sant`Anna
- Laboratory of Molecular Psychiatry, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
10
|
Neuroprotective effects of phytochemicals on dopaminergic neuron cultures. NEUROLOGÍA (ENGLISH EDITION) 2019. [DOI: 10.1016/j.nrleng.2016.04.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
11
|
Activation of microglia synergistically enhances neurodegeneration caused by MPP + in human SH-SY5Y cells. Eur J Pharmacol 2019; 850:64-74. [PMID: 30684467 DOI: 10.1016/j.ejphar.2019.01.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/17/2019] [Accepted: 01/23/2019] [Indexed: 01/21/2023]
Abstract
While MPP+ may not directly activate microglia, the initial neuronal damage inflicted by the toxin may trigger microglia, possibly leading to synergistic pro-apoptotic interaction between neuro-inflammation and toxin-induced neurotoxicity, which may further aggravate neurodegeneration. However, what molecular targets are synergistically up or downregulated during this interaction is not well understood. Here, we addressed this by co-culturing fully differentiated human SH-SY5Y cells treated with parkinsonian toxin 1-Methyl-4-phenylpyridinium (MPP+), with endotoxin-activated microglial cell line EOC 20 to determine how this interaction affects pro-apoptotic (p38, JNK, and bax:bcl2 ratios) and pro-survival (NF-κB, MEK1) signaling at both mRNA and protein levels. Concurrent MPP+ and endotoxin-treatment aggravated a decrease in SH-SY5Y cell viability and caused strong synergistic increases in the bax:bcl2 ratio, but also NF-κB and JNK signaling. These effects were attenuated by microglia inhibitor minocycline. Altogether, these data provide further molecular insights into the important role or even conditional requirement of microglia activation in the progressive neurodegenerative nature of PD.
Collapse
|
12
|
Ott BR, Jones RN, Daiello LA, de la Monte SM, Stopa EG, Johanson CE, Denby C, Grammas P. Blood-Cerebrospinal Fluid Barrier Gradients in Mild Cognitive Impairment and Alzheimer's Disease: Relationship to Inflammatory Cytokines and Chemokines. Front Aging Neurosci 2018; 10:245. [PMID: 30186149 PMCID: PMC6110816 DOI: 10.3389/fnagi.2018.00245] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 07/25/2018] [Indexed: 01/30/2023] Open
Abstract
Background: The pathophysiology underlying altered blood-cerebrospinal fluid barrier (BCSFB) function in Alzheimer's disease (AD) is unknown but may relate to endothelial cell activation and cytokine mediated inflammation. Methods: Cerebrospinal fluid (CSF) and peripheral blood were concurrently collected from cognitively healthy controls (N = 21) and patients with mild cognitive impairment (MCI) (N = 8) or AD (N = 11). The paired serum and CSF samples were assayed for a panel of cytokines, chemokines, and related trophic factors using multiplex ELISAs. Dominance analysis models were conducted to determine the relative importance of the inflammatory factors in relationship to BCSFB permeability, as measured by CSF/serum ratios for urea, creatinine, and albumin. Results: BCSFB disruption to urea, a small molecule distributed by passive diffusion, had a full model coefficient of determination (r2) = 0.35, and large standardized dominance weights (>0.1) for monocyte chemoattractant protein-1, interleukin (IL)-15, IL-1rα, and IL-2 in serum. BCSFB disruption to creatinine, a larger molecule governed by active transport, had a full model r2 = 0.78, and large standardized dominance weights for monocyte inhibitor protein-1b in CSF and tumor necrosis factor-α in serum. BCSFB disruption to albumin, a much larger molecule, had a full model r2 = 0.62, and large standardized dominance weights for IL-17a, interferon-gamma, IL-2, and VEGF in CSF, as well IL-4 in serum. Conclusions: Inflammatory proteins have been widely documented in the AD brain. The results of the current study suggest that changes in BCSFB function resulting in altered permeability and transport are related to expression of specific inflammatory proteins, and that the shifting distribution of these proteins from serum to CSF in AD and MCI is correlated with more severe perturbations in BCSFB function.
