1
|
Pecce V, Sponziello M, Bini S, Grani G, Durante C, Verrienti A. Establishment and maintenance of thyroid organoids from human cancer cells. STAR Protoc 2022; 3:101393. [PMID: 35600922 PMCID: PMC9115321 DOI: 10.1016/j.xpro.2022.101393] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Here, we describe a protocol to generate organoids from human thyroid cancer cells. Starting from the same patient-derived cells, we establish both organoids and primary lines. The organoid medium is supplemented with conditioned medium obtained from the primary cell line. This modification enables culture of the organoid lines for up to 10 months. Even after long-term culture, the organoids retain the genetic and phenotypic characteristics of their tissue of origin. Generate organoids from human thyroid cancer cells Use the conditioned medium obtained from the primary cell line for the growth Generate models that maintain genetic and phenotypic characteristics of their tissue of origin Use the models for translational research approaches
Publisher's note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics.
Collapse
Affiliation(s)
- Valeria Pecce
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161 Roma, Italy
| | - Marialuisa Sponziello
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161 Roma, Italy
| | - Simone Bini
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161 Roma, Italy
| | - Giorgio Grani
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161 Roma, Italy
| | - Cosimo Durante
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161 Roma, Italy
| | - Antonella Verrienti
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale del Policlinico 155, 00161 Roma, Italy
| |
Collapse
|
2
|
Beck AC, Rajan A, Landers S, Kelley S, Bellizzi AM, Lal G, Sugg SL, Howe JR, Chan CH, Weigel RJ. Expression of cancer stem cell markers in tall cell variant papillary thyroid cancer identifies a molecular profile predictive of recurrence in classic papillary thyroid cancer. Surgery 2021; 171:245-251. [PMID: 34362588 DOI: 10.1016/j.surg.2021.03.076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/09/2021] [Accepted: 03/23/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Tall cell variant of papillary thyroid carcinoma is an aggressive subtype of papillary thyroid carcinoma. We examined expression of cancer stem cell markers in tall cell variant compared with other well-differentiated thyroid cancers. METHODS Expression of cancer stem cell markers was examined in 572 thyroid tumors from The Cancer Genome Atlas Thyroid Cancer database and tall cell variant and papillary thyroid carcinoma tumors by immunohistochemistry. RESULTS Expression of the PROM1 gene, encoding the cancer stem cell marker CD133, was elevated in tall cell variant compared to classic papillary thyroid carcinoma in a large cohort of unmatched samples from The Cancer Genome Atlas Thyroid Cancer database (P < .001). By immunohistochemistry in age and stage matched samples, CD133 protein was confirmed to be significantly increased in tall cell variant versus classic papillary thyroid carcinoma (P = .006). Analyzing all thyroid cancers, high PROM1 expression was associated with worse disease-specific survival. Optimal cutoffs were determined to define a tall cell variant-like cancer stem cell signature characterized by high PROM1, high ALDH1A3, and low CD24 expression. Classic papillary thyroid carcinoma with a tall cell variant-like gene signature had worse recurrence disease-free survival compared to classic papillary thyroid carcinoma with a non-tall cell variant signature (P = .02). CONCLUSION Tall cell variant of papillary thyroid carcinoma has increased expression of cancer stem cell markers compared to classic papillary thyroid carcinoma. The tall cell variant-like cancer stem cell gene signature identified a molecular subtype of classic papillary thyroid carcinoma that has a worse recurrence-free survival.
