1
|
Mena-Silva D, Alfaro A, León A, Guajardo-Correa E, Elgueta E, Diaz P, Vilos C, Cardenas H, Denardin JC, Orihuela PA. Zeolite Nanoparticles Loaded with 2-Methoxystradiol as a Novel Drug Delivery System for the Prostate Cancer Therapy. Int J Mol Sci 2023; 24:10967. [PMID: 37446151 DOI: 10.3390/ijms241310967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
The estrogen metabolite 2-methoxyestradiol (2ME) is a promissory anticancer drug mainly because of its pro-apoptotic properties in cancer cells. However, the therapeutic use of 2ME has been hampered due to its low solubility and bioavailability. Thus, it is necessary to find new ways of administration for 2ME. Zeolites are inorganic aluminosilicates with a porous structure and are considered good adsorbents and sieves in the pharmaceutical field. Here, mordenite-type zeolite nanoparticles were loaded with 2ME to assess its efficiency as a delivery system for prostate cancer treatment. The 2ME-loaded zeolite nanoparticles showed an irregular morphology with a mean hydrodynamic diameter of 250.9 ± 11.4 nm, polydispersity index of 0.36 ± 0.04, and a net negative surface charge of -34 ± 1.73 meV. Spectroscopy with UV-vis and Attenuated Total Reflectance Infrared Fourier-Transform was used to elucidate the interaction between the 2ME molecules and the zeolite framework showing the formation of a 2ME-zeolite conjugate in the nanocomposite. The studies of adsorption and liberation determined that zeolite nanoparticles incorporated 40% of 2ME while the liberation of 2ME reached 90% at pH 7.4 after 7 days. The 2ME-loaded zeolite nanoparticles also decreased the viability and increased the mRNA of the 2ME-target gene F-spondin, encoded by SPON1, in the human prostate cancer cell line LNCaP. Finally, the 2ME-loaded nanoparticles also decreased the viability of primary cultures from mouse prostate cancer. These results show the development of 2ME-loaded zeolite nanoparticles with physicochemical and biological properties compatible with anticancer activity on the human prostate and highlight that zeolite nanoparticles can be a good carrier system for 2ME.
Collapse
Affiliation(s)
- Denisse Mena-Silva
- Laboratorio de Inmunología de la Reproducción, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9160000, Chile
| | - Aline Alfaro
- Laboratorio de Inmunología de la Reproducción, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9160000, Chile
- Centro para el Desarrollo de la Nanociencia y la Nanotecnología CEDENNA, Santiago 9160000, Chile
| | - Andrea León
- Faculty of Chemistry and Food Chemistry, Technische Universitat Dresden, Bergstrasse 66c, 01069 Dresden, Germany
| | - Emanuel Guajardo-Correa
- Advanced Center for Chronic Diseases (ACCDIS), Facultad de Ciencias Químicas y Farmacéuticas y Universidad de Chile, Santiago 8380000, Chile
| | - Estefania Elgueta
- Laboratorio de Inmunología de la Reproducción, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9160000, Chile
- Centro para el Desarrollo de la Nanociencia y la Nanotecnología CEDENNA, Santiago 9160000, Chile
| | - Patricia Diaz
- Centro para el Desarrollo de la Nanociencia y la Nanotecnología CEDENNA, Santiago 9160000, Chile
| | - Cristian Vilos
- Centro para el Desarrollo de la Nanociencia y la Nanotecnología CEDENNA, Santiago 9160000, Chile
- Laboratory of Nanomedicine and Targeted Delivery, School of Medicine, Universidad de Talca, Talca 3460000, Chile
- Center for Nanomedicine, Diagnostic & Drug Development (cND3), Universidad de Talca, Talca 3460000, Chile
| | - Hugo Cardenas
- Laboratorio de Inmunología de la Reproducción, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9160000, Chile
| | - Juliano C Denardin
- Centro para el Desarrollo de la Nanociencia y la Nanotecnología CEDENNA, Santiago 9160000, Chile
