• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4798399)   Today's Articles (3825)
For: Shao B, Liu B, Yan C. SACMDA: MiRNA-Disease Association Prediction with Short Acyclic Connections in Heterogeneous Graph. Neuroinformatics 2018;16:373-382. [DOI: 10.1007/s12021-018-9373-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Number Cited by Other Article(s)
1
Han GS, Gao Q, Peng LZ, Tang J. Hessian Regularized L 2 , 1 -Nonnegative Matrix Factorization and Deep Learning for miRNA-Disease Associations Prediction. Interdiscip Sci 2024;16:176-191. [PMID: 38099958 DOI: 10.1007/s12539-023-00594-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 02/22/2024]
2
Qu Q, Chen X, Ning B, Zhang X, Nie H, Zeng L, Chen H, Fu X. Prediction of miRNA-disease associations by neural network-based deep matrix factorization. Methods 2023;212:1-9. [PMID: 36813017 DOI: 10.1016/j.ymeth.2023.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/17/2023] [Accepted: 02/10/2023] [Indexed: 02/23/2023]  Open
3
Li L, Gao Z, Zheng CH, Qi R, Wang YT, Ni JC. Predicting miRNA-Disease Association Based on Improved Graph Regression. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022;19:3604-3613. [PMID: 34757912 DOI: 10.1109/tcbb.2021.3127017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
4
Ji C, Wang Y, Gao Z, Li L, Ni J, Zheng C. A Semi-Supervised Learning Method for MiRNA-Disease Association Prediction Based on Variational Autoencoder. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022;19:2049-2059. [PMID: 33735084 DOI: 10.1109/tcbb.2021.3067338] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
5
Gao Z, Wang YT, Wu QW, Li L, Ni JC, Zheng CH. A New Method Based on Matrix Completion and Non-Negative Matrix Factorization for Predicting Disease-Associated miRNAs. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022;19:763-772. [PMID: 32991287 DOI: 10.1109/tcbb.2020.3027444] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
6
Luo J, Liu Y, Liu P, Lai Z, Wu H. Data Integration Using Tensor Decomposition for The Prediction of miRNA-Disease Associations. IEEE J Biomed Health Inform 2021;26:2370-2378. [PMID: 34748505 DOI: 10.1109/jbhi.2021.3125573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
7
Zhang ZW, Gao Z, Zheng CH, Li L, Qi SM, Wang YT. WVMDA: Predicting miRNA-Disease Association Based on Weighted Voting. Front Genet 2021;12:742992. [PMID: 34659363 PMCID: PMC8511643 DOI: 10.3389/fgene.2021.742992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/09/2021] [Indexed: 11/15/2022]  Open
8
Wang YT, Li L, Ji CM, Zheng CH, Ni JC. ILPMDA: Predicting miRNA-Disease Association Based on Improved Label Propagation. Front Genet 2021;12:743665. [PMID: 34659364 PMCID: PMC8514753 DOI: 10.3389/fgene.2021.743665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/30/2021] [Indexed: 12/21/2022]  Open
9
Wu Y, Zhu D, Wang X, Zhang S. An ensemble learning framework for potential miRNA-disease association prediction with positive-unlabeled data. Comput Biol Chem 2021;95:107566. [PMID: 34534906 DOI: 10.1016/j.compbiolchem.2021.107566] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 11/17/2022]
10
Toprak A, Eryilmaz Dogan E. Prediction of Potential MicroRNA-Disease Association Using Kernelized Bayesian Matrix Factorization. Interdiscip Sci 2021;13:595-602. [PMID: 34370220 DOI: 10.1007/s12539-021-00469-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/05/2021] [Accepted: 07/30/2021] [Indexed: 10/20/2022]
11
SCMFMDA: Predicting microRNA-disease associations based on similarity constrained matrix factorization. PLoS Comput Biol 2021;17:e1009165. [PMID: 34252084 PMCID: PMC8345837 DOI: 10.1371/journal.pcbi.1009165] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 08/06/2021] [Accepted: 06/08/2021] [Indexed: 11/21/2022]  Open
12
Chu Y, Wang X, Dai Q, Wang Y, Wang Q, Peng S, Wei X, Qiu J, Salahub DR, Xiong Y, Wei DQ. MDA-GCNFTG: identifying miRNA-disease associations based on graph convolutional networks via graph sampling through the feature and topology graph. Brief Bioinform 2021;22:6261915. [PMID: 34009265 DOI: 10.1093/bib/bbab165] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/02/2021] [Accepted: 04/08/2021] [Indexed: 11/13/2022]  Open
13
Ji C, Gao Z, Ma X, Wu Q, Ni J, Zheng C. AEMDA: inferring miRNA-disease associations based on deep autoencoder. Bioinformatics 2021;37:66-72. [PMID: 32726399 DOI: 10.1093/bioinformatics/btaa670] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/27/2020] [Accepted: 07/20/2020] [Indexed: 12/19/2022]  Open
14
Wang YT, Wu QW, Gao Z, Ni JC, Zheng CH. MiRNA-disease association prediction via hypergraph learning based on high-dimensionality features. BMC Med Inform Decis Mak 2021;21:133. [PMID: 33882934 PMCID: PMC8061020 DOI: 10.1186/s12911-020-01320-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 11/09/2020] [Indexed: 11/10/2022]  Open
15
Wu Q, Wang Y, Gao Z, Ni J, Zheng C. MSCHLMDA: Multi-Similarity Based Combinative Hypergraph Learning for Predicting MiRNA-Disease Association. Front Genet 2020;11:354. [PMID: 32351545 PMCID: PMC7174776 DOI: 10.3389/fgene.2020.00354] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/23/2020] [Indexed: 12/17/2022]  Open
16
Gao Z, Wang YT, Wu QW, Ni JC, Zheng CH. Graph regularized L2,1-nonnegative matrix factorization for miRNA-disease association prediction. BMC Bioinformatics 2020;21:61. [PMID: 32070280 PMCID: PMC7029547 DOI: 10.1186/s12859-020-3409-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 02/11/2020] [Indexed: 01/24/2023]  Open
17
Huang Z, Liu L, Gao Y, Shi J, Cui Q, Li J, Zhou Y. Benchmark of computational methods for predicting microRNA-disease associations. Genome Biol 2019;20:202. [PMID: 31594544 PMCID: PMC6781296 DOI: 10.1186/s13059-019-1811-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/03/2019] [Indexed: 01/06/2023]  Open
18
Wang Y, Nie C, Zang T, Wang Y. Predicting circRNA-Disease Associations Based on circRNA Expression Similarity and Functional Similarity. Front Genet 2019;10:832. [PMID: 31572444 PMCID: PMC6751509 DOI: 10.3389/fgene.2019.00832] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/13/2019] [Indexed: 12/19/2022]  Open
19
PWCDA: Path Weighted Method for Predicting circRNA-Disease Associations. Int J Mol Sci 2018;19:ijms19113410. [PMID: 30384427 PMCID: PMC6274797 DOI: 10.3390/ijms19113410] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 10/25/2018] [Accepted: 10/26/2018] [Indexed: 12/22/2022]  Open
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA