1
|
Giannakis A, Konitsiotis S, Sioka C. Differentiating Progressive Supranuclear Palsy and Corticobasal Syndrome: Insights from Cerebrospinal Fluid Biomarkers-A Narrative Review. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:701. [PMID: 40282991 PMCID: PMC12028812 DOI: 10.3390/medicina61040701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 03/28/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025]
Abstract
Background and Objectives: Despite ongoing research and evolving diagnostic criteria, progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS) remain notoriously difficult to differentiate, largely due to their overlapping clinical presentations and the absence of definitive biomarkers. Materials and Methods: We provide a comprehensive review of cerebrospinal fluid (CSF) biomarkers, which have proven valuable in the diagnosis of other neurodegenerative conditions, and their application to PSP and CBS. Results: The most promising results derive from a combination of biomarkers associated with Parkinson's disease, Alzheimer's disease, and neurofilament light chain. Furthermore, CSF proteomics analysis offers valuable insights into the pathogenesis of PSP and CBS and could also contribute to accurate diagnosis. Conclusions: CSF biomarkers hold significant potential for improving the differential diagnosis of PSP and CBS. A stepwise combination approach-starting with CSF α-synuclein and neurofilament light chain, followed by amyloid-β42 and total and phosphorylated tau-may provide clinicians with a practical framework for distinguishing PSP and CBS from other neurodegenerative disorders. To advance this field, future efforts should prioritize large-scale, multicenter studies employing standardized methodologies to enhance the validity and reproducibility of biomarker-based diagnostics. Importantly, considering the frequent pathological overlap between PSP and CBS, future studies would greatly benefit from pathology-confirmed cohorts to ensure diagnostic accuracy and to better delineate biomarker profiles across these challenging conditions.
Collapse
Affiliation(s)
- Alexandros Giannakis
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Stavrou Niarchou Av., University Campus, 45500 Ioannina, Greece; (A.G.)
| | - Spiridon Konitsiotis
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Stavrou Niarchou Av., University Campus, 45500 Ioannina, Greece; (A.G.)
| | - Chrissa Sioka
- Department of Nuclear Medicine, Faculty of Medicine, School of Health Sciences, University of Ioannina, Stavrou Niarchou Av., University Campus, 45500 Ioannina, Greece
| |
Collapse
|
2
|
Shao J, Deng Q, Feng S, Wu C, Liu X, Yang L. Role of astrocytes in Alzheimer's disease pathogenesis and the impact of exercise-induced remodeling. Biochem Biophys Res Commun 2024; 732:150418. [PMID: 39032410 DOI: 10.1016/j.bbrc.2024.150418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Alzheimer's disease (AD) is a prevalent and debilitating brain disorder that worsens progressively with age, characterized by cognitive decline and memory impairment. The accumulation of amyloid-beta (Aβ) leading to amyloid plaques and hyperphosphorylation of Tau, resulting in intracellular neurofibrillary tangles (NFTs), are primary pathological features of AD. Despite significant research investment and effort, therapies targeting Aβ and NFTs have proven limited in efficacy for treating or slowing AD progression. Consequently, there is a growing interest in non-invasive therapeutic strategies for AD prevention. Exercise, a low-cost and non-invasive intervention, has demonstrated promising neuroprotective potential in AD prevention. Astrocytes, among the most abundant glial cells in the brain, play essential roles in various physiological processes and are implicated in AD initiation and progression. Exercise delays pathological progression and mitigates cognitive dysfunction in AD by modulating astrocyte morphological and phenotypic changes and fostering crosstalk with other glial cells. This review aims to consolidate the current understanding of how exercise influences astrocyte dynamics in AD, with a focus on elucidating the molecular and cellular mechanisms underlying astrocyte remodeling. The review begins with an overview of the neuropathological changes observed in AD, followed by an examination of astrocyte dysfunction as a feature of the disease. Lastly, the review explores the potential therapeutic implications of exercise-induced astrocyte remodeling in the context of AD.