- Departamento de Física, Universidad de Santiago de Chile, Santiago 9160000, Chile
| | - Pedro A Orihuela
- Laboratorio de Inmunología de la Reproducción, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9160000, Chile
- Centro para el Desarrollo de la Nanociencia y la Nanotecnología CEDENNA, Santiago 9160000, Chile
| |
Collapse
|
2
|
Cajas D, Guajardo E, Jara-Rosales S, Nuñez C, Vargas R, Carriel V, Campos A, Milla L, Orihuela P, Godoy-Guzman C. Molecules involved in the sperm interaction in the human uterine tube: a histochemical and immunohistochemical approach. Eur J Histochem 2023; 67. [PMID: 37052420 PMCID: PMC10141343 DOI: 10.4081/ejh.2023.3513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 02/27/2023] [Indexed: 04/14/2023] Open
Abstract
In humans, even where millions of spermatozoa are deposited upon ejaculation in the vagina, only a few thousand enter the uterine tube (UT). Sperm transiently adhere to the epithelial cells lining the isthmus reservoir, and this interaction is essential in coordinating the availability of functional spermatozoa for fertilization. The binding of spermatozoa to the UT epithelium (mucosa) occurs due to interactions between cell-adhesion molecules on the cell surfaces of both the sperm and the epithelial cell. However, in humans, there is little information about the molecules involved. The aim of this study was to perform a histological characterization of the UT focused on determining the tissue distribution and deposition of some molecules associated with cell adhesion (F-spondin, galectin-9, osteopontin, integrin αV/β3) and UT's contractile activity (TNFα-R1, TNFα-R2) in the follicular and luteal phases. Our results showed the presence of galectin-9, F-spondin, osteopontin, integrin αV/β3, TNFα-R1, and TNFα-R2 in the epithelial cells in ampullar and isthmic segments during the menstrual cycle. Our results suggest that these molecules could form part of the sperm-UT interactions. Future studies will shed light on the specific role of each of the identified molecules.
Collapse
Affiliation(s)
- David Cajas
- Escuela de Medicina, Centro de Investigación Biomédica y Aplicada (CIBAP), Laboratorio de ingeniería de tejidos, Universidad de Santiago de Chile (USACH), Santiago.
| | - Emanuel Guajardo
- Facultad de Química y Biología, Laboratorio de Inmunología de la Reproducción, Universidad de Santiago de Chile (USACH); Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas and Facultad de Medicina, Universidad de Chile, Santiago.
| | - Sergio Jara-Rosales
- Escuela de Obstetricia, Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Sede Los Leones, Santiago; Programa de Doctorado en Enfermedades Crónicas, Universidad San Sebastián, Sede Los Leones.
| | - Claudio Nuñez
- Servicio de Ginecología y Obstetricia, Hospital San José, Santiago.
| | - Renato Vargas
- Servicio de Ginecología y Obstetricia, Hospital San José, Santiago.
| | - Victor Carriel
- Department of Histology, Tissue Engineering Group, University of Granada, Spain; Instituto de Investigación Biosanitaria ibis.GRANADA, Granada.
| | - Antonio Campos
- Department of Histology, Tissue Engineering Group, University of Granada, Spain; Instituto de Investigación Biosanitaria ibis.GRANADA, Granada.
| | - Luis Milla
- Escuela de Medicina, Centro de Investigación Biomédica y Aplicada (CIBAP), Laboratorio de ingeniería de tejidos, Universidad de Santiago de Chile (USACH), Santiago.
| | - Pedro Orihuela
- Facultad de Química y Biología, Laboratorio de Inmunología de la Reproducción, Universidad de Santiago de Chile (USACH), Santiago.
| | - Carlos Godoy-Guzman
- Escuela de Medicina, Centro de Investigación Biomédica y Aplicada (CIBAP), Laboratorio de ingeniería de tejidos, Universidad de Santiago de Chile (USACH); Universidad de Santiago de Chile (USACH), Escuela de Medicina, Unidad de Histología, Santiago.
