1
|
Dhafar HO, BaHammam AS. Body Weight and Metabolic Rate Changes in Narcolepsy: Current Knowledge and Future Directions. Metabolites 2022; 12:1120. [PMID: 36422261 PMCID: PMC9693066 DOI: 10.3390/metabo12111120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 08/26/2023] Open
Abstract
Narcolepsy is a known auto-immune disease that presents mainly in the teenage years with irresistible sleep attacks. Patients with narcolepsy, especially NT1, have been found to have a high prevalence of obesity and other metabolic derangements. This narrative review aimed to address the relationship between narcolepsy and changes in weight and metabolic rate, and discuss potential mechanisms for weight gain and metabolic changes and future research agendas on this topic. This article will provide a balanced, up-to-date critical review of the current literature, and delineate areas for future research, in order to understand the pathophysiological metabolic changes in narcolepsy. Articles using predefined keywords were searched for in PubMed and Google Scholar databases, with predefined inclusion and exclusion criteria. Compared to controls, patients with narcolepsy are more likely to be obese and have higher BMIs and waist circumferences. According to recent research, weight gain in narcolepsy patients may be higher during the disease's outset. The precise mechanisms causing this weight gain remains unknown. The available information, albeit limited, does not support differences in basal or resting metabolic rates between patients with narcolepsy and controls, other than during the time of disease onset. The evidence supporting the role of orexin in weight gain in humans with narcolepsy is still controversial, in the literature. Furthermore, the available data did not show any appreciable alterations in the levels of CSF melanin-concentrating hormone, plasma and CSF leptin, or serum growth hormone, in relation to weight gain. Other mechanisms have been proposed, including a reduction in sympathetic tone, hormonal changes, changes in eating behavior and physical activity, and genetic predisposition. The association between increased body mass index and narcolepsy is well-recognized; however, the relationship between narcolepsy and other metabolic measures, such as body fat/muscle distribution and metabolic rate independent of BMI, is not well documented, and the available evidence is inconsistent. Future longitudinal studies with larger sample sizes are needed to assess BMR in patients with narcolepsy under a standard protocol at the outset of narcolepsy, with regular follow-up.
Collapse
Affiliation(s)
- Hamza O. Dhafar
- The University Sleep Disorders Center, Department of Medicine, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Family Medicine, Prince Mansour Military Hospital, Taif 26526, Saudi Arabia
| | - Ahmed S. BaHammam
- The University Sleep Disorders Center, Department of Medicine, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
- The Strategic Technologies Program of the National Plan for Sciences and Technology and Innovation in the Kingdom of Saudi Arabia, P.O. Box 2454, Riyadh 11324, Saudi Arabia
| |
Collapse
|
2
|
Mohammadi S, Moosaie F, Saghazadeh A, Mahmoudi M, Rezaei N. Metabolic profile in patients with narcolepsy: a systematic review and meta-analysis. Sleep Med 2021; 81:268-284. [PMID: 33740593 DOI: 10.1016/j.sleep.2021.02.040] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/10/2021] [Accepted: 02/16/2021] [Indexed: 11/25/2022]
Abstract
Narcolepsy, a sleep disorder characterized by loss of hypocretin neurons, has been associated with metabolic disturbances. Although the metabolic alterations in narcolepsy patients are widely investigated in the literature, the results are controversial. We performed a systematic search of literature to identify metabolic profiling studies in narcolepsy patients. A total of 48 studies were included in the meta-analysis. Narcolepsy patients exhibited higher prevalence of obesity (log OR = 0.93 [0.73-1.13], P < 0.001), diabetes mellitus (log OR = 0.64 [0.34, 0.94], P < 0.001), hypertension (log OR = 0.33 [0.11, 0.55], P < 0.001), and dyslipidemia (log OR = 1.19 [0.60, 1.77], P < 0.001) compared with non-narcoleptic controls. Narcolepsy was associated with higher BMI (SMD = 0.50 [0.32-0.68], P < 0.001), waist circumference (MD = 8.61 [2.03-15.19], P = 0.01), and plasma insulin (SMD = 0.61 [0.14-1.09], P = 0.01). Levels of fasting blood glucose (SMD = -0.25 [-0.61,0.10], P = 0.15), BMR-RMR (SMD = -0.17 [-0.52-0.18], P = 0.34), systolic blood pressure (SMD = 0.29 [-0.39-0.97], P = 0.40), diastolic blood pressure (SMD = 0.39 [-0.62, 1.40], P = 0.45), CSF melanin-concentrating hormone (MD = 5.56 [-30.79-41.91], P = 0.76), serum growth hormone (SMD = 7.84 [-7.90-23.57], P = 0.33), as well as plasma and CSF leptin (SMD = 0.10 [-1.32-1.51], P = 0.89 and MD = 0.01 [-0.02-0.04], P = 0.56, respectively) did not significantly differ between narcolepsy patients and controls. These findings necessitate early screening of metabolic alterations and cardiovascular risk factors in narcolepsy patients to reduce the morbidity and mortality rates.