Collapse
Affiliation(s)
- Brian R. Ott
- Department of Neurology, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI, United States,George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, United States,*Correspondence: Brian R. Ott
| | - Richard N. Jones
- Department of Neurology, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI, United States
| | - Lori A. Daiello
- Department of Neurology, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI, United States
| | - Suzanne M. de la Monte
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, United States,Division of Neuropathology, Department of Pathology, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI, United States
| | - Edward G. Stopa
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, United States,Division of Neuropathology, Department of Pathology, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI, United States
| | - Conrad E. Johanson
- Department of Neurosurgery, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI, United States
| | - Charles Denby
- Department of Neurology, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI, United States
| | - Paula Grammas
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, United States
| |
Collapse
|
13
|
Zhou X, Spittau B. Lipopolysaccharide-Induced Microglia Activation Promotes the Survival of Midbrain Dopaminergic Neurons In Vitro. Neurotox Res 2017; 33:856-867. [DOI: 10.1007/s12640-017-9842-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 11/09/2017] [Accepted: 11/14/2017] [Indexed: 12/17/2022]
|
14
|
Heese K. Functional repertoire of interleukin-6 in the central nervous system – a review. Restor Neurol Neurosci 2017; 35:693-701. [DOI: 10.3233/rnn-170772] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, Wangsimni-ro, Seongdong-gu, Seoul, Republic of Korea
| |
Collapse
|
15
|
Echevarria FD, Formichella CR, Sappington RM. Interleukin-6 Deficiency Attenuates Retinal Ganglion Cell Axonopathy and Glaucoma-Related Vision Loss. Front Neurosci 2017; 11:318. [PMID: 28620279 PMCID: PMC5450377 DOI: 10.3389/fnins.2017.00318] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/19/2017] [Indexed: 11/13/2022] Open
Abstract
The pleotropic cytokine interleukin-6 (IL-6) is implicated in retinal ganglion cell (RGC) survival and degeneration, including that associated with glaucoma. IL-6 protects RGCs from pressure-induced apoptosis in vitro. However, it is unknown how IL-6 impacts glaucomatous degeneration in vivo. To study how IL-6 influences glaucomatous RGC axonopathy, accompanying glial reactivity, and resultant deficits in visual function, we performed neural tracing, histological, and neurobehavioral assessments in wildtype (B6;129SF2/J; WT) and IL-6 knock-out mice (B6;129S2-IL6tm1kopf/J; IL-6-/-) after 8 weeks of unilateral or bilateral microbead-induced glaucoma (microbead occlusion model). IOP increased by 20% following microbead injection in both genotypes (p < 0.05). However, deficits in wound healing at the site of corneal injection were noted. In WT mice, elevated IOP produced degenerating axon profiles and decreased axon density in the optic nerve by 15% (p < 0.01). In IL-6-/- mice, axon density in the optic nerve did not differ between microbead- and saline-injected mice (p > 0.05) and degenerating axon profiles were minimal. Preservation of RGC axons was reflected in visual function, where visual acuity decreased significantly in a time-dependent manner with microbead-induced IOP elevation in WT (p < 0.001), but not IL-6-/- mice (p > 0.05). Despite this preservation of RGC axons and visual acuity, both microbead-injected WT and IL-6-/- mice exhibited a 50% decrease in anterograde CTB transport to the superior colliculus, as compared to saline-injected controls (p < 0.01). Assessment of glial reactivity revealed no genotype- or IOP-dependent changes in retinal astrocytes. IOP elevation decreased microglia density and percent retinal area covered in WT mice (p < 0.05), while IL-6-/- mice exhibited only a decrease in density (p < 0.05). Together, our findings indicate that two defining features of RGC axonopathy—axon transport deficits and structural degeneration of axons—likely occur via independent mechanisms. Our data suggest that IL-6 is part of a mechanism that specifically leads to structural degeneration of axons. Furthermore, its absence is sufficient to prevent both structural degeneration of the optic nerve and vision loss. Overall, our work supports the proposition that functional deficits in axon transport represent a therapeutic window for RGC axonopathy and identify IL-6 signaling as a strong target for such a therapeutic.