Collapse
Affiliation(s)
- Jie Shao
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Qianting Deng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Shu Feng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Chongyun Wu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| | - Xiaocao Liu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| | - Luodan Yang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
3
|
Milos T, Vuic B, Balic N, Farkas V, Nedic Erjavec G, Svob Strac D, Nikolac Perkovic M, Pivac N. Cerebrospinal fluid in the differential diagnosis of Alzheimer's disease: an update of the literature. Expert Rev Neurother 2024; 24:1063-1079. [PMID: 39233323 DOI: 10.1080/14737175.2024.2400683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
INTRODUCTION The importance of cerebrospinal fluid (CSF) biomarkers in Alzheimer's disease (AD) diagnosis is rapidly increasing, and there is a growing interest in the use of CSF biomarkers in monitoring the response to therapy, especially in the light of newly available approaches to the therapy of neurodegenerative diseases. AREAS COVERED In this review we discuss the most relevant measures of neurodegeneration that are being used to distinguish patients with AD from healthy controls and individuals with mild cognitive impairment, in order to provide an overview of the latest information available in the scientific literature. We focus on markers related to amyloid processing, markers associated with neurofibrillary tangles, neuroinflammation, neuroaxonal injury and degeneration, synaptic loss and dysfunction, and markers of α-synuclein pathology. EXPERT OPINION In addition to neuropsychological evaluation, core CSF biomarkers (Aβ42, t-tau, and p-tau181) have been recommended for improvement of timely, accurate and differential diagnosis of AD, as well as to assess the risk and rate of disease progression. In addition to the core CSF biomarkers, various other markers related to synaptic dysfunction, neuroinflammation, and glial activation (neurogranin, SNAP-25, Nfl, YKL-40, TREM2) are now investigated and have yet to be validated for future potential clinical use in AD diagnosis.
Collapse
Affiliation(s)
- Tina Milos
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| | - Barbara Vuic
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| | - Nikola Balic
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| | - Vladimir Farkas
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| | | | | | | | - Nela Pivac
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
- University of Applied Sciences Hrvatsko Zagorje Krapina, Krapina, Croatia
| |
Collapse
|
4
|
Jellinger KA. The enigma of depression in corticobasal degeneration, a frequent but poorly understood co-morbidity. J Neural Transm (Vienna) 2024; 131:195-202. [PMID: 38216704 DOI: 10.1007/s00702-023-02731-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/15/2023] [Indexed: 01/14/2024]
Abstract
Depression is one of the most frequent neuropsychiatric symptoms in corticobasal degeneration (CBD), a rare, sporadic, and late-onset progressive neurodegenerative disorder of unknown etiology. It is clinically characterized by a levodopa-poorly responsible akinetic-rigid syndrome, apraxia, limb dystonia, cognitive, mood, behavioral, and language disorders. This 4-repeat (4R) tauopathy is morphologically featured by asymmetric frontoparietal atrophy, neuronal loss, and gliosis in cortex and subcortex including substantia nigra, ballooned/achromatic neurons with filamentous 4R tau aggregates in cortex and striatum, widespread thread-like structures, pathognomonic "astroglial plaques", "tufted astrocytes", and numerous "coiled bodies" (in astrocytes and oligodendroglia) in cerebral white matter. CBD is non-specific, as pathologically proven cases include several clinical phenotypes. Pubmed and Google Scholar were systematically analyzed until October 2023, with focus on the prevalence, clinical manifestation, neuroimaging data, and treatment options of depression in CBD. Its prevalence is about 30-40% which is more frequent than in most other atypical parkinsonian syndromes. Depression usually does not correlate with motor and other clinical parameters, suggesting different pathophysiological mechanisms. Asymmetric atrophy and