| |
Collapse
|
3
|
Guajardo-Correa E, Mena-Silva D, Diaz P, Godoy-Guzmán C, Cardenas H, Orihuela PA. 2-Methoxyoestradiol impairs mouse embryo implantation via F-spondin. Reprod Fertil Dev 2018; 31:689-697. [PMID: 30449298 DOI: 10.1071/rd18114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 10/17/2018] [Indexed: 11/23/2022] Open
Abstract
The anti-implantation effects of high oestradiol (E2) concentrations could be mediated by E2 metabolites. Herein, we examined whether 2-methoxyoestradiol (2ME) impairs embryo implantation via its target protein F-spondin. Mice on Day 3 of pregnancy were treated with E2 concomitantly with the cathecol-O-methyl transferase inhibitor OR486 and the number of implanted embryos was recorded 5 days later. The effect of 2ME or 4-methoxyoestradiol (4ME) on embryo implantation was also investigated. Plasma and uterine levels of 2ME were measured 0.5, 1 or 3h after E2 treatment while the mRNA for spondin 1 (Spon1) and F-spondin were determined in the uterus 3, 6, 12 or 24h after 2ME treatment. Finally, the effect of a neutralising F-spondin antibody on the anti-implantation effect of 2ME was explored. OR486 blocked the anti-implantation effect of E2; 2ME, but not 4ME, affected embryo implantation. The 2ME concentration was increased after 0.5 and 1h in plasma and 3h in uterine fluid following E2 treatment. 2ME increased levels of Spon1 at 12 and 24h although F-spondin was increased at 12h. F-spondin antibody blocked the effect of 2ME on embryo implantation. We conclude that 2ME impairs mouse embryo implantation via activation of F-spondin in the uterus.
Collapse
Affiliation(s)
- Emanuel Guajardo-Correa
- Laboratorio de Inmunología de la Reproducción, Facultad de Química y Biología, Universidad de Santiago de Chile
| | - Denisse Mena-Silva
- Laboratorio de Inmunología de la Reproducción, Facultad de Química y Biología, Universidad de Santiago de Chile
| | - Patricia Diaz
- Laboratorio de Inmunología de la Reproducción, Facultad de Química y Biología, Universidad de Santiago de Chile
| | - Carlos Godoy-Guzmán
- Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Casilla 40, Correo 33, Chile
| | - Hugo Cardenas
- Laboratorio de Inmunología de la Reproducción, Facultad de Química y Biología, Universidad de Santiago de Chile
| | - Pedro A Orihuela
- Laboratorio de Inmunología de la Reproducción, Facultad de Química y Biología, Universidad de Santiago de Chile
| |
Collapse
|
4
|
Camacho L, Basavarajappa MS, Chang CW, Han T, Kobets T, Koturbash I, Surratt G, Lewis SM, Vanlandingham MM, Fuscoe JC, Gamboa da Costa G, Pogribny IP, Delclos KB. Effects of oral exposure to bisphenol A on gene expression and global genomic DNA methylation in the prostate, female mammary gland, and uterus of NCTR Sprague-Dawley rats. Food Chem Toxicol 2015; 81:92-103. [PMID: 25862956 PMCID: PMC4487663 DOI: 10.1016/j.fct.2015.04.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 04/02/2015] [Accepted: 04/04/2015] [Indexed: 01/01/2023]
Abstract
Bisphenol A (BPA), an industrial chemical used in the manufacture of polycarbonate and epoxy resins, binds to the nuclear estrogen receptor with an affinity 4-5 orders of magnitude lower than that of estradiol. We reported previously that "high BPA" [100,000 and 300,000 µg/kg body weight (bw)/day], but not "low BPA" (2.5-2700 µg/kg bw/day), induced clear adverse effects in NCTR Sprague-Dawley rats gavaged daily from gestation day 6 through postnatal day (PND) 90. The "high BPA" effects partially overlapped those of ethinyl estradiol (EE2, 0.5 and 5.0 µg/kg bw/day). To evaluate further the potential of "low BPA" to induce biological effects, here we assessed the global genomic DNA methylation and gene expression in the prostate and female mammary glands, tissues identified previously as potential targets of BPA, and uterus, a sensitive estrogen-responsive tissue. Both doses of EE2 modulated gene expression, including of known estrogen-responsive genes, and PND 4 global gene expression data showed a partial overlap of the "high BPA" effects with those of EE2. The "low BPA" doses modulated the expression of several genes; however, the absence of a dose response reduces the likelihood that these changes were causally linked to the treatment. These results are consistent with the toxicity outcomes.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Benzhydryl Compounds/administration & dosage
- Benzhydryl Compounds/toxicity
- Chromatography, Liquid
- Complement C3/genetics
- Complement C3/metabolism
- DNA Methylation/drug effects
- Dose-Response Relationship, Drug
- Ethinyl Estradiol/administration & dosage
- Ethinyl Estradiol/toxicity
- Female
- Gene Expression
- Genomics/methods
- Male
- Mammary Glands, Animal/drug effects
- Mammary Glands, Animal/metabolism
- Methyltransferases/metabolism
- Phenols/administration & dosage
- Phenols/toxicity
- Pregnancy
- Prenatal Exposure Delayed Effects/pathology
- Prostate/drug effects
- Prostate/metabolism
- Protein Binding
- Rats
- Rats, Sprague-Dawley
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Receptors, Progesterone/genetics
- Receptors, Progesterone/metabolism
- S100 Calcium Binding Protein G/genetics
- S100 Calcium Binding Protein G/metabolism
- Tandem Mass Spectrometry
- Uterus/drug effects
- Uterus/metabolism
- Vascular Endothelial Growth Factor A/genetics
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- Luísa Camacho
- Division of Biochemical Toxicology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA.