Collapse
Affiliation(s)
| | - Cathryn R Formichella
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of MedicineNashville, TN, United States.,Vanderbilt Eye Institute, Vanderbilt University Medical CenterNashville, TN, United States
| | - Rebecca M Sappington
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of MedicineNashville, TN, United States.,Vanderbilt Eye Institute, Vanderbilt University Medical CenterNashville, TN, United States.,Department of Pharmacology, Vanderbilt University School of MedicineNashville, TN, United States
| |
Collapse
|
16
|
Hühner L, Rilka J, Gilsbach R, Zhou X, Machado V, Spittau B. Interleukin-4 Protects Dopaminergic Neurons In vitro but Is Dispensable for MPTP-Induced Neurodegeneration In vivo. Front Mol Neurosci 2017; 10:62. [PMID: 28337124 PMCID: PMC5343015 DOI: 10.3389/fnmol.2017.00062] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/24/2017] [Indexed: 01/10/2023] Open
Abstract
Microglia are involved in physiological as well as neuropathological processes in the central nervous system (CNS). Their functional states are often referred to as M1-like and M2-like activation, and are believed to contribute to neuroinflammation-mediated neurodegeneration or neuroprotection, respectively. Parkinson’s disease (PD) is one the most common neurodegenerative disease and is characterized by the progressive loss of midbrain dopaminergic (mDA) neurons in the substantia nigra resulting in bradykinesia, tremor, and rigidity. Interleukin 4 (IL4)-mediated M2-like activation of microglia, which is characterized by upregulation of alternative markers Arginase 1 (Arg1) and Chitinase 3 like 3 (Ym1) has been well studied in vitro but the role of endogenous IL4 during CNS pathologies in vivo is not well understood. Interestingly, microglia activation by IL4 has been described to promote neuroprotective and neurorestorative effects, which might be important to slow the progression of neurodegenerative diseases. In the present study, we addressed the role of endogenous and exogenous IL4 during MPP+-induced degeneration of mDA neurons in vitro and further addressed the impact of IL4-deficiency on neurodegeneration in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD in vivo. Our results clearly demonstrate that exogenous IL4 is important to protect mDA neurons in vitro, but endogenous IL4 seems to be dispensable for development and maintenance of the nigrostriatal system as well as MPTP-induced loss of TH+ neurons in vivo. These results underline the importance of IL4 in promoting a neuroprotective microglia activation state and strengthen the therapeutic potential of exogenous IL4 for protection of mDA neurons in PD models.
Collapse
Affiliation(s)
- Laura Hühner
- Department of Molecular Embryology, Institute for Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg Freiburg, Germany
| | - Jennifer Rilka
- Department of Molecular Embryology, Institute for Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg Freiburg, Germany
| | - Ralf Gilsbach
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg Freiburg, Germany
| | - Xiaolai Zhou
- Department of Molecular Embryology, Institute for Anatomy and Cell Biology, Faculty of Medicine, University of FreiburgFreiburg, Germany; Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, IthacaNY, USA
| | - Venissa Machado
- Department of Molecular Embryology, Institute for Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg Freiburg, Germany
| | - Björn Spittau
- Department of Molecular Embryology, Institute for Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg Freiburg, Germany
| |
Collapse
|
17
|
Rapamycin upregulates glutamate transporter and IL-6 expression in astrocytes in a mouse model of Parkinson's disease. Cell Death Dis 2017; 8:e2611. [PMID: 28182002 PMCID: PMC5386462 DOI: 10.1038/cddis.2016.491] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 11/22/2016] [Accepted: 12/15/2016] [Indexed: 02/06/2023]
Abstract
Rapamycin protects mice against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced loss of dopaminergic neurons, which is an established model for Parkinson's disease. We demonstrated that rapamycin preserves astrocytic expression of glutamate transporters and glutamate reuptake. The protective effect was also observed in astrocyte cultures, indicating that rapamycin acts directly on astrocytes. In the MPTP model, rapamycin caused reduced expression of the E3 ubiquitin ligase Nedd4-2 (neuronal precursor cell expressed developmentally downregulated 4-2) and reduced colocalization of glutamate transporters with ubiquitin. Rapamycin increased interleukin-6 (IL-6) expression, which was associated with reduced expression of inflammatory cytokines, indicating anti-inflammatory properties of IL-6 in the MPTP model. NF-κB was shown to be a key mediator for rapamycin, whereas Janus kinase 2, signal transducer and activator of transcription 3, phosphoinositide 3-kinase, and Akt partially mediated rapamycin effects in astrocytes. These results demonstrate for the first time in a Parkinson's disease animal model that the neuroprotective effects of rapamycin are associated with glial and anti-inflammatory effects.
Collapse
|
18
|
Sandoval-Avila S, Diaz NF, Gómez-Pinedo U, Canales-Aguirre AA, Gutiérrez-Mercado YK, Padilla-Camberos E, Marquez-Aguirre AL, Díaz-Martínez NE. Neuroprotective effects of phytochemicals on dopaminergic neuron cultures. Neurologia 2016; 34:114-124. [PMID: 27342389 DOI: 10.1016/j.nrl.2016.04.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 04/25/2016] [Indexed: 01/17/2023] Open
Abstract
INTRODUCTION Parkinson's disease is a progressive neurodegenerative disorder characterised by a loss of dopaminergic neurons in the substantia nigra pars compacta, which results in a significant decrease in dopamine levels and consequent functional motor impairment. DEVELOPMENT Although its aetiology is not fully understood, several pathogenic mechanisms, including oxidative stress, have been proposed. Current therapeutic approaches are based on dopamine replacement drugs; these agents, however, are not able to stop or even slow disease progression. Novel therapeutic approaches aimed at acting on the pathways leading to neuronal dysfunction and death are under investigation. CONCLUSIONS In recent years, such natural molecules as polyphenols, alkaloids, and saponins have been shown to have a neuroprotective effect due to their antioxidant and anti-inflammatory properties. The aim of our review is to analyse the most relevant studies worldwide addressing the benefits of some phytochemicals used in in vitro models of Parkinson's disease.