Collapse
Affiliation(s)
- Anna C Beck
- University of Iowa, Department of Surgery, Iowa City, IA. https://twitter.com/beck_md
| | - Anand Rajan
- University of Iowa, Department of Pathology, Iowa City, IA
| | | | - Sarah Kelley
- University of Iowa, Department of Surgery, Iowa City, IA
| | - Andrew M Bellizzi
- University of Iowa, Department of Pathology, Iowa City, IA. https://twitter.com/IHC_guy
| | - Geeta Lal
- University of Iowa, Department of Surgery, Iowa City, IA. https://twitter.com/GeetaLalMD
| | - Sonia L Sugg
- University of Iowa, Department of Surgery, Iowa City, IA. https://twitter.com/SoniaLSugg
| | - James R Howe
- University of Iowa, Department of Surgery, Iowa City, IA
| | - Carlos H Chan
- University of Iowa, Department of Surgery, Iowa City, IA. https://twitter.com/CarlosHFChan
| | | |
Collapse
|
3
|
The role of FOSL1 in stem-like cell reprogramming processes. Sci Rep 2021; 11:14677. [PMID: 34282187 PMCID: PMC8290037 DOI: 10.1038/s41598-021-94072-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/28/2021] [Indexed: 01/10/2023] Open
Abstract
Cancer stem-like cells (CSCs) have self-renewal abilities responsible for cancer progression, therapy resistance, and metastatic growth. The glioblastoma stem-like cells are the most studied among CSC populations. A recent study identified four transcription factors (SOX2, SALL2, OLIG2, and POU3F2) as the minimal core sufficient to reprogram differentiated glioblastoma (GBM) cells into stem-like cells. Transcriptomic data of GBM tissues and cell lines from two different datasets were then analyzed by the SWItch Miner (SWIM), a network-based software, and FOSL1 was identified as a putative regulator of the previously identified minimal core. Herein, we selected NTERA-2 and HEK293T cells to perform an in vitro study to investigate the role of FOSL1 in the reprogramming mechanisms. We transfected the two cell lines with a constitutive FOSL1 cDNA plasmid. We demonstrated that FOSL1 directly regulates the four transcription factors binding their promoter regions, is involved in the deregulation of several stemness markers, and reduces the cells' ability to generate aggregates increasing the extracellular matrix component FN1. Although further experiments are necessary, our data suggest that FOSL1 reprograms the stemness by regulating the core of the four transcription factors.
Collapse
|
4
|
The Possible Role of Cancer Stem Cells in the Resistance to Kinase Inhibitors of Advanced Thyroid Cancer. Cancers (Basel) 2020; 12:cancers12082249. [PMID: 32796774 PMCID: PMC7465706 DOI: 10.3390/cancers12082249] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/03/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023] Open
Abstract
Target therapy with various kinase inhibitors (KIs) has been extended to patients with advanced thyroid cancer, but only a subset of these compounds has displayed efficacy in clinical use. However, after an initial response to KIs, dramatic disease progression occurs in most cases. With the discovery of cancer stem cells (CSCs), it is possible to postulate that thyroid cancer resistance to KI therapies, both intrinsic and acquired, may be sustained by this cell subtype. Indeed, CSCs have been considered as the main drivers of metastatic activity and therapeutic resistance, because of their ability to generate heterogeneous secondary cell populations and survive treatment by remaining in a quiescent state. Hence, despite the impressive progress in understanding of the molecular basis of thyroid tumorigenesis, drug resistance is still the major challenge in advanced thyroid cancer management. In this view, definition of the role of CSCs in thyroid cancer resistance may be crucial to identifying new therapeutic targets and preventing resistance to anti-cancer treatments and tumor relapse. The aim of this review is to elucidate the possible role of CSCs in the development of resistance of advanced thyroid cancer to current anti-cancer therapies and their potential implications in the management of these patients.
