1
|
Minniakhmetov IR, Khusainova RI, Laptev DN, Yalaev BI, Karpova YS, Deev RV, Salakhov RR, Panteleev DD, Smirnov KV, Melnichenko GA, Shestakova MV, Mokrysheva NG. Genetic Structure of Hereditary Forms of Diabetes Mellitus in Russia. Int J Mol Sci 2025; 26:740. [PMID: 39859454 PMCID: PMC11766241 DOI: 10.3390/ijms26020740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025] Open
Abstract
Analyzing the genetic architecture of hereditary forms of diabetes in different populations is a critical step toward optimizing diagnostic and preventive algorithms. This requires consideration of regional and population-specific characteristics, including the spectrum and frequency of pathogenic variants in targeted genes. As part of this study, we used a custom-designed NGS panel to screen for mutations in 28 genes associated with the pathogenesis of hereditary diabetes mellitus in 506 unrelated patients from Russia. The study identified 180 pathogenic or likely pathogenic variants across 13 genes (GCK, HNF1A, HNF1B, HNF4A, ABCC8, INS, INSR, KCNJ11, PAX4, PDX1, ZFP57, BLK, WFS1), representing 46.44% of the analyzed cohort (235 individuals). The glucokinase gene (GCK) had the highest number of identified variants, with 111 variants detected in 161 patients, 20 of which were identified for the first time. In the tissue-specific transcription factor genes HNF1A, HNF4A, and HNF1B, 34 variants were found in 38 patients, including 13 that were previously unreported. Seventeen variants were identified in the ABCC8 gene, which encodes the ATP-binding cassette transporter 8 of subfamily C, each found in a different patient; four of these were novel discoveries. Nine pathogenic or likely pathogenic variants were identified in the insulin gene (INS) and its receptor gene (INSR), including four previously unreported variants. Additionally, we identified 10 previously unreported variants in six other genes among 11 patients. Variants in the genes GCK, HNF1A, HNF1B, HNF4A, ABCC8, INS, and INSR were the main contributors to the genetic pathogenesis of hereditary diabetes mellitus in the Russian cohort. These findings enhance our understanding of the molecular mechanisms underlying the disease and provide a solid basis for future studies aimed at improving diagnostic accuracy and advancing personalized therapeutic strategies. This knowledge provides a foundation for developing region-specific genetic testing algorithms and personalized therapeutic strategies, which are critical for future initiatives in precision medicine.
Collapse
Affiliation(s)
- Ildar R. Minniakhmetov
- Endocrinology Research Center, Moscow 117292, Russia; (R.I.K.); (D.N.L.); (B.I.Y.); (Y.S.K.); (R.V.D.); (R.R.S.); (D.D.P.); (K.V.S.); (G.A.M.); (M.V.S.); (N.G.M.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Akiba K, Zukeran H, Hasegawa Y, Fukami M. Initial clinical manifestations in a young male with RFX6-variant-associated diabetes. Clin Pediatr Endocrinol 2024; 33:224-228. [PMID: 39359667 PMCID: PMC11442700 DOI: 10.1297/cpe.2024-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/23/2024] [Indexed: 10/04/2024] Open
Abstract
To date, heterozygous loss-of-function variants of RFX6 have been identified in 13 families with diabetes. Here, we present initial clinical information regarding a young male with diabetes who carried a heterozygous nonsense variant of RFX6 (p.Arg377Ter) previously reported in his family with diabetes. At 11 yr and 7 mo of age, the patient experienced severe thirst and hyperglycemia (331-398 mg/dL). Laboratory tests revealed elevated levels of glycated hemoglobin (HbA1c) (47 mmol/mL, 6.5%) and the Homeostatic Model for Insulin Resistance (HOMA-IR) (3.4). Blood glucose self-monitoring demonstrated grossly normal blood glucose levels, together with occasional postprandial hyperglycemia, and a few episodes of hypoglycemia. An oral glucose tolerance test revealed mild hyperglycemia and a delayed peak insulin level. His laboratory indices improved over two years with self-control of diet and exercise. These results indicate that the initial presentation of RFX6-variant-associated diabetes includes occasional hyperglycemia and hypoglycemia in response to changes in lifestyle. The possible association between RFX6 variants and mild insulin resistance requires further validation in future studies.