hypometabolism of frontoparietal cortical areas are associated with disruption of fronto-subcortical circuits, nigrostriatal dopaminergic, and cholinergic deficiency. Since no specific neuroimaging, neuropathological, or biomarker studies of depression in CBD are available, its pathobiological mechanisms and pathogenesis are poorly understood. Antidepressive therapy may be useful, but is often poorly tolerated. Depression in CBD, like in other parkinsonian syndromes, may be related to multi-regional patterns of cerebral disturbances and complex pathogenic mechanisms that deserve further elucidation as a basis for early diagnosis and adequate treatment to improve the quality of life in this fatal disease.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|
5
|
Li S, Zhang Q, Liu J, Zhang N, Li X, Liu Y, Qiu H, Li J, Cao H. Bibliometric Analysis of Alzheimer's Disease and Depression. Curr Neuropharmacol 2024; 23:98-115. [PMID: 39092642 PMCID: PMC11519817 DOI: 10.2174/1570159x22666240730154834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/04/2024] [Accepted: 01/16/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND The link between Alzheimer's disease and depression has been confirmed by clinical and epidemiological research. Therefore, our study examined the literary landscape and prevalent themes in depression-related research works on Alzheimer's disease through bibliometric analysis. METHODS Relevant literature was identified from the Web of Science core collection. Bibliometric parameters were extracted, and the major contributors were defined in terms of countries, institutions, authors, and articles using Microsoft Excel 2019 and VOSviewer. VOSviewer and CiteSpace were employed to visualize the scientific networks and seminal topics. RESULTS The analysis of literature utilised 10,553 articles published from 1991 until 2023. The three countries or regions with the most publications were spread across the United States, China, and England. The University of Toronto and the University of Pittsburgh were the major contributors to the institutions. Lyketsos, Constantine G., Cummings, JL were found to make outstanding contributions. Journal of Alzheimer's Disease was identified as the most productive journal. Furthermore, "Alzheimer's", "depression", "dementia", and "mild cognitive decline" were the main topics of discussion during this period. LIMITATIONS Data were searched from a single database to become compatible with VOSviewer and CiteSpace, leading to a selection bias. Manuscripts in English were considered, leading to a language bias. CONCLUSION Articles on "Alzheimer's" and "depression" displayed an upward trend. The prevalent themes addressed were the mechanisms of depression-associated Alzheimer's disease, the identification of depression and cognitive decline in the early stages of Alzheimer's, alleviating depression and improving life quality in Alzheimer's patients and their caregivers, and diagnosing and treating neuropsychiatric symptoms in Alzheimer. Future research on these hot topics would promote understanding in this field.
Collapse
Affiliation(s)
- Sixin Li
- Department of Psychiatry, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Psychiatry, Brain Hospital of Hunan Province (The Second People’s Hospital of Hunan Province), Changsha, Hunan, China
| | - Qian Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, China
| | - Jian Liu
- Center for Medical Research and Innovation, The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Nan Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P.R.China
| | - Xinyu Li
- Department of Psychiatry, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Psychiatry, Brain Hospital of Hunan Province (The Second People’s Hospital of Hunan Province), Changsha, Hunan, China
| | - Ying Liu
- Department of Psychiatry, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Psychiatry, Brain Hospital of Hunan Province (The Second People’s Hospital of Hunan Province), Changsha, Hunan, China
| | - Huiwen Qiu
- Department of Psychiatry, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Psychiatry, Brain Hospital of Hunan Province (The Second People’s Hospital of Hunan Province), Changsha, Hunan, China
| | - Jing Li
- Department of Rehabilitation, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Cao
