1
|
Bergadà-Martínez A, de Los Reyes-Ramírez L, Martínez-Torres S, Ciaran-Alfano L, Martínez-Gallego I, Maldonado R, Rodríguez-Moreno A, Ozaita A. Sub-chronic administration of AM6545 enhances cognitive performance and induces hippocampal synaptic plasticity changes in naïve mice. Br J Pharmacol 2025. [PMID: 40102206 DOI: 10.1111/bph.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 01/22/2025] [Accepted: 01/31/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND AND PURPOSE There is evidence of crosstalk between the brain and peripheral tissues. However, how the periphery contributes to brain function is not well understood. The cannabinoid CB1 receptor is classically pictured to have a relevant role in cognitive function. We previously demonstrated a novel mechanism where acute administration of the CB1 receptor antagonist AM6545, largely restricted to the periphery, prolonged memory persistence in mice. Here, we have assessed the effects of repeated exposure to AM6545 on cognitive improvements. EXPERIMENTAL APPROACH We evaluated, in young adult male and female mice, the behavioural consequences of sub-chronic treatment with AM6545. An unbiased transcriptomic analysis, as well as electrophysiological and biochemical studies, was carried out to elucidate the central cellular and molecular consequences of such action at peripheral receptors. KEY RESULTS Sub-chronic AM6545 enhanced memory in low and high arousal conditions in male and female mice. Executive function was facilitated after repeated AM6545 administration in male mice. Transcriptional analysis of hippocampal synaptoneurosomes from treated mice revealed a preliminary, sex-dependent, modulation of synaptic transcripts by AM6545. Notably, AM6545 occluded long-term potentiation in CA3-CA1 synapses while enhancing input-output relation in male mice. This was accompanied by an increase in hippocampal expression of Bdnf and Ngf. CONCLUSION AND IMPLICATIONS Our results showed that repeated administration of AM6545 contributed to the modulation of memory persistence, executive function and hippocampal synaptic plasticity in mice, further indicating that peripheral CB1 receptors could act as a target for a novel class of nootropic compounds.
Collapse
Affiliation(s)
- Araceli Bergadà-Martínez
- Laboratory of Neuropharmacology-NeuroPhar, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Lucía de Los Reyes-Ramírez
- Laboratory of Neuropharmacology-NeuroPhar, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Research Group in Biology of Cognition, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Sara Martínez-Torres
- Laboratory of Neuropharmacology-NeuroPhar, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Laura Ciaran-Alfano
- Laboratory of Neuropharmacology-NeuroPhar, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Research Group in Biology of Cognition, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Irene Martínez-Gallego
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, Seville, Spain
| | - Rafael Maldonado
- Laboratory of Neuropharmacology-NeuroPhar, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Research Programme in Neurosciences, IMIM Hospital del Mar Research Institute, Barcelona, Spain
| | - Antonio Rodríguez-Moreno
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide, Seville, Spain
| | - Andrés Ozaita
- Laboratory of Neuropharmacology-NeuroPhar, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Research Group in Biology of Cognition, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Research Programme in Neurosciences, IMIM Hospital del Mar Research Institute, Barcelona, Spain
| |
Collapse
|
2
|
Martínez-Torres S, Bergadà-Martínez A, Ortega JE, Galera-López L, Hervera A, de Los Reyes-Ramírez L, Ortega-Álvaro A, Remmers F, Muñoz-Moreno E, Soria G, Del Río JA, Lutz B, Ruíz-Ortega JÁ, Meana JJ, Maldonado R, Ozaita A. Peripheral CB1 receptor blockade acts as a memory enhancer through a noradrenergic mechanism. Neuropsychopharmacology 2023; 48:341-350. [PMID: 36088492 PMCID: PMC9750989 DOI: 10.1038/s41386-022-01436-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/25/2022] [Accepted: 08/16/2022] [Indexed: 12/26/2022]
Abstract
Peripheral inputs continuously shape brain function and can influence memory acquisition, but the underlying mechanisms have not been fully understood. Cannabinoid type-1 receptor (CB1R) is a well-recognized player in memory performance, and its systemic modulation significantly influences memory function. By assessing low arousal/non-emotional recognition memory in mice, we found a relevant role of peripheral CB1R in memory persistence. Indeed, the peripherally-restricted CB1R specific antagonist AM6545 showed significant mnemonic effects that were occluded in adrenalectomized mice, and after peripheral adrenergic blockade. AM6545 also transiently impaired contextual fear memory extinction. Vagus nerve chemogenetic inhibition reduced AM6545-induced mnemonic effect. Genetic CB1R deletion in dopamine β-hydroxylase-expressing cells enhanced recognition memory persistence. These observations support a role of peripheral CB1R modulating adrenergic tone relevant for cognition. Furthermore, AM6545 acutely improved brain connectivity and enhanced extracellular hippocampal norepinephrine. In agreement, intra-hippocampal β-adrenergic blockade prevented AM6545 mnemonic effects. Altogether, we disclose a novel CB1R-dependent peripheral mechanism with implications relevant for lengthening the duration of non-emotional memory.
Collapse
Affiliation(s)
- Sara Martínez-Torres
- Laboratory of Neuropharmacology-NeuroPhar, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia. Parc Científic de Barcelona, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain
- Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Araceli Bergadà-Martínez
- Laboratory of Neuropharmacology-NeuroPhar, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Jorge E Ortega
- Department of Pharmacology, University of the Basque Country UPV/EHU, Leioa, Spain
- Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Spain; Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Lorena Galera-López
- Laboratory of Neuropharmacology-NeuroPhar, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Arnau Hervera
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia. Parc Científic de Barcelona, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain
- Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Lucía de Los Reyes-Ramírez
- Laboratory of Neuropharmacology-NeuroPhar, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Antonio Ortega-Álvaro
- Laboratory of Neuropharmacology-NeuroPhar, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Floortje Remmers
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Emma Muñoz-Moreno
- Experimental 7T MRI Unit, Magnetic Resonance Imaging Core Facility (IDIBAPS), Barcelona, Spain
| | - Guadalupe Soria
- Experimental 7T MRI Unit, Magnetic Resonance Imaging Core Facility (IDIBAPS), Barcelona, Spain
- Laboratory of Surgical Neuroanatomy, Faculty of Medicine and Health Sciences, Institute of Neurosciencies, University of Barcelona, Barcelona, Spain
| | - José Antonio Del Río
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia. Parc Científic de Barcelona, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain
- Network Centre of Biomedical Research of Neurodegenerative Diseases (CIBERNED), Institute of Health Carlos III, Ministry of Economy and Competitiveness, Madrid, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
| | | | - J Javier Meana
- Department of Pharmacology, University of the Basque Country UPV/EHU, Leioa, Spain
- Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Spain; Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Rafael Maldonado
- Laboratory of Neuropharmacology-NeuroPhar, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
- IMIM Hospital del Mar Research Institute, Barcelona, Spain.
| | - Andrés Ozaita
- Laboratory of Neuropharmacology-NeuroPhar, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
- IMIM Hospital del Mar Research Institute, Barcelona, Spain.
| |
Collapse
|