Collapse
Affiliation(s)
- Kazuhisa Akiba
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
- Division of Endocrinology and Metabolism, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Hiroaki Zukeran
- Division of Endocrinology and Metabolism, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
| | - Yukihiro Hasegawa
- Division of Endocrinology and Metabolism, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan
- Department of Pediatrics, Tama-Hokubu Medical Center, Tokyo, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
3
|
Hasballa I, Maggi D. MODY Only Monogenic? A Narrative Review of the Novel Rare and Low-Penetrant Variants. Int J Mol Sci 2024; 25:8790. [PMID: 39201476 PMCID: PMC11354648 DOI: 10.3390/ijms25168790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/26/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
Maturity-onset diabetes of the young (MODY) represents the most frequent form of monogenic diabetes mellitus (DM), currently classified in 14 distinct subtypes according to single gene mutations involved in the differentiation and function of pancreatic β-cells. A significant proportion of MODY has unknown etiology, suggesting that the genetic landscape is still to be explored. Recently, novel potentially MODY-causal genes, involved in the differentiation and function of β-cells, have been identified, such as RFX6, NKX2.2, NKX6.1, WFS1, PCBD1, MTOR, TBC1D4, CACNA1E, MNX1, AKT2, NEUROG3, EIF2AK3, GLIS3, HADH, and PTF1A. Genetic and clinical features of MODY variants remain highly heterogeneous, with no direct genotype-phenotype correlation, especially in the low-penetrant subtypes. This is a narrative review of the literature aimed at describing the current state-of-the-art of the novel likely MODY-associated variants. For a deeper understanding of MODY complexity, we also report some related controversies concerning the etiological role of some of the well-known pathological genes and MODY inheritance pattern, as well as the rare association of MODY with autoimmune diabetes. Due to the limited data available, the assessment of MODY-related genes pathogenicity remains challenging, especially in the setting of rare and low-penetrant subtypes. In consideration of the crucial importance of an accurate diagnosis, prognosis and management of MODY, more studies are warranted to further investigate its genetic landscape and the genotype-phenotype correlation, as well as the pathogenetic contribution of the nongenetic modifiers in this cohort of patients.
Collapse
Affiliation(s)
- Iderina Hasballa
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties (DIMI), University of Genoa, 16132 Genoa, Italy
| | - Davide Maggi
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, 16132 Genoa, Italy
- Diabetes Clinic, IRCCS Ospedale Policlinico San Martino Genoa, 16132 Genoa, Italy
| |
Collapse
|
4
|
Jakiel P, Gadzalska K, Juścińska E, Gorządek M, Płoszaj T, Skoczylas S, Borowiec M, Zmysłowska A. Identification of rare variants in candidate genes associated with monogenic diabetes in polish mody-x patients. J Diabetes Metab Disord 2024; 23:545-554. [PMID: 38932873 PMCID: PMC11196495 DOI: 10.1007/s40200-023-01312-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/14/2023] [Indexed: 06/28/2024]
Abstract
Purpose Monogenic diabetes (MD) is caused by a mutation in a single gene and accounts for approximately 2.5-6% of all diabetes cases. Maturity-onset diabetes of the young (MODY) is the most common form of MD. To date, 14 different genes have been identified and associated with the presence of MODY phenotype. However, the number of potential candidate genes with relevance to beta cell function and glucose metabolism is increasing as more research is published. The aim of the study was to identify potentially causative variants in selected candidate genes in patients with a clinical diagnosis of MD. Methods Targeted Next-Generation Sequencing (tNGS) on Illumina NextSeq 550 platform involving Agilent SureSelectQXT Target Enrichment protocol for 994 patients with suspected MD was performed. In the next step, the sequencing data of 617 patients with no pathogenic variants in main MD-related genes were reanalysed for the presence of causative variants in six candidate genes (MTOR, TBC1D4, CACNA1E, MNX1, SLC19A2, KCNH6). The presence of the selected variants was confirmed by Sanger sequencing. Results Seven heterozygous possibly damaging variants were identified in four candidate genes (MTOR, TBC1D4, CACNA1E, MNX1). Five changes were assessed as novel variants, not previously described in available databases. None of the described variants were present among patients previously diagnosed with MODY diabetes due to causative, pathogenic variants in known MODY-related genes. Conclusions The results obtained seem to confirm the effectiveness of the NGS method in identifying potentially causative variants in novel candidate genes associated with MODY diabetes.
