Yao W, Zhong J, Yu J, Warner T, Bozic T, Ye P, D’Ercole AJ, Hock JM, Lee WH. IGF-I improved bone mineral density and body composition of weaver mutant mice.
Growth Horm IGF Res 2008;
18:517-525. [PMID:
18550407 PMCID:
PMC2633297 DOI:
10.1016/j.ghir.2008.04.006]
[Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Revised: 04/01/2008] [Accepted: 04/25/2008] [Indexed: 11/16/2022]
Abstract
Our recent report on a parallel decrease in the body weights and serum IGF-I levels of weaver mice suggests that IGF-I's endocrine function may be impaired in neurodegenerative diseases. To further understand the overall effects of IGF-I deficiency on the postnatal growth, we measured bone mineral density (BMD), bone mineral content (BMC), lean body mass (LBM) and fat mass in male and female weaver mice and wild-type littermates on D21 (prepuberty), D45 (puberty), and D60 (postpuberty) using dual-energy X-ray absorptiometry (DEXA). In both male and female weaver mice, we found that the levels of circulating IGF-I paralleled those of BMD, BMC, and LBM, but not the fat mass. Male weaver mice have normal fat mass at all three ages studied, whereas female weaver mice showed a trend to increase their fat mass as they mature. To determine whether circulating IGF-I is a determinant of body composition, we crossbred IGF-I transgenic mice with homozygous weaver mice, which resulted in a significant increase in circulating IGF-I levels in both male and female weaver mice and normalization of their BMD, BMC and body weights. In summary, our results demonstrated that normal circulating IGF-I levels are important in maintaining BMD, BMC, and body composition in neurodegenerative diseases, such as hereditary cerebellar ataxia.
Collapse