| | - Mallikarjuna S Basavarajappa
- Division of Biochemical Toxicology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Ching-Wei Chang
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Tao Han
- Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Tetyana Kobets
- Division of Biochemical Toxicology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Igor Koturbash
- Division of Biochemical Toxicology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Gordon Surratt
- Division of Biochemical Toxicology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Sherry M Lewis
- Office of Scientific Coordination, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Michelle M Vanlandingham
- Division of Biochemical Toxicology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - James C Fuscoe
- Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Gonçalo Gamboa da Costa
- Division of Biochemical Toxicology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Igor P Pogribny
- Division of Biochemical Toxicology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - K Barry Delclos
- Division of Biochemical Toxicology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| |
Collapse
|
5
|
Oróstica ML, Lopez J, Rojas I, Rocco J, Díaz P, Reuquén P, Cardenas H, Parada-Bustamante A, Orihuela PA. Estradiol increases cAMP in the oviductal secretory cells through a nongenomic mechanism. Reproduction 2015; 148:285-94. [PMID: 25038866 DOI: 10.1530/rep-14-0128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In the rat oviduct, estradiol (E2) accelerates egg transport by a nongenomic action that requires previous conversion of E2 to methoxyestrogens via catechol-O-methyltranferase (COMT) and activation of estrogen receptor (ER) with subsequent production of cAMP and inositol triphosphate (IP3). However, the role of the different oviductal cellular phenotypes on this E2 nongenomic pathway remains undetermined. The aim of this study was to investigate the effect of E2 on the levels of cAMP and IP3 in primary cultures of secretory and smooth muscle cells from rat oviducts and determine the mechanism by which E2 increases cAMP in the secretory cells. In the secretory cells, E2 increased cAMP but not IP3, while in the smooth muscle cells E2 decreased cAMP and increased IP3. Suppression of protein synthesis by actinomycin D did not prevent the E2-induced cAMP increase, but this was blocked by the ER antagonist ICI 182 780 and the inhibitors of COMT OR 486, G protein-α inhibitory (Gαi) protein pertussis toxin and adenylyl cyclase (AC) SQ 22536. Expression of the mRNA for the enzymes that metabolizes estrogens, Comt, Cyp1a1, and Cyp1b1 was found in the secretory cells, but this was not affected by E2. Finally, confocal immunofluorescence analysis showed that E2 induced colocalization between ESR1 (ERα) and Gαi in extranuclear regions of the secretory cells. We conclude that E2 differentially regulates cAMP and IP3 in the secretory and smooth muscle cells of the rat oviduct. In the secretory cells, E2 increases cAMP via a nongenomic action that requires activation of COMT and ER, coupling between ESR1 and Gαi, and stimulation of AC.