Collapse
|
5
|
Chew D, Green V, Riley A, England RJ, Greenman J. The Changing Face of in vitro Culture Models for Thyroid Cancer Research: A Systematic Literature Review. Front Surg 2020; 7:43. [PMID: 32766274 PMCID: PMC7378741 DOI: 10.3389/fsurg.2020.00043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Thyroid cancer is the most common endocrine malignancy worldwide. Primary treatment with surgery and radioactive iodine is usually successful, however, there remains a small proportion of thyroid cancers that are resistant to these treatments, and often represent aggressive forms of the disease. Since the 1950s, in vitro thyroid culture systems have been used in thyroid cancer research. In vitro culture models have evolved from 2-dimensional thyrocyte monolayers into physiologically functional 3-dimensional organoids. Recently, research groups have utilized in vitro thyroid cancer models to identify numerous genetic and epigenetic factors that are involved with tumorigenesis as well as test the efficacy of cytotoxic drugs on thyroid cancer cells and identify cancer stem cells within thyroid tumors. Objective of Review: The objective of this literature review is to summarize how thyroid in vitro culture models have evolved and highlight how in vitro models have been fundamental to thyroid cancer research. Type of Review: Systematic literature review. Search Strategy: The National Institute for Health and Care Excellence (NICE) Healthcare and Databases Advanced Search (HDAS) tool was used to search EMBASE, Medline and PubMed databases. The following terms were included in the search: “in vitro” AND “thyroid cancer”. The search period was confined from January 2008 until June 2019. A manual search of the references of review articles and other key articles was also performed using Google Scholar. Evaluation Method: All experimental studies and review articles that explicitly mentioned the use of in vitro models for thyroid cancer research in the title and/or abstract were considered. Full-text versions of all selected articles were evaluated. Experimental studies were reviewed and grouped according to topic: genetics/epigenetics, drug testing/cancer treatment, and side populations (SP)/tumor microenvironment (TME). Results: Three thousand three hundred and seventy three articles were identified through database and manual searches. One thousand two hundred and sixteen articles remained after duplicates were removed. Five hundred and eighty nine articles were excluded based on title and/or abstract. Of the remaining 627 full-text articles: 24 were review articles, 332 related to genetic/epigenetics, 240 related to drug testing/treatments, and 31 related to SP/TME. Conclusion:In vitro cell culture models have been fundamental in thyroid cancer research. There have been many advances in culture techniques- developing complex cellular architecture that more closely resemble tumors in vivo. Genetic and epigenetic factors that have been identified using in vitro culture models can be used as targets for novel drug therapies. In the future, in vitro systems will facilitate personalized medicine, offering bespoke treatments to patients.
Collapse
Affiliation(s)
- Dylan Chew
- Department of ENT, Hull University Teaching Hospitals NHS Trust, Castle Hill Hospital, London, United Kingdom
| | - Victoria Green
- Department of Biomedical Sciences, University of Hull, Hull, United Kingdom
| | - Andrew Riley
- Department of Biomedical Sciences, University of Hull, Hull, United Kingdom
| | - Richard James England
- Department of ENT, Hull University Teaching Hospitals NHS Trust, Castle Hill Hospital, London, United Kingdom.,Department of Biomedical Sciences, University of Hull, Hull, United Kingdom
| | - John Greenman
- Department of Biomedical Sciences, University of Hull, Hull, United Kingdom
| |
Collapse
|
6
|
Pecce V, Verrienti A, Abballe L, Carletti R, Grani G, Falcone R, Ramundo V, Durante C, Di Gioia C, Russo D, Filetti S, Sponziello M. Loss of Function SETD2 Mutations in Poorly Differentiated Metastases from Two Hürthle Cell Carcinomas of the Thyroid. Cancers (Basel) 2020; 12:cancers12071892. [PMID: 32674319 PMCID: PMC7409075 DOI: 10.3390/cancers12071892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 02/06/2023] Open
Abstract
Hürthle cell carcinomas (HCC) are rare differentiated thyroid cancers that display low avidity for radioactive iodine and respond poorly to kinase inhibitors. Here, using next-generation sequencing, we analyzed the mutational status of primary tissue and poorly differentiated metastatic tissue from two HCC patients. In both cases, metastatic tissues harbored a mutation of SETD2, each resulting in loss of the SRI and WW domains of SETD2, a methyltransferase that trimethylates H3K36 (H3K36me3) and also interacts with p53 to promote its stability. Functional studies of the novel p.D1890fs6* mutation (case 1) revealed significantly reduced H3K36me3 levels in SETD2-mutated tissue and primary cell cultures and decreased levels of the active form of p53. Restoration of SETD2-wildtype expression in the SETD2-mutant cells significantly reduced the expression of four well-known stemness markers (OCT-4, SOX2, IPF1, Goosecoid). These findings suggest potential roles for SETD2 loss-of-function mutations in HCC progression, possibly involving p53 destabilization and promotion of stemness. Their prevalence and potential treatment implications in thyroid cancer, especially HCC, require further study.