Collapse
Affiliation(s)
- S Sandoval-Avila
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Jalisco, México
| | - N F Diaz
- Departamento de Biología Celular, Instituto Nacional de Perinatología, Ciudad de México, México
| | - U Gómez-Pinedo
- Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense, Madrid, España
| | - A A Canales-Aguirre
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Jalisco, México
| | - Y K Gutiérrez-Mercado
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Jalisco, México
| | - E Padilla-Camberos
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Jalisco, México
| | - A L Marquez-Aguirre
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Jalisco, México
| | - N E Díaz-Martínez
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Jalisco, México.
| |
Collapse
|
19
|
Shao Y, Chan HM. Effects of methylmercury on dopamine release in MN9D neuronal cells. Toxicol Mech Methods 2015; 25:637-44. [DOI: 10.3109/15376516.2015.1053654] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
20
|
Li Y, Zhang J, Yang C. UNC-51-like kinase 1 blocks S6k1 phosphorylation contributes to neurodegeneration in Parkinson's disease model in vitro. Biochem Biophys Res Commun 2015; 459:196-200. [PMID: 25680463 DOI: 10.1016/j.bbrc.2015.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 02/02/2015] [Indexed: 01/30/2023]
Abstract
OBJECTIVE This study was aim to determine the role and underling mechanism of ribosomal protein S6 kinases 1 (S6k1) phosphorylation in Parkinson's disease (PD). METHODS The dopaminergic neuron MN9D was employed and 1-methyl-4-phenylpyridium (MPP) iodide (MPP(+)) was used to generate PD model in vitro. The S6k1 phosphorylation and UNC-51-like kinase 1 (ULK1) protein levels were analyzed by western blot. The ULK1 mRNA level was evaluated by Real-time RT-PCR. The S6k1 threonine 389 (T389) site-directed mutagenesis, the phosphodeficit T389A (threonine to alanine) and the phosphomimetic T389D (threonine to aspartate) were generated to examine the phosphorylation site of S6k1. RESULTS An increase in the ULK1 mRNA and protein levels were detected in the MPP(+)-treated MN9D cells compared to control. ULK1 knockdown increased neuronal cell viability, and enhanced S6k1 phosphorylation. Further investigation demonstrated ULK1 knockdown promoted the S6k1 T389 phosphorylation in particular. T389A enhanced the viability of MPP iodide-treated MN9D, whereas T389D decreased the cell viability. CONCLUSION ULK1 acts to inhibit S6k1 phosphorylation at T389, leading to MN9D viability reduction under MPP(+) treatment. These results provide evidence for a novel mechanism by which the ULK1 inhibit S6k1 T389 phosphorylation contributes to neurodegeneration in MPP(+) treated-MN9D, and suggests a new therapeutic strategy for PD.
Collapse
Affiliation(s)
- Yongle Li
- Graduate School of Tianjin Medical University, 22 Qixiangtai Road, Tianjin 300070, China.
| | - Jun Zhang
- Department of Nerve Internal Medicine, Jingmen No.2 People's Hospital, Xiangshan Road, Jingmen 448000, China
| | - Chunxiang Yang
- Department of Nerve Internal Medicine, Jingmen No.2 People's Hospital, Xiangshan Road, Jingmen 448000, China
| |
Collapse
|
21
|
Segura-Aguilar J, Kostrzewa RM. Neurotoxin mechanisms and processes relevant to Parkinson's disease: an update. Neurotox Res 2015; 27:328-54. [PMID: 25631236 DOI: 10.1007/s12640-015-9519-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 01/13/2015] [Accepted: 01/13/2015] [Indexed: 12/14/2022]
Abstract
The molecular mechanism responsible for degenerative process in the nigrostriatal dopaminergic system in Parkinson's disease (PD) remains unknown. One major advance in this field has been the discovery of several genes associated to familial PD, including alpha synuclein, parkin, LRRK2, etc., thereby providing important insight toward basic research approaches. There is an consensus in neurodegenerative research that mitochon dria dysfunction, protein degradation dysfunction, aggregation of alpha synuclein to neurotoxic oligomers, oxidative and endoplasmic reticulum stress, and neuroinflammation are involved in degeneration of the neuromelanin-containing dopaminergic neurons that are lost in the disease. An update of the mechanisms relating to neurotoxins that are used to produce preclinical models of Parkinson´s disease is presented. 6-Hydroxydopamine, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, and rotenone have been the most wisely used neurotoxins to delve into mechanisms involved in the loss of dopaminergic neurons containing neuromelanin. Neurotoxins generated from dopamine oxidation during neuromelanin formation are likewise reviewed, as this pathway replicates neurotoxin-induced cellular oxidative stress, inactivation of key proteins related to mitochondria and protein degradation dysfunction, and formation of neurotoxic aggregates of alpha synuclein. This survey of neurotoxin modeling-highlighting newer technologies and implicating a variety of processes and pathways related to mechanisms attending PD-is focused on research studies from 2012 to 2014.
