1
|
Xiao L, Zhou Y, Friis T, Beagley K, Xiao Y. S1P-S1PR1 Signaling: the "Sphinx" in Osteoimmunology. Front Immunol 2019; 10:1409. [PMID: 31293578 PMCID: PMC6603153 DOI: 10.3389/fimmu.2019.01409] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/04/2019] [Indexed: 12/24/2022] Open
Abstract
The fundamental interaction between the immune and skeletal systems, termed as osteoimmunology, has been demonstrated to play indispensable roles in the maintenance of balance between bone resorption and formation. The pleiotropic sphingolipid metabolite, sphingosine 1-phosphate (S1P), together with its cognate receptor, sphingosine-1-phosphate receptor-1 (S1PR1), are known as key players in osteoimmunology due to the regulation on both immune system and bone remodeling. The role of S1P-S1PR1 signaling in bone remodeling can be directly targeting both osteoclastogenesis and osteogenesis. Meanwhile, inflammatory cell function and polarization in both adaptive immune (T cell subsets) and innate immune cells (macrophages) are also regulated by this signaling axis, suggesting that S1P-S1PR1 signaling could aslo indirectly regulate bone remodeling via modulating the immune system. Therefore, it could be likely that S1P-S1PR1 signaling might take part in the maintenance of continuous bone turnover under physiological conditions, while lead to the pathogenesis of bone deformities during inflammation. In this review, we summarized the immunological regulation of S1P-S1PR1 signal axis during bone remodeling with an emphasis on how osteo-immune regulators are affected by inflammation, an issue with relevance to chronical bone disorders such as rheumatoid arthritis, spondyloarthritis and periodontitis.
Collapse
Affiliation(s)
- Lan Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.,The Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, QLD, Australia
| | - Yinghong Zhou
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.,The Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, QLD, Australia.,Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Thor Friis
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Kenneth Beagley
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.,The Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, QLD, Australia
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.,The Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, QLD, Australia.,Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
2
|
Xiao L, Zhou Y, Zhu L, Yang S, Huang R, Shi W, Peng B, Xiao Y. SPHK1-S1PR1-RANKL Axis Regulates the Interactions Between Macrophages and BMSCs in Inflammatory Bone Loss. J Bone Miner Res 2018; 33:1090-1104. [PMID: 29377379 DOI: 10.1002/jbmr.3396] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 01/04/2018] [Accepted: 01/13/2018] [Indexed: 01/29/2023]
Abstract
Accumulating evidence indicates that the immune and skeletal systems interact with each other through various regulators during the osteoclastogenic process. Among these regulators, the bioactive lipid sphingosine-1-phosphate (S1P), which is synthesized by sphingosine kinase 1/2 (SPHK1/2), has recently been recognized to play a role in immunity and bone remodeling through its receptor sphingosine-1-phosphate receptor 1 (S1PR1). However, little is known regarding the potential role of S1PR1 signaling in inflammatory bone loss. We observed that SPHK1 and S1PR1 were upregulated in human apical periodontitis, accompanied by macrophage infiltration and enhanced expression of receptor activator of NF-κB ligand (RANKL, an indispensable factor in osteoclastogenesis and bone resorption) and increased numbers of S1PR1-RANKL double-positive cells in lesion tissues. Using an in vitro co-culture model of macrophages and bone marrow stromal cells (BMSCs), it was revealed that in the presence of lipopolysaccharide (LPS) stimulation, macrophages could significantly induce SPHK1 activity, which resulted in activated S1PR1 in BMSCs. The activated S1P-S1PR1 signaling was responsible for the increased RANKL production in BMSCs, as S1PR1-blockage abolished this effect. Applying a potent S1P-S1PR1 signaling modulator, Fingolimod (FTY720), in a Wistar rat apical periodontitis model effectively prevented bone lesions in vivo via downregulation of RANKL production, osteoclastogenesis, and bone resorption. Our data unveiled the regulatory role of SPHK1-S1PR1-RANKL axis in inflammatory bone lesions and proposed a potential therapeutic intervention by targeting this cell-signaling pathway to prevent bone loss. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Lan Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove Campus, Brisbane, Australia.,The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Kelvin Grove Campus, Brisbane, Australia.,The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yinghong Zhou