- Department of Psychiatry, The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Psychiatry, Brain Hospital of Hunan Province (The Second People’s Hospital of Hunan Province), Changsha, Hunan, China
| |
Collapse
|
6
|
Mockett BG, Ryan MM. The therapeutic potential of the neuroactive peptides of soluble amyloid precursor protein-alpha in Alzheimer's disease and related neurological disorders. Semin Cell Dev Biol 2023; 139:93-101. [PMID: 35654665 DOI: 10.1016/j.semcdb.2022.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 12/31/2022]
Abstract
Soluble amyloid precursor protein-alpha (sAPPα) is a multi-functional brain-derived protein that has neuroprotective, neurogenic and neurotropic properties. Moreover, it is known to facilitate synaptic function and promote neural repair. These properties suggest sAPPα may be useful as a therapeutic agent for the treatment of neurological diseases characterized by synaptic failure and neuronal loss, such as occurs in Alzheimer's disease, and for neural repair following traumatic brain injury and stroke. However, sAPPα's relatively large size and the difficulty of ongoing delivery of therapeutics to the brain mean this is not currently practicable. Importantly, however, sAPPα is composed of several neuroactive domains that each possess properties that collectively are remarkably similar to those of sAPPα itself. Here, we review the molecular structure of sAPPα and identify the domains that contribute to its overall functionality. Four peptide motifs present as possible targets for therapeutic development. We review their physiochemical and neuroactive properties, both within sAPPα and as isolated peptides, and discuss their potential for future development as multipurpose therapeutic agents for the treatment of Alzheimer's disease and other disorders of neuronal function. Further, we discuss the role of heparin binding sites, found within sAPPα's structure and overlapping with the neuroactive domains, as sites for interactions with effector proteins and synaptic receptors. The potential role of the neuroactive peptides known as Cationic Arginine-Rich Peptides (CARPs) as neuroprotective motifs is also reviewed. Mechanisms of peptide delivery to the brain are briefly discussed. Finally, we summarise the potential benefits and pitfalls of using the isolated peptides, either individually or in combination, for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Bruce G Mockett
- Department of Psychology, University of Otago, PO Box 56, Dunedin, New Zealand; Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Margaret M Ryan
- Department of Anatomy, School of Biomedical Sciences, University of Otago, PO Box 56, Dunedin, New Zealand; Brain Health Research Centre, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
7
|
Delport A, Hewer R. The amyloid precursor protein: a converging point in Alzheimer's disease. Mol Neurobiol 2022; 59:4501-4516. [PMID: 35579846 DOI: 10.1007/s12035-022-02863-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 04/30/2022] [Indexed: 11/30/2022]
Abstract
The decades of evidence that showcase the role of amyloid precursor protein (APP), and its fragment amyloidβ (Aβ), in Alzheimer's disease (AD) pathogenesis are irrefutable. However, the absolute focus on the single APP metabolite Aβ as the cause for AD has resulted in APP and its other fragments that possess toxic propensity, to be overlooked as targets for treatment. The complexity of its processing and its association with systematic metabolism suggests that, if misregulated, APP has the potential to provoke an array of metabolic dysfunctions. This review discusses APP and several of its cleaved products with a particular focus on their toxicity and ability to disrupt healthy cellular function, in relation to AD development. We subsequently argue that the reduction of APP, which would result in a concurrent decrease in Aβ as well as all other toxic APP metabolites, would alleviate the toxic environment associated with AD and slow disease progression. A discussion of those drug-like compounds already identified to possess this capacity is also included.
Collapse
Affiliation(s)
- Alexandré Delport
- Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, 3201, South Africa.