Collapse
Affiliation(s)
- Valeria Pecce
- Department of Translational and Precision Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (V.P.); (A.V.); (L.A.); (G.G.); (R.F.); (V.R.); (C.D.); (S.F.)
| | - Antonella Verrienti
- Department of Translational and Precision Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (V.P.); (A.V.); (L.A.); (G.G.); (R.F.); (V.R.); (C.D.); (S.F.)
| | - Luana Abballe
- Department of Translational and Precision Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (V.P.); (A.V.); (L.A.); (G.G.); (R.F.); (V.R.); (C.D.); (S.F.)
| | - Raffaella Carletti
- Department of Radiological, Oncological and Pathological Sciences, “Sapienza” University of Rome, 00161 Rome, Italy; (R.C.); (C.D.G.)
| | - Giorgio Grani
- Department of Translational and Precision Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (V.P.); (A.V.); (L.A.); (G.G.); (R.F.); (V.R.); (C.D.); (S.F.)
| | - Rosa Falcone
- Department of Translational and Precision Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (V.P.); (A.V.); (L.A.); (G.G.); (R.F.); (V.R.); (C.D.); (S.F.)
| | - Valeria Ramundo
- Department of Translational and Precision Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (V.P.); (A.V.); (L.A.); (G.G.); (R.F.); (V.R.); (C.D.); (S.F.)
| | - Cosimo Durante
- Department of Translational and Precision Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (V.P.); (A.V.); (L.A.); (G.G.); (R.F.); (V.R.); (C.D.); (S.F.)
| | - Cira Di Gioia
- Department of Radiological, Oncological and Pathological Sciences, “Sapienza” University of Rome, 00161 Rome, Italy; (R.C.); (C.D.G.)
| | - Diego Russo
- Department of Health Sciences, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy;
| | - Sebastiano Filetti
- Department of Translational and Precision Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (V.P.); (A.V.); (L.A.); (G.G.); (R.F.); (V.R.); (C.D.); (S.F.)
| | - Marialuisa Sponziello
- Department of Translational and Precision Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (V.P.); (A.V.); (L.A.); (G.G.); (R.F.); (V.R.); (C.D.); (S.F.)
- Correspondence:
| |
Collapse
|
7
|
D’Orazi V, Sacconi A, Trombetta S, Karpathiotakis M, Pichelli D, Di Lorenzo E, Ortensi A, Urciuoli P, Biffoni M, Ortensi A. May predictors of difficulty in thyroid surgery increase the incidence of complications? Prospective study with the proposal of a preoperative score. BMC Surg 2019; 18:116. [PMID: 31074389 PMCID: PMC7402572 DOI: 10.1186/s12893-018-0447-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/15/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Although thyroidectomy is one of the most common surgical procedures performed worldwide, some permanent complications, despite the considerably reducing incidence, may affect dramatically the patients quality of life. The purpose of this study is to evaluate whether factors identified preoperatively and expressed in a score could be predictors of major surgical difficulty during total thyroidectomy and influence the incidence of complications. METHODS A total of 164 patients who underwent total thyroidectomy were examined. For each patient we calculated a preoperative score, including seven parameters, which we evaluated to be predictors of difficulty in thyroid surgery, that is, sex, body mass index (BMI), neck length, neck extension, thyroid gland volume, thyroiditis, and increased parenchymal vascularization. The overall score was also compared with peri- and post-operative factors describing objectively the difficulty in thyroid surgery. These factors are the duration of the operation, the length of hospitalization, the incidence of complications such as hemorrhage, hypoparathyroidism, and recurrent laryngeal nerve injuries. RESULTS There was no statistically significant association between our score and either the percentage of postoperative complications or the length of hospitalization. The operative time was the only variable remarkably associated with the score value (p < 0.00001). Comparing the duration of the operation with each of the preoperative predictive factors, we found that none of the factors reached the value of statistical significance, but a close association could be noted with the thyroid volume and the BMI. CONCLUSIONS In our study, predictors of difficulty in thyroidectomy did not affect morbidity rates, as suggested by previous studies, but only operative times, which were significantly increased in patients with higher score. Although our results have limited statistical significance, they allow us to confirm the fundamental role of a systematic use of optical magnification and microsurgical technique in thyroidectomy. Further studies, with a larger cohort of patients, are needed to validate our results and to formulate a universally accepted predictive score of difficulty in thyroidectomy preoperatively.