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove Campus, Brisbane, Australia.,The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Kelvin Grove Campus, Brisbane, Australia
| | - Lingxin Zhu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shasha Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Rong Huang
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove Campus, Brisbane, Australia
| | - Wei Shi
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove Campus, Brisbane, Australia
| | - Bin Peng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove Campus, Brisbane, Australia.,The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology, Kelvin Grove Campus, Brisbane, Australia.,The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Hypertrophy of infected Peyer's patches arises from global, interferon-receptor, and CD69-independent shutdown of lymphocyte egress. Mucosal Immunol 2014; 7:892-904. [PMID: 24345804 PMCID: PMC4060605 DOI: 10.1038/mi.2013.105] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 10/23/2013] [Accepted: 11/01/2013] [Indexed: 02/04/2023]
Abstract
Lymphoid organ hypertrophy is a hallmark of localized infection. During the inflammatory response, massive changes in lymphocyte recirculation and turnover boost lymphoid organ cellularity. Intriguingly, the exact nature of these changes remains undefined to date. Here, we report that hypertrophy of Salmonella-infected Peyer's patches (PPs) ensues from a global "shutdown" of lymphocyte egress, which traps recirculating lymphocytes in PPs. Surprisingly, infection-induced lymphocyte sequestration did not require previously proposed mediators of lymphoid organ shutdown including type I interferon receptor and CD69. In contrast, following T-cell receptor-mediated priming, CD69 was essential to selectively block CD4(+) effector T-cell egress. Our findings segregate two distinct lymphocyte sequestration mechanisms, which differentially rely on intrinsic modulation of lymphocyte egress capacity and inflammation-induced changes in the lymphoid organ environment.
Collapse
|
4
|
Sphingosine-1-phosphate differently regulates the cytokine production of IL-12, IL-23 and IL-27 in activated murine bone marrow derived dendritic cells. Mol Immunol 2014; 59:10-8. [DOI: 10.1016/j.molimm.2013.11.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 11/19/2013] [Accepted: 11/23/2013] [Indexed: 01/05/2023]
|
5
|
Barth BM, Shanmugavelandy SS, Kaiser JM, McGovern C, Altınoğlu Eİ, Haakenson JK, Hengst JA, Gilius EL, Knupp SA, Fox TE, Smith JP, Ritty TM, Adair JH, Kester M. PhotoImmunoNanoTherapy reveals an anticancer role for sphingosine kinase 2 and dihydrosphingosine-1-phosphate. ACS NANO 2013; 7:2132-2144. [PMID: 23373542 PMCID: PMC3757127 DOI: 10.1021/nn304862b] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Tumor-associated inflammation mediates the development of a systemic immunosuppressive milieu that is a major obstacle to effective treatment of cancer. Inflammation has been shown to promote the systemic expansion of immature myeloid cells which have been shown to exert immunosuppressive activity in laboratory models of cancer as well as cancer patients. Consequentially, significant effort is underway toward the development of therapies that decrease tumor-associated inflammation and immunosuppressive cells. The current study demonstrated that a previously described deep tissue imaging modality, which utilized indocyanine green-loaded calcium phosphosilicate nanoparticles (ICG-CPSNPs), could be utilized as an immunoregulatory agent. The theranostic application of ICG-CPSNPs as photosensitizers for photodynamic therapy was shown to block tumor growth in murine models of breast cancer, pancreatic cancer, and metastatic osteosarcoma by decreasing inflammation-expanded immature myeloid cells. Therefore, this therapeutic modality was termed PhotoImmunoNanoTherapy. As phosphorylated sphingolipid metabolites have been shown to have immunomodulatory roles, it was hypothesized that the reduction of immature myeloid cells by PhotoImmunoNanoTherapy was dependent upon bioactive sphingolipids. Mechanistically, PhotoImmunoNanoTherapy induced a sphingosine kinase 2-dependent increase in sphingosine-1-phosphate and dihydrosphingosine-1-phosphate. Furthermore, dihydrosphingosine-1-phosphate was shown to selectively abrogate myeloid lineage cells while concomitantly allowing the expansion of lymphocytes that exerted an antitumor effect. Collectively, these findings revealed that PhotoImmunoNanoTherapy, utilizing the novel nontoxic theranostic agent ICG-CPSNP, can decrease tumor-associated inflammation and immature myeloid cells in a sphingosine kinase 2-dependent manner. These findings further defined a novel myeloid regulatory role for dihydrosphingosine-1-phosphate. PhotoImmunoNanoTherapy holds the potential to be a revolutionary treatment for cancers with inflammatory and immunosuppressive phenotypes.