Collapse
Affiliation(s)
- Juan Segura-Aguilar
- Molecular and Clinical Pharmacology, ICBM, Faculty of Medicine, University of Chile, Independencia 1027, Casilla, 70000, Santiago 7, Chile,
| | | |
Collapse
|
22
|
The role of inflammatory cytokines as key modulators of neurogenesis. Trends Neurosci 2015; 38:145-57. [PMID: 25579391 DOI: 10.1016/j.tins.2014.12.006] [Citation(s) in RCA: 254] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 10/20/2014] [Accepted: 12/08/2014] [Indexed: 12/20/2022]
Abstract
Neurogenesis is an important process in the regulation of brain function and behaviour, highly active in early development and continuing throughout life. Recent studies have shown that neurogenesis is modulated by inflammatory cytokines in response to an activated immune system. To disentangle the effects of the different cytokines on neurogenesis, here we summarise and discuss in vitro studies on individual cytokines. We show that inflammatory cytokines have both a positive and negative role on proliferation and neuronal differentiation. Hence, this strengthens the notion that inflammation is involved in molecular and cellular mechanisms associated with complex cognitive processes and, therefore, that alterations in brain-immune communication are relevant to the development of neuropsychiatric disorders.
Collapse
|
23
|
Spittau B, Rilka J, Steinfath E, Zöller T, Krieglstein K. TGFβ1 increases microglia-mediated engulfment of apoptotic cells via upregulation of the milk fat globule-EGF factor 8. Glia 2014; 63:142-53. [PMID: 25130376 DOI: 10.1002/glia.22740] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 07/29/2014] [Indexed: 12/18/2022]
Abstract
Milk fat globule-epidermal growth factor-factor 8 (Mfge8) has been described as an essential molecule during microglia-mediated clearance of apoptotic cells via binding to phosphatidylserine residues and subsequent phagocytosis. Impaired uptake of apoptotic cells by microglia results in prolonged inflammatory responses and damage of healthy cells. Although the mechanisms of Mfge8-mediated engulfment of apoptotic cells are well understood, endogenous or exogenous factors that regulate Mfge8 expression remain elusive. Here, we describe that TGFβ1 increases the expression of Mfge8 and enhances the engulfment of apoptotic cells by primary mouse microglia in a Mfge8-dependent manner. Further, apoptotic cells are capable of increasing microglial TGFβ expression and release and shift the microglia phenotype toward alternative activation. Moreover, we provide evidence that Mfge8 expression is differentially regulated in microglia after classical and alternative activation and that Mfge8 is not able to exert direct antiinflammatory effects on LPS-treated primary microglia. Together, these results underline the importance of TGFβ1 as a regulatory factor for microglia and suggest that increased TGFβ1 expression in models of neurodegeneration might be involved in clearance of apoptotic cells via regulation of Mfge8 expression.