| | - Raymond Hewer
- Discipline of Biochemistry, School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, 3201, South Africa
| |
Collapse
|
8
|
Knorr U, Simonsen AH, Jensen CS, Zetterberg H, Blennow K, Akhøj M, Forman J, Hasselbalch SG, Kessing LV. Alzheimer's disease related biomarkers in bipolar disorder - A longitudinal one-year case-control study. J Affect Disord 2022; 297:623-633. [PMID: 34728295 DOI: 10.1016/j.jad.2021.10.074] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 10/06/2021] [Accepted: 10/23/2021] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Bipolar disorder (BD) is a heterogeneous mental disorder characterized by recurrent relapses of affective episodes: Subgroups of patients with BD have cognitive deficits, and an increased risk of dementia. METHODS This prospective, longitudinal, one-year follow-up, case-control study investigated biomarkers for AD and neurodegenerative diseases, namely: cerebrospinal fluid (CSF) amyloid beta (Aβ) isoforms and ratios (Aβ42, Aβ40, Aβ38), CSF soluble amyloid precursor protein (sAPP) α and β, CSF total (t-tau) and phosphorylated tau (p-tau), CSF neurofilament-light (NF-L), CSF neurogranin (NG), plasma-isoforms Aβ42 and Aβ40, plasma-tau, plasma-NF-L, and serum S100B, in patients with BD (N = 62, aged 18-60) and gender-and-age-matched healthy control individuals (N = 40). CSF and plasma/serum samples were collected at baseline, during and after an affective episode, if it occurred, and after a year. Data were analyzed in mixed models. RESULTS Levels of CSF Aβ42 decreased in patients with BD who had an episode during follow-up (BD-E) (N = 22) compared to patients without an episode (BD-NE) (N = 25) during follow-up (P = 0.002). Stable levels were seen for all other markers in BD-E compared to BD-NE during the one-year follow-up. We found no statistically significant differences between patients with BD and HC at T0 and T3 for Aβ42, Aβ40, Aβ38, Aβ42/38, Aβ42/40, sAPPα, sAPPβ, t-tau, p-tau, p-tau /t-tau, NF-L, NG in CSF and further Aβ40, Aβ42, Aβ42/40, t-tau, NF-L in plasma, S100B in serum, and APOE-status. Furthermore, all 18 biomarkers were stable in HC during the one-year follow-up from T0 to T3. CONCLUSION A panel of biomarkers of Alzheimer's and neurodegeneration show no differences between patients with BD and HC. There were abnormalities of amyloid production/clearance during an acute BD episode. The abnormalities mimic the pattern seen in AD namely decreasing CSF Aβ42 and may suggest an association with brain amyloidosis.
Collapse
Affiliation(s)
- Ulla Knorr
- Psychiatric Center Copenhagen, Department Rigshospitalet, Copenhagen Affective Disorder Research Center (CADIC), Blegdamsvej 9, 2100 Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | | | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, University College London, Queen Square, London, United Kingdom; UK Dementia Research Institute University College London, London, United Kingdom
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Morten Akhøj
- Section of Biostatistics, Department of Public Health, University of Copenhagen, Denmark
| | - Julie Forman
- Section of Biostatistics, Department of Public Health, University of Copenhagen, Denmark
| | - Steen Gregers Hasselbalch
- Danish Dementia Research Center, Rigshospitalet, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars Vedel Kessing
- Psychiatric Center Copenhagen, Department Rigshospitalet, Copenhagen Affective Disorder Research Center (CADIC), Blegdamsvej 9, 2100 Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Iqbal G, Braidy N, Ahmed T. Blood-Based Biomarkers for Predictive Diagnosis of Cognitive Impairment in a Pakistani Population. Front Aging Neurosci 2020; 12:223. [PMID: 32848704 PMCID: PMC7396488 DOI: 10.3389/fnagi.2020.00223] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/22/2020] [Indexed: 12/27/2022] Open
Abstract
Numerous studies have identified an association between age-related cognitive impairment (CI) and oxidative damage, accumulation of metals, amyloid levels, tau, and deranged lipid profile. There is a concerted effort to establish the reliability of these blood-based biomarkers for predictive diagnosis of CI and its progression. We assessed the serum levels of high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, triglycerides, total cholesterol, selected metals (Cu, Al, Zn, Pb, Mn, Cad), and total-tau and amyloid beta-42 protein in mild (n = 71), moderate (n = 86) and severe (n = 25) cognitively impaired patients and compared them with age-matched healthy controls (n = 90) from Pakistan. We found that a decrease in HDL cholesterol (correlation coefficient r = 0.467) and amyloid beta-42 (r = 0.451) were associated with increased severity of CI. On the other hand, an increase in cholesterol ratio (r = -0.562), LDL cholesterol (r = -0.428), triglycerides, and total-tau (r = -0.443) were associated with increased severity of CI. Increases in cholesterol ratio showed the strongest association and correlated with increases in tau concentration (r = 0.368), and increased triglycerides were associated with decreased amyloid beta-42 (r = -0.345). Increased Cu levels showed the strongest association with tau increase and increased Zn and Pb levels showed the strongest association with reduced amyloid beta-42 levels. Receiver Operating Characteristic (ROC) showed the cutoff values of blood metals (Al, Pb, Cu, Cad, Zn, and Mn), total-tau, and amyloid beta-42 with sensitivity and specificity. Our data show for the first time that blood lipids, metals (particularly Cu, Zn, Pb, and Al), serum amyloid-beta-42/tau proteins modulate each other's levels and can be collectively used as a predictive marker for CI.