Collapse
Affiliation(s)
- Paulina Jakiel
- Department of Clinical Genetics, Medical University of Lodz, Lodz, Poland
| | - K. Gadzalska
- Department of Clinical Genetics, Medical University of Lodz, Lodz, Poland
| | - E. Juścińska
- Department of Clinical Genetics, Medical University of Lodz, Lodz, Poland
| | - M. Gorządek
- Department of Clinical Genetics, Medical University of Lodz, Lodz, Poland
| | - T. Płoszaj
- Department of Clinical Genetics, Medical University of Lodz, Lodz, Poland
| | - S. Skoczylas
- Department of Clinical Genetics, Medical University of Lodz, Lodz, Poland
| | - M. Borowiec
- Department of Clinical Genetics, Medical University of Lodz, Lodz, Poland
| | - A. Zmysłowska
- Department of Clinical Genetics, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
5
|
Dusatkova P, Pavlikova M, Elblova L, Larionov V, Vesela K, Kolarova K, Sumnik Z, Lebl J, Pruhova S. Search for a time- and cost-saving genetic testing strategy for maturity-onset diabetes of the young. Acta Diabetol 2022; 59:1169-1178. [PMID: 35737141 PMCID: PMC9219402 DOI: 10.1007/s00592-022-01915-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/01/2022] [Indexed: 11/16/2022]
Abstract
AIMS Correct genetic diagnosis of maturity-onset diabetes of the young (MODY) is beneficial for person's diabetes management compared to no genetic testing. Aim of the present study was a search for optimal time- and cost-saving strategies by comparing two approaches of genetic testing of participants with clinical suspicion of MODY. METHODS A total of 121 consecutive probands referred for suspicion of MODY (Group A) were screened using targeted NGS (tNGS), while the other 112 consecutive probands (Group B) underwent a single gene test based on phenotype, and in cases of negative findings, tNGS was conducted. The study was performed in two subsequent years. The genetic results, time until reporting of the final results and financial expenses were compared between the groups. RESULTS MODY was confirmed in 30.6% and 40.2% probands from Groups A and B, respectively; GCK-MODY was predominant (72.2% in Group A and 77.8% in Group B). The median number of days until results reporting was 184 days (IQR 122-258) in Group A and 91 days (44-174) in Group B (p < 0.00001). Mean costs per person were higher for Group A (639 ± 30 USD) than for Group B (584 ± 296 USD; p = 0.044). CONCLUSIONS The two-step approach represented a better strategy for genetic investigation of MODY concerning time and costs compared to direct tNGS. Although a single-gene investigation clarified the diabetes aetiology in the majority of cases, tNGS could reveal rare causes of MODY and expose possible limitations of both standard genetic techniques and clinical evaluation.
Collapse
Affiliation(s)
- Petra Dusatkova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 15006, Prague, Czech Republic.
| | - Marketa Pavlikova
- Department of Probability and Mathematical Statistics, Faculty of Mathematics and Physics, Charles University, Sokolovska 83, 18675, Prague, Czech Republic
| | - Lenka Elblova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 15006, Prague, Czech Republic
| | - Vladyslav Larionov
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 15006, Prague, Czech Republic
| | - Klara Vesela
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 15006, Prague, Czech Republic
| | - Katerina Kolarova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 15006, Prague, Czech Republic
| | - Zdenek Sumnik
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 15006, Prague, Czech Republic
| | - Jan Lebl
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 15006, Prague, Czech Republic
| | - Stepanka Pruhova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and University Hospital Motol, V Uvalu 84, 15006, Prague, Czech Republic
| |
Collapse
|
6
|
Zmysłowska A, Jakiel P, Gadzalska K, Majos A, Płoszaj T, Ben-Skowronek I, Deja G, Glowinska-Olszewska B, Jarosz-Chobot P, Klonowska B, Kowalska I, Mlynarski W, Mysliwiec M, Nazim J, Noczynska A, Robak-Kontna K, Skala-Zamorowska E, Skowronska B, Szadkowska A, Szypowska A, Walczak M, Borowiec M. Next- generation sequencing is an effective method for diagnosing patients with different forms of monogenic diabetes. Diabetes Res Clin Pract 2022; 183:109154. [PMID: 34826540 DOI: 10.1016/j.diabres.2021.109154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/13/2021] [Accepted: 11/20/2021] [Indexed: 11/03/2022]