Collapse
Affiliation(s)
- Björn Spittau
- Department of Molecular Embryology, Institute for Anatomy and Cell Biology, Albert-Ludwigs-University, Freiburg, Germany
| | | | | | | | | |
Collapse
|
24
|
Khan MM, Zaheer S, Nehman J, Zaheer A. Suppression of glia maturation factor expression prevents 1-methyl-4-phenylpyridinium (MPP⁺)-induced loss of mesencephalic dopaminergic neurons. Neuroscience 2014; 277:196-205. [PMID: 25016212 DOI: 10.1016/j.neuroscience.2014.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 06/30/2014] [Accepted: 07/01/2014] [Indexed: 12/19/2022]
Abstract
Inflammation mediated by glial activation appears to play a critical role in the pathogenesis of Parkinson disease (PD). Glia maturation factor (GMF), a proinflammatory protein predominantly localized in the central nervous system was isolated, sequenced and cloned in our laboratory. We have previously demonstrated immunomodulatory and proinflammatory functions of GMF, but its involvement in 1-methyl-4-phenylpyridinium (MPP(+)), active metabolite of classical parkinsonian toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), inducing loss of dopaminergic (DA) neurons has not been studied. Here we show that altered expression of GMF has direct consequences on the production of reactive oxygen species (ROS) and nuclear factor-kappa B (NF-κB)- mediated production of inflammatory mediators by MPP(+). We examined MPP(+)-induced DA neuronal loss in primary cultures of mouse mesencephalic neurons/glia obtained from GMF-deficient (GMF knockout (GMF-KO)) and GMF-containing wild-type (Wt) mice. We demonstrate that deficiency of GMF in GMF-KO neurons/glia led to decreased production of ROS and downregulation of NF-κB-mediated production of tumor necrosis factor-alpha (TNF-α) and interleukin-1beta (IL-1β) as compared to Wt neurons/glia. Additionally, overexpression of GMF induced DA neurodegeneration, whereas GMF downregulation by GMF-specific shRNA protected DA neurons from MPP-induced toxicity. Subsequently, GMF deficiency ameliorates antioxidant balance, as evidenced by the decreased level of lipid peroxidation, less ROS production along with increased level of glutathione; and attenuated the DA neuronal loss via the downregulation of NF-κB-mediated inflammatory responses. In conclusion, our overall data indicate that GMF modulates oxidative stress and release of deleterious agents by MPP(+) leading to loss of DA neurons. Our study provides new insights into the potential role of GMF and identifies targets for therapeutic interventions in neurodegenerative diseases.
Collapse
Affiliation(s)
- M M Khan
- Department of Neurology, University of Iowa, Iowa City, IA 52242, USA
| | - S Zaheer
- Department of Neurology, University of Iowa, Iowa City, IA 52242, USA
| | - J Nehman
- Department of Neurology, University of Iowa, Iowa City, IA 52242, USA
| | - A Zaheer
- Department of Neurology, University of Iowa, Iowa City, IA 52242, USA; VA Health Care System, Iowa City, IA, USA.
| |
Collapse
|
25
|
Dysregulated microRNAs in amyotrophic lateral sclerosis microglia modulate genes linked to neuroinflammation. Cell Death Dis 2013; 4:e959. [PMID: 24336079 PMCID: PMC3877562 DOI: 10.1038/cddis.2013.491] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 11/07/2013] [Accepted: 11/08/2013] [Indexed: 12/22/2022]
Abstract
MicroRNAs (miRNAs) regulate gene expression at post-transcriptional level and are key modulators of immune system, whose dysfunction contributes to the progression of neuroinflammatory diseaseas such as amyotrophic lateral sclerosis (ALS), the most widespread motor neuron disorder. ALS is a non-cell-autonomous disease targeting motor neurons and neighboring glia, with microgliosis directly contributing to neurodegeneration. As limited information exists on miRNAs dysregulations in ALS, we examined this topic in primary microglia from superoxide dismutase 1-G93A mouse model. We compared miRNAs transcriptional profiling of non-transgenic and ALS microglia in resting conditions and after inflammatory activation by P2X7 receptor agonist. We identified upregulation of selected immune-enriched miRNAs, recognizing miR-22, miR-155, miR-125b and miR-146b among the most highly modulated. We proved that miR-365 and miR-125b interfere, respectively, with the interleukin-6 and STAT3 pathway determining increased tumor necrosis factor alpha (TNFα) transcription. As TNFα directly upregulated miR-125b, and inhibitors of miR-365/miR-125b reduced TNFα transcription, we recognized the induction of miR-365 and miR-125b as a vicious gateway culminating in abnormal TNFα release. These results strengthen the impact of miRNAs in modulating inflammatory genes linked to ALS and identify specific miRNAs as pathogenetic mechanisms in the disease.
