1
|
Ren X, Shi Y, Xiao B, Su X, Shi H, He G, Chen P, Wu D, Shi Y. Gene Doping Detection From the Perspective of 3D Genome. Drug Test Anal 2025. [PMID: 39757126 DOI: 10.1002/dta.3850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/07/2025]
Abstract
Since the early 20th century, the concept of doping was first introduced. To achieve better athletic performance, chemical substances were used. By the mid-20th century, it became gradually recognized that the illegal use of doping substances can seriously endangered athletes' health and compromised the fairness of sports competitions. Over the past 30 years, the World Anti-Doping Agency (WADA) has established corresponding rules and regulations to prohibit athletes from using doping substances or restrict the use of certain drugs, and isotope, chromatography, and mass spectrometry techniques were accredited to detect doping substances. With the development of gene editing technology, many genetic diseases have been effectively treated, but enabled by the same technology, doping has also the potential to pose a threat to sports in the form of gene doping. WADA has explicitly indicated gene doping in the Prohibited List as a prohibited method (M3) and approved qPCR detection. However, gene doping can easily evade detection, if the target genes' upstream regulatory elements are considered, the task became more challenging. Hi-C experiment driven 3D genome technology, through perspectives such as topologically associating domain (TAD) and chromatin loop, provides a more comprehensive and in-depth understanding of gene regulation and expression, thereby better preventing the potential use of 3D genome level gene doping. In this work, we will explore gene doping from a different perspective by analyzing recent studies on gene doping and explore related genes under 3D genome.
Collapse
Affiliation(s)
- Xinyuan Ren
- Research Institute for Doping Control, Shanghai University of Sport, Shanghai, China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Shi
- Research Institute for Doping Control, Shanghai University of Sport, Shanghai, China
| | - Bo Xiao
- Faculty of Physical Education, Shanghai Jiao Tong University, Shanghai, China
| | - Xianbin Su
- Research Institute for Doping Control, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Shi
- Research Institute for Doping Control, Shanghai University of Sport, Shanghai, China
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China
| | - Peijie Chen
- Research Institute for Doping Control, Shanghai University of Sport, Shanghai, China
| | - Die Wu
- Research Institute for Doping Control, Shanghai University of Sport, Shanghai, China
| | - Yi Shi
- Research Institute for Doping Control, Shanghai University of Sport, Shanghai, China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
2
|
Marques-Pamies M, Gil J, Valassi E, Pons L, Carrato C, Jordà M, Puig-Domingo M. New molecular tools for precision medicine in pituitary neuroendocrine tumors. Minerva Endocrinol (Torino) 2024; 49:300-320. [PMID: 38261299 DOI: 10.23736/s2724-6507.23.04063-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Precision, personalized, or individualized medicine in pituitary neuroendocrine tumors (PitNETs) has become a major topic in the last few years. It is based on the use of biomarkers that predictively segregate patients and give answers to clinically relevant questions that help us in the individualization of their management. It allows us to make early diagnosis, predict response to medical treatments, predict surgical outcomes and investigate new targets for therapeutic molecules. So far, substantial progress has been made in this field, although there are still not enough precise tools that can be implemented in clinical practice. One of the main reasons is the excess overlap among clustered patients, with an error probability that is not currently acceptable for clinical practice. This overlap is due to the high heterogeneity of PitNETs, which is too complex to be overcome by the classical biomarker investigation approach. A systems biology approach based on artificial intelligence techniques seems to be able to give answers to each patient individually by building mathematical models through the interaction of multiple factors, including those of omics sciences. Integrated studies of different molecular omics techniques, as well as radiomics and clinical data are necessary to understand the whole system and to finally achieve the key to obtain precise biomarkers and implement personalized medicine. In this review we have focused on describing the current advances in the area of PitNETs based on the omics sciences, that are clearly going to be the new tool for precision medicine.
Collapse
Affiliation(s)
| | - Joan Gil
- Endocrine Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
- Centro de Investigación en Red de Enfermedades Raras (CIBERER), Health Institute of Carlos III, Madrid, Spain
- Department of Endocrinology, Research Center for Pituitary Diseases, Sant Pau Hospital, Barcelona, Spain
| | - Elena Valassi
- Centro de Investigación en Red de Enfermedades Raras (CIBERER), Health Institute of Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition, Germans Trias i Pujol University Hospital, Badalona, Spain
| | - Laura Pons
- Department of Pathology, Germans Trias i Pujol Hospital, Badalona, Spain
| | - Cristina Carrato
- Department of Pathology, Germans Trias i Pujol Hospital, Badalona, Spain
| | - Mireia Jordà
- Endocrine Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| | - Manel Puig-Domingo
- Endocrine Research Unit, Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain -
- Centro de Investigación en Red de Enfermedades Raras (CIBERER), Health Institute of Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition, Germans Trias i Pujol University Hospital, Badalona, Spain
- Department of Medicine, Autonomous University of Barcelona, Barcelona, Spain
| |
Collapse
|
3
|
Zhang Z, Chen Y, Guo Y, Shen H, Wang J, Chen H. RFX2 promotes tumor cell stemness through epigenetic regulation of PAF1 in spinal ependymoma. J Neurooncol 2023; 165:487-497. [PMID: 38057505 DOI: 10.1007/s11060-023-04506-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/09/2023] [Indexed: 12/08/2023]
Abstract
PURPOSE Spinal ependymoma (SE) is a rare tumor that is most commonly low-grade and tends to recur when complete tumor resection is not feasible. We investigated the molecular mechanism induces stem cell features in SE. METHODS Immunohistochemical staining was conducted to analyze the expression of RFX2 in tumor tissues of SE patients at different stages. The expression of tumor stemness markers (Netsin and CD133) was analyzed using western blot analysis and IF, and the efficiency of sphere formation in SE cells was analyzed. The biological activities of SE cells were analyzed by EdU proliferation assay, TUNEL, wound healing, and Transwell assays. The regulatory relationship of RFX2 on PAF1 was verified by ChIP-qPCR and the dual-luciferase assay. SE cells were injected into the spinal cord of nude mice for in vivo assays. RESULTS RFX2 was higher in the tumor tissues of SE-III patients than in the tumor tissues of SE-I patients. RFX2 knockdown reduced the expression of tumor stemness markers in SE cells and inhibited the sphere formation efficiency. Moreover, RFX2 knockdown ameliorated the malignant progression of SE in nude mice, as manifested by prolonged survival and alleviated SE tumor infiltration. RFX2 bound to the PAF1 promoter to induce its transcription. Overexpression of PAF1 overturned the effects of RFX2 knockdown on stem cell features and biological activities of SE cells, thereby reducing survival in mice. CONCLUSIONS RFX2 activates PAF1 transcription, which promotes tumor stemness of SE cells and leads to the malignant progression of SE.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Neurosurgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, People's Republic of China
| | - Yusheng Chen
- Department of Neurosurgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, People's Republic of China
| | - Yang Guo
- Department of Neurosurgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, People's Republic of China
| | - Hanwei Shen
- Department of Neurosurgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, People's Republic of China
| | - Jiangtao Wang
- Department of Neurosurgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, People's Republic of China
| | - Hang Chen
- Department of Neurosurgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, People's Republic of China.
| |
Collapse
|