Collapse
Affiliation(s)
- Soheil Mohammadi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Moosaie
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran University of Medical Sciences, Tehran, Iran
| | - Amene Saghazadeh
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; MetaCognition Interest Group (MCIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Maryam Mahmoudi
- Department of Cellular Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran; Dietitians and Nutrition Experts Team (DiNET), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
3
|
Overeem S, van Litsenburg RRL, Reading PJ. Sleep disorders and the hypothalamus. HANDBOOK OF CLINICAL NEUROLOGY 2021; 182:369-385. [PMID: 34266606 DOI: 10.1016/b978-0-12-819973-2.00025-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
As early as the 1920s, pathological studies of encephalitis lethargica allowed Von Economo to correctly identify hypothalamic damage as crucial for the profound associated sleep-related symptoms that helped define the condition. Only over the last 3 decades, however, has the key role of the hypothalamus in sleep-wake regulation become increasingly recognized. As a consequence, a close relation between abnormal sleep symptomatology and hypothalamic pathology is now widely accepted for a variety of medical disorders. Narcolepsy is discussed in some detail as the cardinal primary sleep disorder that is caused directly and specifically by hypothalamic pathology, most notably destruction of hypocretin (orexin)-containing neurons. Thereafter, various conditions are described that most likely result from hypothalamic damage, in part at least, producing a clinical picture resembling (symptomatic) narcolepsy. Kleine-Levin syndrome is a rare primary sleep disorder with intermittent symptoms, highly suggestive of hypothalamic involvement but probably reflecting a wider pathophysiology. ROHHAD (rapid-onset obesity with hypothalamic dysfunction, hypoventilation, and autonomic dysregulation) and Prader-Willi syndrome are also covered as hypothalamic syndromes with prominent sleep-related symptoms. Finally, sleep issues in several endocrine disorders are briefly discussed.
Collapse
Affiliation(s)
- Sebastiaan Overeem
- Center for Sleep Medicine, Kempenhaeghe, Heeze, The Netherlands; Biomedical Diagnostics Laboratory, Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Raphaële R L van Litsenburg
- Psychooncology Group, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands; Department of Pedicatric Oncology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Paul J Reading
- Department of Neurology, James Cook University Hospital, Middlesbrough, United Kingdom
| |
Collapse
|
4
|
Dunietz GL, Vanini G, Shannon C, O'Brien LM, Chervin RD. Associations of plasma hypocretin-1 with metabolic and reproductive health: Two systematic reviews of clinical studies. Sleep Med Rev 2020; 52:101307. [PMID: 32259696 PMCID: PMC7351596 DOI: 10.1016/j.smrv.2020.101307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/11/2022]
Abstract
The hypocretin system consists of two peptides hypocretin-1 and hypocretin-2 (HCRT1 and HCRT2). Hypocretin-containing neurons are located in the posterior and lateral hypothalamus, and have widespread projections throughout the brain and spinal cord. In addition to its presence in the cerebrospinal fluid (CSF), peripheral HCRT1 has been detected in plasma. Robust experimental evidence demonstrates functions of hypothalamic-originated HCRT1 in regulation of multiple biological systems related to sleep-wake states, energy homeostasis and endocrine function. In contrast, HCRT1 studies with human participants are limited by the necessarily invasive assessment of CSF HCRT1 to patients with underlying morbidity. Regulation by HCRT1 of energy homeostasis and reproduction in animals suggests similar regulation in humans and prompts these two systematic reviews. These reviews translate prior experimental findings from animal studies to humans and examine associations between HCRT1 and: 1) metabolic risk factors; 2) reproductive function in men, women and children. A total of 21 studies and six studies met the inclusion criteria for the two searches, respectively. Research question, study design, study population, assessments of HCRT1, reproductive, cardiometabolic data and main findings were extracted. Associations between HCRT1, metabolic and reproductive function are inconsistent. Limitations of studies and future research directions are outlined.