Collapse
Affiliation(s)
- Valerio D’Orazi
- Department of Surgical Sciences, “Sapienza” University, Viale Regina Elena 324, 00161, Rome, Italy
- Department of General Microsurgery and Hand Surgery, “Fabia Mater” Hospital, Rome, Italy
| | - Andrea Sacconi
- Translational Oncogenomics Unit, Molecular Medicine Area, “Regina Elena” National Cancer Institute, Rome, Italy
| | - Silvia Trombetta
- Department of General Microsurgery and Hand Surgery, “Fabia Mater” Hospital, Rome, Italy
| | - Menelaos Karpathiotakis
- Department of Surgical Sciences, “Sapienza” University, Viale Regina Elena 324, 00161, Rome, Italy
- Department of General Microsurgery and Hand Surgery, “Fabia Mater” Hospital, Rome, Italy
| | - Daniele Pichelli
- Department of General Microsurgery and Hand Surgery, “Fabia Mater” Hospital, Rome, Italy
| | - Enrico Di Lorenzo
- Department of General Microsurgery and Hand Surgery, “Fabia Mater” Hospital, Rome, Italy
- Department of General Microsurgery and Hand, Surgery Section of phoniatrics and speech therapy, “Fabia Mater” Hospital, Rome, Italy
| | - Alice Ortensi
- Department of General Microsurgery and Hand Surgery, “Fabia Mater” Hospital, Rome, Italy
- Department of General Microsurgery and Hand Surgery, Section of physiotherapy, “Fabia Mater” Hospital, Rome, Italy
| | - Paolo Urciuoli
- Department of Surgical Sciences, “Sapienza” University, Viale Regina Elena 324, 00161, Rome, Italy
| | - Marco Biffoni
- Department of Surgical Sciences, “Sapienza” University, Viale Regina Elena 324, 00161, Rome, Italy
| | - Andrea Ortensi
- Department of General Microsurgery and Hand Surgery, “Fabia Mater” Hospital, Rome, Italy
- Chief of Department of General Microsurgery and Hand Surgery, “Fabia Mater” Hospital, Rome, Italy
| |
Collapse
|
8
|
Guo L, Sun C, Xu S, Xu Y, Dong Q, Zhang L, Li W, Wang X, Ying G, Guo F. Knockdown of long non-coding RNA linc-ITGB1 inhibits cancer stemness and epithelial-mesenchymal transition by reducing the expression of Snail in non-small cell lung cancer. Thorac Cancer 2018; 10:128-136. [PMID: 30485693 PMCID: PMC6360263 DOI: 10.1111/1759-7714.12911] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/10/2018] [Accepted: 10/10/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The main cause of death in patients with non-small cell lung cancer (NSCLC) is the progression of cancer metastasis, which can be attributed to multiple factors, such as cancer stem cells (CSCs) and epithelial-mesenchymal transition (EMT). Long non-coding RNAs (lncRNAs) play important roles in the regulation of the cell cycle, cell proliferation, immune responses, and metastasis in cancers, but the potential roles and mechanisms of lincRNAs in CSC-like properties of cancer have not yet been elucidated. METHODS Human NSCLC cell lines (A549 and H1299), highly metastatic cell lines (L9981 and 95D), and their corresponding low-metastatic cell lines (NL9980 and 95C) were subject to quantitative real-time PCR and Western blot, transwell invasion, colony formation, and wound healing assays. RESULTS Linc-ITGB1 was greatly upregulated in CSC spheres. Linc-ITGB1 knockdown markedly inhibited CSC formation and the expression of stemness-associated genes, such as Sox2, Nanog, Oct-4, c-Myc, and CD133. Depletion of linc-ITGB1 expression also inhibited the in vitro invasive and migratory potential of cells, and further analysis indicated that linc-ITGB1 knockdown increased the expression of the epithelial marker E-cadherin and downregulated the mesenchymal markers vimentin and fibronectin. The EMT-related transcription factor Snail mediated these effects of linc-ITGB1 in NSCLC, and overexpression of Snail significantly reversed the inhibitory effects of linc-ITGB1 depletion. CONCLUSION Overall, our study demonstrated that linc-ITGB1 promoted NSCLC cell EMT and cancer stemness by regulating Snail expression.
