1
|
Cline HT. Imaging Structural and Functional Dynamics in Xenopus Neurons. Cold Spring Harb Protoc 2021; 2022:pdb.top106773. [PMID: 34531329 DOI: 10.1101/pdb.top106773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In vivo time-lapse imaging has been a fruitful approach to identify structural and functional changes in the Xenopus nervous system in tadpoles and adult frogs. Structural imaging studies have identified fundamental aspects of brain connectivity, development, plasticity, and disease and have been instrumental in elucidating mechanisms regulating these events in vivo. Similarly, assessment of nervous system function using dynamic changes in calcium signals as a proxy for neuronal activity has demonstrated principles of neuron and circuit function and principles of information organization and transfer within the brain of living animals. Because of its many advantages as an experimental system, use of Xenopus has often been at the forefront of developing these imaging methods for in vivo applications. Protocols for in vivo structural and functional imaging-including cellular labeling strategies, image collection, and image analysis-will expand the use of Xenopus to understand brain development, function, and plasticity.
Collapse
Affiliation(s)
- Hollis T Cline
- Department of Neuroscience, Dorris Neuroscience Center, The Scripps Research Center, La Jolla, California 92039, USA
| |
Collapse
|
2
|
He HY, Lin CY, Cline HT. In Vivo Time-Lapse Imaging and Analysis of Dendritic Structural Plasticity in Xenopus laevis Tadpoles. Cold Spring Harb Protoc 2021; 2022:pdb.prot106781. [PMID: 33790043 DOI: 10.1101/pdb.prot106781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In vivo time-lapse imaging of complete dendritic arbor structures in tectal neurons of Xenopus laevis tadpoles has served as a powerful in vivo model to study activity-dependent structural plasticity in the central nervous system during early development. In addition to quantitative analysis of gross arbor structure, dynamic analysis of the four-dimensional data offers particularly valuable insights into the structural changes occurring in subcellular domains over experience/development-driven structural plasticity events. Such analysis allows not only quantifiable characterization of branch additions and retractions with high temporal resolution but also identification of the loci of action. This allows for a better understanding of the spatiotemporal association of structural changes to functional relevance. Here we describe a protocol for in vivo time-lapse imaging of complete dendritic arbors from individual neurons in the brains of anesthetized tadpoles with two-photon microscopy and data analysis of the time series of 3D dendritic arbors. For data analysis, we focus on dynamic analysis of reconstructed neuronal filaments using a customized open source computer program we developed (4D SPA), which allows aligning and matching of 3D neuronal structures across different time points with greatly improved speed and reliability. File converters are provided to convert reconstructed filament files from commercial reconstruction software to be used in 4D SPA. The program and user manual are publicly accessible and operate through a graphical user interface on both Windows and Mac OSX.
Collapse
Affiliation(s)
- Hai-Yan He
- Department of Biology, Georgetown University, Washington, D.C. 20057, USA
| | - Chih-Yang Lin
- Department of Optoelectronics and Materials Engineering, Chung Hua University, Hsinchu 30012, Taiwan
| | - Hollis T Cline
- Neuroscience Department, Dorris Neuroscience Center, Scripps Research Institute, La Jolla, California 92037, USA
| |
Collapse
|
3
|
Nanda S, Chen H, Das R, Bhattacharjee S, Cuntz H, Torben-Nielsen B, Peng H, Cox DN, De Schutter E, Ascoli GA. Design and implementation of multi-signal and time-varying neural reconstructions. Sci Data 2018; 5:170207. [PMID: 29360104 PMCID: PMC5779069 DOI: 10.1038/sdata.2017.207] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/19/2017] [Indexed: 11/09/2022] Open
Abstract
Several efficient procedures exist to digitally trace neuronal structure from light microscopy, and mature community resources have emerged to store, share, and analyze these datasets. In contrast, the quantification of intracellular distributions and morphological dynamics is not yet standardized. Current widespread descriptions of neuron morphology are static and inadequate for subcellular characterizations. We introduce a new file format to represent multichannel information as well as an open-source Vaa3D plugin to acquire this type of data. Next we define a novel data structure to capture morphological dynamics, and demonstrate its application to different time-lapse experiments. Importantly, we designed both innovations as judicious extensions of the classic SWC format, thus ensuring full back-compatibility with popular visualization and modeling tools. We then deploy the combined multichannel/time-varying reconstruction system on developing neurons in live Drosophila larvae by digitally tracing fluorescently labeled cytoskeletal components along with overall dendritic morphology as they changed over time. This same design is also suitable for quantifying dendritic calcium dynamics and tracking arbor-wide movement of any subcellular substrate of interest.
Collapse
Affiliation(s)
- Sumit Nanda
- Center for Neural Informatics, Structures, & Plasticity, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA 22030, USA
| | - Hanbo Chen
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Ravi Das
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| | | | - Hermann Cuntz
- Ernst Strüngmann Institute (ESI), Frankfurt/Main D-60528, Germany
- Frankfurt Institute for Advanced Studies (FIAS), Frankfurt/Main D-60438, Germany
| | | | - Hanchuan Peng
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Daniel N. Cox
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| | | | - Giorgio A. Ascoli
- Center for Neural Informatics, Structures, & Plasticity, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA 22030, USA
| |
Collapse
|
4
|
EPBscore: a Novel Method for Computer-Assisted Analysis of Axonal Structure and Dynamics. Neuroinformatics 2016; 14:121-7. [PMID: 26163988 DOI: 10.1007/s12021-015-9274-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
5
|
He HY, Shen W, Hiramoto M, Cline HT. Experience-Dependent Bimodal Plasticity of Inhibitory Neurons in Early Development. Neuron 2016; 90:1203-1214. [PMID: 27238867 DOI: 10.1016/j.neuron.2016.04.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 03/11/2016] [Accepted: 04/14/2016] [Indexed: 02/09/2023]
Abstract
Inhibitory neurons are heterogeneous in the mature brain. It is unclear when and how inhibitory neurons express distinct structural and functional profiles. Using in vivo time-lapse imaging of tectal neuron structure and visually evoked Ca(2+) responses in tadpoles, we found that inhibitory neurons cluster into two groups with opposite valence of plasticity after 4 hr of dark and visual stimulation. Half decreased dendritic arbor size and Ca(2+) responses after dark and increased them after visual stimulation, matching plasticity in excitatory neurons. Half increased dendrite arbor size and Ca(2+) responses following dark and decreased them after stimulation. At the circuit level, visually evoked excitatory and inhibitory synaptic inputs were potentiated by visual experience and E/I remained constant. Our results indicate that developing inhibitory neurons fall into distinct functional groups with opposite experience-dependent plasticity and as such, are well positioned to foster experience-dependent synaptic plasticity and maintain circuit stability during labile periods of circuit development.
Collapse
Affiliation(s)
- Hai-Yan He
- The Dorris Neuroscience Center, Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Wanhua Shen
- Key Lab of Organ Development and Regeneration of Zhejiang Province, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Masaki Hiramoto
- The Dorris Neuroscience Center, Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Hollis T Cline
- The Dorris Neuroscience Center, Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
6
|
Gonçalves JT, Bloyd CW, Shtrahman M, Johnston ST, Schafer ST, Parylak SL, Tran T, Chang T, Gage FH. In vivo imaging of dendritic pruning in dentate granule cells. Nat Neurosci 2016; 19:788-91. [PMID: 27135217 PMCID: PMC4941946 DOI: 10.1038/nn.4301] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 04/05/2016] [Indexed: 12/28/2022]
Abstract
We longitudinally imaged the developing dendrites of adult-born mouse dentate granule cells (DGCs) in vivo and found that they underwent over-branching and pruning. Exposure to an enriched environment (EE) and constraining dendritic growth by disrupting Wnt signaling led to increased branch addition and accelerated growth, which were, however, counteracted by earlier and more extensive pruning. Our results indicate that pruning is regulated in a homeostatic fashion to oppose excessive branching and promote a similar dendrite structure in DGCs.
Collapse
Affiliation(s)
- J Tiago Gonçalves
- Laboratory of Genetics, Salk Institute for Biological Sciences, La Jolla, California, USA
| | - Cooper W Bloyd
- Laboratory of Genetics, Salk Institute for Biological Sciences, La Jolla, California, USA
| | - Matthew Shtrahman
- Laboratory of Genetics, Salk Institute for Biological Sciences, La Jolla, California, USA
| | - Stephen T Johnston
- Laboratory of Genetics, Salk Institute for Biological Sciences, La Jolla, California, USA
| | - Simon T Schafer
- Laboratory of Genetics, Salk Institute for Biological Sciences, La Jolla, California, USA
| | - Sarah L Parylak
- Laboratory of Genetics, Salk Institute for Biological Sciences, La Jolla, California, USA
| | - Thanh Tran
- Laboratory of Genetics, Salk Institute for Biological Sciences, La Jolla, California, USA
| | - Tina Chang
- Laboratory of Genetics, Salk Institute for Biological Sciences, La Jolla, California, USA
| | - Fred H Gage
- Laboratory of Genetics, Salk Institute for Biological Sciences, La Jolla, California, USA
| |
Collapse
|
7
|
Parekh R, Ascoli GA. Neuronal morphology goes digital: a research hub for cellular and system neuroscience. Neuron 2013; 77:1017-38. [PMID: 23522039 PMCID: PMC3653619 DOI: 10.1016/j.neuron.2013.03.008] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2013] [Indexed: 02/07/2023]
Abstract
The importance of neuronal morphology in brain function has been recognized for over a century. The broad applicability of "digital reconstructions" of neuron morphology across neuroscience subdisciplines has stimulated the rapid development of numerous synergistic tools for data acquisition, anatomical analysis, three-dimensional rendering, electrophysiological simulation, growth models, and data sharing. Here we discuss the processes of histological labeling, microscopic imaging, and semiautomated tracing. Moreover, we provide an annotated compilation of currently available resources in this rich research "ecosystem" as a central reference for experimental and computational neuroscience.
Collapse
Affiliation(s)
- Ruchi Parekh
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, 22030, USA
| | - Giorgio A. Ascoli
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, 22030, USA
| |
Collapse
|