Abstract
AIM Monogenic diabetes (MD) represents 5-7% of antibody-negative diabetes cases and is a heterogeneous group of disorders. METHODS We used targeted next-generation sequencing (NGS) on Illumina NextSeq 550 platform involving the SureSelect assay to perform genetic and clinical characteristics of a study group of 684 individuals, including 542 patients referred from 12 Polish Diabetes Centers with suspected MD diagnosed between December 2016 and December 2019 and their 142 family members (FM). RESULTS In 198 probands (36.5%) and 66 FM (46.5%) heterozygous causative variants were confirmed in 11 different MD-related genes, including 31 novel mutations, with the highest number in the GCK gene (206/264), 22/264 in the HNF1A gene and 8/264 in the KCNJ11 gene. Of the 183 probands with MODY1-5 diabetes, 48.6% of them were diagnosed at the pre-diabetes stage and most of them (68.7%) were on diet only at the time of genetic diagnosis, while 31.3% were additionally treated with oral hypoglycaemic drugs and/or insulin. CONCLUSIONS In summary, the results obtained confirm the efficacy of targeted NGS method in the molecular diagnosis of patients with suspected MD and broaden the spectrum of new causal variants, while updating our knowledge of the clinical features of patients defined as having MD.
Collapse
Affiliation(s)
- A Zmysłowska
- Department of Clinical Genetics, Medical University of Lodz, Lodz, Poland.
| | - P Jakiel
- Department of Clinical Genetics, Medical University of Lodz, Lodz, Poland
| | - K Gadzalska
- Department of Clinical Genetics, Medical University of Lodz, Lodz, Poland
| | - A Majos
- Department of General and Transplant Surgery, Medical University of Lodz, Lodz, Poland
| | - T Płoszaj
- Department of Clinical Genetics, Medical University of Lodz, Lodz, Poland
| | - I Ben-Skowronek
- Department of Pediatric Endocrinology and Diabetology, Medical University of Lublin, Lublin, Poland
| | - G Deja
- Department of Children's Diabetology, Medical University of Silesia in Katowice, Poland
| | - B Glowinska-Olszewska
- Department of Pediatrics, Endocrinology, Diabetology with Cardiology Division, Medical University of Bialystok, Bialystok, Poland
| | - P Jarosz-Chobot
- Department of Children's Diabetology, Medical University of Silesia in Katowice, Poland
| | - B Klonowska
- Department of Clinical Pediatrics, University of Warmia and Mazury in Olsztyn, Provincial Specialist Children's Hospital, Olsztyn, Poland
| | - I Kowalska
- Department of Internal Medicine and Metabolic Diseases, Medical University of Bialystok, Bialystok, Poland
| | - W Mlynarski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - M Mysliwiec
- Department of Pediatrics, Diabetology and Endocrinology, Medical University of Gdansk, Gdansk, Poland
| | - J Nazim
- Department of Pediatric Endocrinology, Jagiellonian University Medical College, Cracow, Poland
| | - A Noczynska
- Department of Pediatric Endocrinology and Diabetology, Wroclaw Medical University, Wroclaw, Poland
| | - K Robak-Kontna
- Outpatient Clinic for Pediatric Diabetology, Regional Children's Hospital in Bydgoszcz, Bydgoszcz, Poland
| | - E Skala-Zamorowska
- Department of Children's Diabetology, Medical University of Silesia in Katowice, Poland
| | - B Skowronska
- Department of Pediatric Diabetes and Obesity, Poznan University of Medical Sciences, Poznan, Poland
| | - A Szadkowska
- Department of Pediatrics, Diabetology, Endocrinology and Nephrology, Medical University of Lodz, Lodz, Poland
| | - A Szypowska
- Department of Pediatrics, Medical University of Warsaw, Warsaw, Poland
| | - M Walczak
- Department of Pediatrics, Endocrinology, Diabetology, Metabolic Diseases and Cardiology of the Developmental Age, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - M Borowiec
- Department of Clinical Genetics, Medical University of Lodz, Lodz, Poland
| |
Collapse
|