Collapse
Affiliation(s)
- Lili Guo
- Laboratory of Cancer Cell Biology, Tianjin Cancer Research Institute, Tianjin Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Cencen Sun
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Shilei Xu
- Laboratory of Cancer Cell Biology, Tianjin Cancer Research Institute, Tianjin Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yue Xu
- Laboratory of Cancer Cell Biology, Tianjin Cancer Research Institute, Tianjin Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Qiuping Dong
- Laboratory of Cancer Cell Biology, Tianjin Cancer Research Institute, Tianjin Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Linlin Zhang
- Oncology Department, Tianjin Medical University General Hospital, Tianjin, China
| | - Wei Li
- Laboratory of Cancer Cell Biology, Tianjin Cancer Research Institute, Tianjin Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xingyu Wang
- Laboratory of Cancer Cell Biology, Tianjin Cancer Research Institute, Tianjin Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Guoguang Ying
- Laboratory of Cancer Cell Biology, Tianjin Cancer Research Institute, Tianjin Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Fengjie Guo
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
9
|
Adewuyi EE, Deschenes J, Lopez-Campistrous A, Kattar MM, Ghosh S, McMullen TP. Autocrine activation of platelet-derived growth factor receptor α in metastatic papillary thyroid cancer. Hum Pathol 2018; 75:146-153. [DOI: 10.1016/j.humpath.2018.01.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/18/2018] [Accepted: 01/29/2018] [Indexed: 01/08/2023]
|
10
|
Antonelli A, La Motta C. Novel therapeutic clues in thyroid carcinomas: The role of targeting cancer stem cells. Med Res Rev 2017; 37:1299-1317. [PMID: 28586525 DOI: 10.1002/med.21448] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 03/13/2017] [Accepted: 03/26/2017] [Indexed: 12/13/2022]
Abstract
Thyroid carcinomas (TCs), the most common endocrine tumors, represent the eighth most common cancer diagnosed worldwide in both women and men. To treat these malignancies, several drugs are now available and a number of novel ones have been enrolling in clinical trials, addressing both oncogenic pathways in cancer cells and angiogenic pathways in tumor endothelial cells. However, their use is not devoid of serious toxicities and their efficacy is limited, being dependent on carcinoma typology and the occurrence of acquired resistance. Accordingly, it is time to recast therapeutic strategies against these types of tumors to get to newer and fully effective drugs. In this perspective, latest findings demonstrate that cancer stem cells (CSCs) represent a challenging target to strike. They possess core traits of self-renewal and differentiation, being resistant to the effects of chemotherapy and radiation and playing a key role in mediating metastasis. Therefore, basic molecular elements sustaining both development of thyroid cancer stem cells and their residence in the stemness condition represent a set of innovative and still unexplored targets to address. In this review, a thorough literature survey has been accomplished, to take stock of mechanisms governing thyroid carcinomas and to point out both their currently available treatments and the novel forthcoming ones. Pubmed, Scifinder and ClinicalTrials.gov were exploited as research applications and registry database, respectively. Original articles, reviews, and editorials published within the last ten years, as well as open clinical investigations in the field, were analyzed to suggest new exciting therapeutic opportunities for people affected by TCs.