Collapse
Affiliation(s)
- Galit L Dunietz
- Division of Sleep Medicine, Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Giancarlo Vanini
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Carol Shannon
- Taubman Health Sciences Library, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Louise M O'Brien
- Division of Sleep Medicine, Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Obstetrics & Gynecology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ronald D Chervin
- Division of Sleep Medicine, Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
5
|
Straat ME, Schinkelshoek MS, Fronczek R, Lammers GJ, Rensen PCN, Boon MR. Role of Brown Adipose Tissue in Adiposity Associated With Narcolepsy Type 1. Front Endocrinol (Lausanne) 2020; 11:145. [PMID: 32373062 PMCID: PMC7176868 DOI: 10.3389/fendo.2020.00145] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 03/02/2020] [Indexed: 11/23/2022] Open
Abstract
Narcolepsy type 1 is a neurological sleep-wake disorder caused by the destruction of orexin (hypocretin)-producing neurons. These neurons are particularly located in the lateral hypothalamus and have widespread projections throughout the brain, where they are involved, e.g., in the regulation of the sleep-wake cycle and appetite. Interestingly, a higher prevalence of obesity has been reported in patients with narcolepsy type 1 compared to healthy controls, despite a normal to decreased food intake and comparable physical activity. This suggests the involvement of tissues implicated in total energy expenditure, including skeletal muscle, liver, white adipose tissue (WAT), and brown adipose tissue (BAT). Recent evidence from pre-clinical studies with orexin knock-out mice demonstrates a crucial role for the orexin system in the functionality of brown adipose tissue (BAT), probably through multiple pathways. Since BAT is a highly metabolically active organ that combusts fatty acids and glucose toward heat, thereby contributing to energy metabolism, this raises the question of whether BAT plays a role in the development of obesity and related metabolic diseases in narcolepsy type 1. BAT is densely innervated by the sympathetic nervous system that activates BAT, for instance, following cold exposure. The sympathetic outflow toward BAT is mainly mediated by the dorsomedial, ventromedial, arcuate, and paraventricular nuclei in the hypothalamus. This review focuses on the current knowledge on the role of the orexin system in the control of energy balance, with specific focus on BAT metabolism and adiposity in both preclinical and clinical studies.
Collapse
Affiliation(s)
- Maaike E. Straat
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
- *Correspondence: Maaike E. Straat
| | - Mink S. Schinkelshoek
- Department of Neurology, Leiden University Medical Center, Leiden, Netherlands
- Sleep Wake Centre SEIN, Heemstede, Netherlands
| | - Rolf Fronczek
- Department of Neurology, Leiden University Medical Center, Leiden, Netherlands
- Sleep Wake Centre SEIN, Heemstede, Netherlands
| | - Gerrit Jan Lammers
- Department of Neurology, Leiden University Medical Center, Leiden, Netherlands
- Sleep Wake Centre SEIN, Heemstede, Netherlands
| | - Patrick C. N. Rensen
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Mariëtte R. Boon
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden, Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
6
|
Untangling narcolepsy and diabetes: Pathomechanisms with eyes on therapeutic options. Brain Res 2019; 1718:212-222. [DOI: 10.1016/j.brainres.2019.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/23/2019] [Accepted: 04/13/2019] [Indexed: 12/14/2022]
|