Collapse
|
26
|
Calderón-Garcidueñas L, Cross JV, Franco-Lira M, Aragón-Flores M, Kavanaugh M, Torres-Jardón R, Chao CK, Thompson C, Chang J, Zhu H, D'Angiulli A. Brain immune interactions and air pollution: macrophage inhibitory factor (MIF), prion cellular protein (PrP(C)), Interleukin-6 (IL-6), interleukin 1 receptor antagonist (IL-1Ra), and interleukin-2 (IL-2) in cerebrospinal fluid and MIF in serum differentiate urban children exposed to severe vs. low air pollution. Front Neurosci 2013; 7:183. [PMID: 24133408 PMCID: PMC3794301 DOI: 10.3389/fnins.2013.00183] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 09/23/2013] [Indexed: 02/05/2023] Open
Abstract
Mexico City Metropolitan Area children chronically exposed to high concentrations of air pollutants exhibit an early brain imbalance in genes involved in oxidative stress, inflammation, innate and adaptive immune responses along with accumulation of misfolded proteins observed in the early stages of Alzheimer and Parkinson's diseases. A complex modulation of serum cytokines and chemokines influences children's brain structural and gray/white matter volumetric responses to air pollution. The search for biomarkers associating systemic and CNS inflammation to brain growth and cognitive deficits in the short term and neurodegeneration in the long-term is our principal aim. We explored and compared a profile of cytokines, chemokines (Multiplexing LASER Bead Technology) and Cellular prion protein (PrP(C)) in normal cerebro-spinal-fluid (CSF) of urban children with high vs. low air pollution exposures. PrP(C) and macrophage inhibitory factor (MIF) were also measured in serum. Samples from 139 children ages 11.91 ± 4.2 years were measured. Highly exposed children exhibited significant increases in CSF MIF (p = 0.002), IL6 (p = 0.006), IL1ra (p = 0.014), IL-2 (p = 0.04), and PrP(C) (p = 0.039) vs. controls. MIF serum concentrations were higher in exposed children (p = 0.009). Our results suggest CSF as a MIF, IL6, IL1Ra, IL-2, and PrP(C) compartment that can possibly differentiate air pollution exposures in children. MIF, a key neuro-immune mediator, is a potential biomarker bridge to identify children with CNS inflammation. Fine tuning of immune-to-brain communication is crucial to neural networks appropriate functioning, thus the short and long term effects of systemic inflammation and dysregulated neural immune responses are of deep concern for millions of exposed children. Defining the linkage and the health consequences of the brain / immune system interactions in the developing brain chronically exposed to air pollutants ought to be of pressing importance for public health.
Collapse
Affiliation(s)
- Lilian Calderón-Garcidueñas
- Department of Biomedical Sciences, The Center for Structural and Functional Neurosciences, The University of Montana Missoula, MT, USA ; Hospital Central Militar, Secretaria de la Defensa Nacional Mexico City, Mexico
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ramesh G, MacLean AG, Philipp MT. Cytokines and chemokines at the crossroads of neuroinflammation, neurodegeneration, and neuropathic pain. Mediators Inflamm 2013; 2013:480739. [PMID: 23997430 PMCID: PMC3753746 DOI: 10.1155/2013/480739] [Citation(s) in RCA: 442] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/11/2013] [Accepted: 07/12/2013] [Indexed: 01/18/2023] Open
Abstract
Cytokines and chemokines are proteins that coordinate the immune response throughout the body. The dysregulation of cytokines and chemokines is a central feature in the development of neuroinflammation, neurodegeneration, and demyelination both in the central and peripheral nervous systems and in conditions of neuropathic pain. Pathological states within the nervous system can lead to activation of microglia. The latter may mediate neuronal and glial cell injury and death through production of proinflammatory factors such as cytokines and chemokines. These then help to mobilize the adaptive immune response. Although inflammation may induce beneficial effects such as pathogen clearance and phagocytosis of apoptotic cells, uncontrolled inflammation can result in detrimental outcomes via the production of neurotoxic factors that exacerbate neurodegenerative pathology. In states of prolonged inflammation, continual activation and recruitment of effector cells can establish a feedback loop that perpetuates inflammation and ultimately results in neuronal injury. A critical balance between repair and proinflammatory factors determines the outcome of a neurodegenerative process. This review will focus on how cytokines and chemokines affect neuroinflammation and disease pathogenesis in bacterial meningitis and brain abscesses, Lyme neuroborreliosis, human immunodeficiency virus encephalitis, and neuropathic pain.