Collapse
Affiliation(s)
- Alessandro Antonelli
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Via Savi 10, 56126, Pisa, Italy
| | - Concettina La Motta
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126, Pisa, Italy
| |
Collapse
|
11
|
Caria P, Pillai R, Dettori T, Frau DV, Zavattari P, Riva G, Romano G, Pani F, Bentivegna A, Giovannoni R, Pagni F, Sogos V, Vanni R. Thyrospheres from B-CPAP Cell Line with BRAF and TERT Promoter Mutations have Different Functional and Molecular Features than Parental Cells. J Cancer 2017; 8:1629-1639. [PMID: 28775782 PMCID: PMC5535718 DOI: 10.7150/jca.18855] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/29/2017] [Indexed: 12/14/2022] Open
Abstract
Human thyroid cancer derived cell lines are widely used to study the mechanisms involved in thyroid carcinogenesis. However, there is limited availability of non-cross-contaminated cancer cell lines derived from papillary thyroid carcinoma (PTC), and the B-CPAP cell line is one of the few such lines. B-CPAP cells have been genetically and cytogenetically well-characterized, but details of their stemness features remain uncertain. Considering that this cell line is extensively used for in vitro studies on thyroid tumorigenesis, we broaden its functional and molecular profiles as well as the tumorigenic capacity. We used functional assays (sphere-forming capacity and efficiency), assessed self-renewal and propagation efficiency and tested in vivo tumorigenicity in Hsd:Athymic Nude-Foxn1nu mice. Expression of markers of stemness, differentiation, and epithelial-mesenchymal transition were estimated at RNA and protein levels in adherent parental cells and sphere-forming cells. Functional aspects and stemness features were compared with normal thyrocytes. Protein expression of xenograft tumors was evaluated by immunohistochemistry. B-CPAP sphere-forming cells were able to form thyrospheres theoretically indefinitely in an appropriate serum-free medium, reverting to the adherent parental cell phenotype when cultured in differentiation medium. Different expression of ALDH1-A1 and CD44 stemness markers and TTF-1 and CK19 differentiation markers allowed discrimination between isolated sphere-forming cells and adherent parental cells, indicating that sphere-forming cells retained stem-like features. In keeping with these observations, tumorigenicity assays confirmed that, relative to parental adherent cells, thyrospheres had enhanced capacity to initiate xenograft tumors. Thyrospheres from normal cell line retained very low functional capacity, as well as different stemness markers expression compared to tumor thyrospheres. Our findings may constitute a useful background to develop an in vitro model for assessing the origin and progression of papillary thyroid carcinoma bearing BRAFV600E and TERT promoter mutations.
Collapse
Affiliation(s)
- Paola Caria
- Department of Biomedical Sciences, University of Cagliari, Italy
| | - Rita Pillai
- Department of Biomedical Sciences, University of Cagliari, Italy
| | - Tinuccia Dettori
- Department of Biomedical Sciences, University of Cagliari, Italy
| | | | | | - Gabriele Riva
- School of Medicine and Surgery, University of Milano-Bicocca, Italy
| | - Gabriele Romano
- School of Medicine and Surgery, University of Milano-Bicocca, Italy
| | - Fabiana Pani
- Department of Medical Sciences, University of Cagliari, Italy
| | | | | | - Fabio Pagni
- School of Medicine and Surgery, University of Milano-Bicocca, Italy
| | - Valeria Sogos
- Department of Biomedical Sciences, University of Cagliari, Italy
| | - Roberta Vanni
- Department of Biomedical Sciences, University of Cagliari, Italy
| |
Collapse
|
12
|
Shimamura M, Kurashige T, Mitsutake N, Nagayama Y. Aldehyde dehydrogenase activity plays no functional role in stem cell-like properties in anaplastic thyroid cancer cell lines. Endocrine 2017; 55:934-943. [PMID: 28040834 DOI: 10.1007/s12020-016-1224-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 12/28/2016] [Indexed: 12/21/2022]
Abstract
Recent studies have revealed that aldehyde dehydrogenase (ALDH) is a candidate marker for thyroid cancer stem cells, although its activity is flexible. The goal of this study is to clarify the functional significance of ALDH enzymatic activity on thyroid cancer stem cells properties in anaplastic thyroid cancer cell lines. In vitro sphere formation assay was used to judge the stemness of 4 anaplastic thyroid cancer cell lines (FRO, ACT1, 8505C, and KTC3). Two well-known ALDH inhibitors, N,N-diethylaminobenzaldehyde (DEAB) and disulfiram (DS), were first used. DEAB (50 μM) almost completely suppressed ALDH activity without affecting cell proliferation or spherogenicity. Lack of effect of ALDH suppression on spherogenicity was confirmed using shRNA for ALDH1A3, an ALDH isozyme predominantly expressed in anaplastic thyroid cancer cell lines. In contrast, an ALDH2 inhibitor DS (1 μM) inhibited spherogenicity but did not inhibit ALDH1A3 activity. Based on the recent article from another group reporting the importance of sonic hedgehog (Shh) signaling in ALDH activity and spherogenicity in thyroid cancer, the effects of the Shh inhibitor cyclopamine were also studied. Like DS, cyclopamine (1 μM) decreased spherogenicity but not ALDH activity. Finally, exogenous expression of ALDH1A3 in otherwise ALDH- TPC1 cells (a papillary thyroid cancer cell line) revealed no effect on spherogenicity. In conclusion, we here show no functional role for ALDH activity in thyroid thyroid cancer stem cells properties. That is, ALDH activity and spherogenicity are clearly dissociable. Further understanding of thyroid cancer stem cells biology in thyroid cancers remains necessary for the future development of thyroid thyroid cancer stem cells-targeted therapies.