Collapse
Affiliation(s)
- Ghazala Iqbal
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences & Technology (NUST), Islamabad, Pakistan
| | - Nady Braidy
- Centre for Healthy Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Touqeer Ahmed
- Neurobiology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences & Technology (NUST), Islamabad, Pakistan
| |
Collapse
|
10
|
Cerroni R, Liguori C, Stefani A, Conti M, Garasto E, Pierantozzi M, Mercuri NB, Bernardini S, Fucci G, Massoud R. Increased Noradrenaline as an Additional Cerebrospinal Fluid Biomarker in PSP-Like Parkinsonism. Front Aging Neurosci 2020; 12:126. [PMID: 32612521 PMCID: PMC7308889 DOI: 10.3389/fnagi.2020.00126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/15/2020] [Indexed: 12/12/2022] Open
Abstract
Academic centers utilize sequential clinical and neuroimaging assessments, including morphometric ratios, to obtain an unequivocal diagnosis of the non-synucleinopathic forms of Parkinsonism, such as progressive supranuclear palsy (PSP), however, a 1-2 year follow-up is required. The on-going long-lasting trials using anti-tau antibodies for PSP patients might therefore be biased by the incorrect enrollment of Parkinson's disease (PD) patients manifesting early axial signs. This perspective study aimed at achieving two major goals: first, to summarize the established biomarker candidates found in cerebrospinal fluid (CSF) in probable PSP patients, including low p-tau and altered neurofilaments. Second, we share our recent data, from CSF samples of well-selected PSP subjects, attributable to both main variants (and revisited in light of MDS criteria), who were followed for 1 year before and 2 years after lumbar puncture. We found a significantly high level of noradrenaline (NE) in these patients, similar to controls, when compared to PD patients. In contrast, CSF samples, in PD, showed a significant reduction in CSF NE and its major metabolite, which confirmed that PD is a multi-system disease involving several endogenous pathways. The NE axis impairments were prominent in PSP featuring worse NPI. It might represent a counterpart to the early and peculiar psycho-pathological profiles that are observed in tauopathies. In conclusion, we highlight that CSF biomarkers, which are easy to collect, can provide rapid insights as diagnostic tools. Early alterations in endogenous NE machinery in atypical Parkinsonism may represent a specific risk trait in forms characterized by a worse prognosis.
Collapse
Affiliation(s)
- Rocco Cerroni
- Parkinson Center, Department of System Medicine, University Tor Vergata, Rome, Italy
| | - Claudio Liguori
- Parkinson Center, Department of System Medicine, University Tor Vergata, Rome, Italy
| | - Alessandro Stefani
- Parkinson Center, Department of System Medicine, University Tor Vergata, Rome, Italy
| | - Matteo Conti
- Parkinson Center, Department of System Medicine, University Tor Vergata, Rome, Italy
| | - Elena Garasto
- Parkinson Center, Department of System Medicine, University Tor Vergata, Rome, Italy
| | | | - Nicola B. Mercuri
- UOC Neurology, Department of System Medicine, University Tor Vergata, Rome, Italy
| | - Sergio Bernardini
- Department of Experimental Medicine and Surgery, Faculty of Medicine and Surgery, University Tor Vergata, Rome, Italy
| | - Giorgio Fucci
- Department of Experimental Medicine and Surgery, Faculty of Medicine and Surgery, University Tor Vergata, Rome, Italy
| | - Renato Massoud
- Department of Experimental Medicine and Surgery, Faculty of Medicine and Surgery, University Tor Vergata, Rome, Italy
| |
Collapse
|