Collapse
Affiliation(s)
- Geeta Ramesh
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Tulane University, 18703 Three Rivers Road, Covington, LA 70433, USA.
| | | | | |
Collapse
|
28
|
Metal dyshomeostasis and inflammation in Alzheimer's and Parkinson's diseases: possible impact of environmental exposures. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:726954. [PMID: 23710288 PMCID: PMC3654362 DOI: 10.1155/2013/726954] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 02/06/2013] [Accepted: 02/07/2013] [Indexed: 12/14/2022]
Abstract
A dysregulated metal homeostasis is associated with both Alzheimer's (AD) and Parkinson's (PD) diseases; AD patients have decreased cortex and elevated serum copper levels along with extracellular amyloid-beta plaques containing copper, iron, and zinc. For AD, a putative hepcidin-mediated lowering of cortex copper mechanism is suggested. An age-related mild chronic inflammation and/or elevated intracellular iron can trigger hepcidin production followed by its binding to ferroportin which is the only neuronal iron exporter, thereby subjecting it to lysosomal degradation. Subsequently raised neuronal iron levels can induce translation of the ferroportin assisting and copper binding amyloid precursor protein (APP); constitutive APP transmembrane passage lowers the copper pool which is important for many enzymes. Using in silico gene expression analyses, we here show significantly decreased expression of copper-dependent enzymes in AD brain and metallothioneins were upregulated in both diseases. Although few AD exposure risk factors are known, AD-related tauopathies can result from cyanobacterial microcystin and β-methylamino-L-alanine (BMAA) intake. Several environmental exposures may represent risk factors for PD; for this disease neurodegeneration is likely to involve mitochondrial dysfunction, microglial activation, and neuroinflammation. Administration of metal chelators and anti-inflammatory agents could affect disease outcomes.
Collapse
|
29
|
Levandovski R, Pfaffenseller B, Carissimi A, Gama CS, Hidalgo MPL. The effect of sunlight exposure on interleukin-6 levels in depressive and non-depressive subjects. BMC Psychiatry 2013; 13:75. [PMID: 23497121 PMCID: PMC3599872 DOI: 10.1186/1471-244x-13-75] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 02/25/2013] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND The objective of this epidemiological study was to evaluate the effect of length of sunlight exposure on interleukin 6 (IL-6) levels in depressive and non-depressive subjects. METHODS This was a cross-sectional study with 154 subjects (54 males, mean age: 43.5 ± 12.8 years) who were living in a rural area in south Brazil. Chronobiological and light parameters were assessed using the Munich Chronotype Questionnaire. Sleep quality was evaluated using the Pittsburgh Sleep Quality Index. Depressive symptoms were assessed with the Beck Depression Inventory. Plasma levels of inflammatory cytokines (IL-2, IL-4, IL-6, IL-10, tumor necrosis factor-α, and interferon) were collected during the daytime and measured. RESULTS IL-6 levels showed a positive correlation with light exposure (r = 0.257; p < 0.001) and a negative correlation with the mid-sleep phase on work-free days (r = -0.177; p = 0.028). Multiple linear regression analysis showed that only the length of light exposure was an independent factor for predicting IL-6 levels (ß = 0.26; p = 0.002). In non-depressed subjects, exposure to a different intensity of light did not affect IL-6 levels (t = -1.6; p = 0.1). However, when the two depressive groups with low and high light exposure were compared, the low light exposure group had lower levels of IL-6 compared with the high light exposure group (t = -2.19 and p = 0.0037). CONCLUSIONS The amount of time that participants are exposed to sunlight is directly related to their IL-6 levels. Additionally, depressed subjects differ in their IL-6 levels if they are exposed to light for differing amounts of time.
Collapse
Affiliation(s)
- Rosa Levandovski
- Laboratório de Cronobiologia do Hospital de Clínicas de Porto Alegre (HCPA), da Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil,Programa de Pós-Graduação em Ciências Médicas: Psiquiatria, UFRGS, Porto Alegre, Brazil
| | - Bianca Pfaffenseller
- INCT for Translational Medicine, Laboratory of Molecular Psychiatry, HCPA/UFRGS, Porto Alegre, Brazil
| | - Alicia Carissimi
- Laboratório de Cronobiologia do Hospital de Clínicas de Porto Alegre (HCPA), da Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil,Programa de Pós-Graduação em Ciências Médicas: Psiquiatria, UFRGS, Porto Alegre, Brazil
| | - Clarissa S Gama
- INCT for Translational Medicine, Laboratory of Molecular Psychiatry, HCPA/UFRGS, Porto Alegre, Brazil
| | - Maria Paz Loayza Hidalgo
- Laboratório de Cronobiologia do Hospital de Clínicas de Porto Alegre (HCPA), da Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil,Departamento de Psiquiatria e Medicina Legal da Faculdade de Medicina, da Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil,Programa de Pós-Graduação em Ciências Médicas: Psiquiatria, UFRGS, Porto Alegre, Brazil,Programa de Pós-Graduação em Medicina: Ciências Médicas, UFRGS, Porto Alegre, Brazil
| |
Collapse
|