Collapse
Affiliation(s)
- María L Oróstica
- Laboratorio de Inmunología de la ReproducciónFacultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Casilla 40, Correo 33, Santiago, ChileCentro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNASantiago, ChileInstituto de Investigaciones Materno-InfantilUniversidad de Chile, Santiago, ChileLaboratorio de Inmunología de la ReproducciónFacultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Casilla 40, Correo 33, Santiago, ChileCentro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNASantiago, ChileInstituto de Investigaciones Materno-InfantilUniversidad de Chile, Santiago, Chile
| | - John Lopez
- Laboratorio de Inmunología de la ReproducciónFacultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Casilla 40, Correo 33, Santiago, ChileCentro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNASantiago, ChileInstituto de Investigaciones Materno-InfantilUniversidad de Chile, Santiago, ChileLaboratorio de Inmunología de la ReproducciónFacultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Casilla 40, Correo 33, Santiago, ChileCentro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNASantiago, ChileInstituto de Investigaciones Materno-InfantilUniversidad de Chile, Santiago, Chile
| | - Israel Rojas
- Laboratorio de Inmunología de la ReproducciónFacultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Casilla 40, Correo 33, Santiago, ChileCentro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNASantiago, ChileInstituto de Investigaciones Materno-InfantilUniversidad de Chile, Santiago, ChileLaboratorio de Inmunología de la ReproducciónFacultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Casilla 40, Correo 33, Santiago, ChileCentro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNASantiago, ChileInstituto de Investigaciones Materno-InfantilUniversidad de Chile, Santiago, Chile
| | - Jocelyn Rocco
- Laboratorio de Inmunología de la ReproducciónFacultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Casilla 40, Correo 33, Santiago, ChileCentro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNASantiago, ChileInstituto de Investigaciones Materno-InfantilUniversidad de Chile, Santiago, ChileLaboratorio de Inmunología de la ReproducciónFacultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Casilla 40, Correo 33, Santiago, ChileCentro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNASantiago, ChileInstituto de Investigaciones Materno-InfantilUniversidad de Chile, Santiago, Chile
| | - Patricia Díaz
- Laboratorio de Inmunología de la ReproducciónFacultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Casilla 40, Correo 33, Santiago, ChileCentro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNASantiago, ChileInstituto de Investigaciones Materno-InfantilUniversidad de Chile, Santiago, ChileLaboratorio de Inmunología de la ReproducciónFacultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Casilla 40, Correo 33, Santiago, ChileCentro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNASantiago, ChileInstituto de Investigaciones Materno-InfantilUniversidad de Chile, Santiago, Chile
| | - Patricia Reuquén
- Laboratorio de Inmunología de la ReproducciónFacultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Casilla 40, Correo 33, Santiago, ChileCentro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNASantiago, ChileInstituto de Investigaciones Materno-InfantilUniversidad de Chile, Santiago, ChileLaboratorio de Inmunología de la ReproducciónFacultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Casilla 40, Correo 33, Santiago, ChileCentro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNASantiago, ChileInstituto de Investigaciones Materno-InfantilUniversidad de Chile, Santiago, Chile
| | - Hugo Cardenas
- Laboratorio de Inmunología de la ReproducciónFacultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Casilla 40, Correo 33, Santiago, ChileCentro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNASantiago, ChileInstituto de Investigaciones Materno-InfantilUniversidad de Chile, Santiago, ChileLaboratorio de Inmunología de la ReproducciónFacultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Casilla 40, Correo 33, Santiago, ChileCentro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNASantiago, ChileInstituto de Investigaciones Materno-InfantilUniversidad de Chile, Santiago, Chile
| | - Alexis Parada-Bustamante
- Laboratorio de Inmunología de la ReproducciónFacultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Casilla 40, Correo 33, Santiago, ChileCentro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNASantiago, ChileInstituto de Investigaciones Materno-InfantilUniversidad de Chile, Santiago, Chile
| | - Pedro A Orihuela
- Laboratorio de Inmunología de la ReproducciónFacultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Casilla 40, Correo 33, Santiago, ChileCentro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNASantiago, ChileInstituto de Investigaciones Materno-InfantilUniversidad de Chile, Santiago, ChileLaboratorio de Inmunología de la ReproducciónFacultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Casilla 40, Correo 33, Santiago, ChileCentro para el Desarrollo en Nanociencia y Nanotecnología-CEDENNASantiago, ChileInstituto de Investigaciones Materno-InfantilUniversidad de Chile, Santiago, Chile
| |
Collapse
|