Collapse
Affiliation(s)
- Mika Shimamura
- Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Tomomi Kurashige
- Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Norisato Mitsutake
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Yuji Nagayama
- Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
| |
Collapse
|
13
|
Tackling Cancer Stem Cells via Inhibition of EMT Transcription Factors. Stem Cells Int 2016; 2016:5285892. [PMID: 27840647 PMCID: PMC5093281 DOI: 10.1155/2016/5285892] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/03/2016] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cell (CSC) has become recognized for its role in both tumorigenesis and poor patient prognosis in recent years. Traditional therapeutics are unable to effectively eliminate this group of cells from the bulk population of cancer cells, allowing CSCs to persist posttreatment and thus propagate into secondary tumors. The therapeutic potential of eliminating CSCs, to decrease tumor relapse, has created a demand for identifying mechanisms that directly target and eliminate cancer stem cells. Molecular profiling has shown that cancer cells and tumors that exhibit the CSC phenotype also express genes associated with the epithelial-to-mesenchymal transition (EMT) feature. Ample evidence has demonstrated that upregulation of master transcription factors (TFs) accounting for the EMT process such as Snail/Slug and Twist can reprogram cancer cells from differentiated to stem-like status. Despite being appealing therapeutic targets for tackling CSCs, pharmacological approaches that directly target EMT-TFs remain impossible. In this review, we will summarize recent advances in the regulation of Snail/Slug and Twist at transcriptional, translational, and posttranslational levels and discuss the clinical implication and application for EMT blockade as a promising strategy for CSC targeting.
Collapse
|
14
|
Nagayama Y, Shimamura M, Mitsutake N. Cancer Stem Cells in the Thyroid. Front Endocrinol (Lausanne) 2016; 7:20. [PMID: 26973599 PMCID: PMC4770029 DOI: 10.3389/fendo.2016.00020] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/15/2016] [Indexed: 11/16/2022] Open
Abstract
The cancer stem cell (CSC) model posits that CSCs are a small, biologically distinct subpopulation of cancer cells in each tumor that have self-renewal and multi-lineage potential, and are critical for cancer initiation, metastasis, recurrence, and therapy-resistance. Numerous studies have linked CSCs to thyroid biology, but the candidate markers and signal transduction pathways that drive thyroid CSC growth are controversial, the origin(s) of thyroid CSCs remain elusive, and it is unclear whether thyroid CSC biology is consistent with the original hierarchical CSC model or the more recent dynamic CSC model. Here, we critically review the thyroid CSC literature with an emphasis on research that confirmed the presence of thyroid CSCs by in vitro sphere formation or in vivo tumor formation assays with dispersed cells from thyroid cancer tissues or bona fide thyroid cancer cell lines. Future perspectives of thyroid CSC research are also discussed.
Collapse
Affiliation(s)
- Yuji Nagayama
- Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
- *Correspondence: Yuji Nagayama,
| | - Mika Shimamura
- Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Norisato Mitsutake
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| |
Collapse
|