Collapse
Affiliation(s)
- Brian M Barth
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Sphingosine-kinase 1 and 2 contribute to oral sensitization and effector phase in a mouse model of food allergy. Immunol Lett 2011; 141:210-9. [PMID: 22020265 DOI: 10.1016/j.imlet.2011.10.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 10/05/2011] [Accepted: 10/09/2011] [Indexed: 11/23/2022]
Abstract
BACKGROUND Sphingosine-1-phosphate (S1P) influences activation, migration and death of immune cells. Further, S1P was proposed to play a major role in the induction and promotion of allergic diseases. However, to date only limited information is available on the role of S1P in food allergy. OBJECTIVE We aimed to investigate the role of sphingosine-kinase (SphK) 1 and 2, the enzymes responsible for endogenous S1P production, on the induction of food allergy. METHODS AND RESULTS Human epithelial colorectal CaCo2 cells stimulated in vitro with S1P revealed a decrease of transepithelial resistance and enhanced transport of FITC labeled OVA. We studied the effect of genetic deletion of the enzymes involved in S1P production on food allergy induction using a mouse model of food allergy based on intragastrically (i.g.) administered ovalbumin (OVA) with concomitant acid-suppression. Wild-type (WT), SphK1(-/-) and SphK2(-/-) mice immunized with OVA alone i.g. or intraperitoneally (i.p.) were used as negative or positive controls, respectively. SphK1- and SphK2-deficient mice fed with OVA under acid-suppression showed reduced induction of OVA specific IgE and IgG compared to WT mice, but had normal responses when immunized by the intraperitoneal route. Flow cytometric analysis of spleen cells revealed a significantly reduced proportion of CD4(+) effector T-cells in both SphK deficient animals after oral sensitization. This was accompanied by a reduced accumulation of mast cells in the gastric mucosa in SphK-deficient animals compared to WT mice. Furthermore, mouse mast cell protease-1 (mMCP-1) levels, an IgE-mediated anaphylaxis marker, were reliably elevated in allergic WT animals. CONCLUSION Modulation of the S1P homeostasis by deletion of either SphK1 or SphK2 alters the sensitization and effector phase of food allergy.
Collapse
|
7
|
Aarthi JJ, Darendeliler MA, Pushparaj PN. Dissecting the role of the S1P/S1PR axis in health and disease. J Dent Res 2011; 90:841-54. [PMID: 21248363 DOI: 10.1177/0022034510389178] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) is a pleiotropic sphingophospholipid generated from the phosphorylation of sphingosine by sphingosine kinases (SPHKs). S1P has been experimentally demonstrated to modulate an array of cellular processes such as cell proliferation, cell survival, cell invasion, vascular maturation, and angiogenesis by binding with any of the five known G-protein-coupled sphingosine 1 phosphate receptors (S1P1-5) on the cell surface in an autocrine as well as a paracrine manner. Recent studies have shown that the S1P receptors (S1PRs) and SPHKs are the key targets for modulating the pathophysiological consequences of various debilitating diseases, such as cancer, sepsis, rheumatoid arthritis, ulcerative colitis, and other related illnesses. In this article, we recapitulate these novel discoveries relative to the S1P/S1PR axis, necessary for the proper maintenance of health, as well as the induction of tumorigenic, angiogenic, and inflammatory stimuli that are vital for the development of various diseases, and the novel therapeutic tools to modulate these responses in oral biology and medicine.
Collapse
Affiliation(s)
- J J Aarthi
- Department of Orthodontics, Faculty of Dentistry, The University of Sydney, Sydney, New South Wales, NSW 2010, Australia
| | | | | |
Collapse
|
8
|
Kim RH, Takabe K, Milstien S, Spiegel S. Export and functions of sphingosine-1-phosphate. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:692-6. [PMID: 19268560 DOI: 10.1016/j.bbalip.2009.02.011] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Revised: 02/20/2009] [Accepted: 02/20/2009] [Indexed: 02/07/2023]
Abstract
The sphingolipid metabolite, sphingosine-1-phosphate (S1P), has emerged as a critical player in a number of fundamental biological processes and is important in cancer, angiogenesis, wound healing, cardiovascular function, atherosclerosis, immunity and asthma, among others. Activation of sphingosine kinases, enzymes that catalyze the phosphorylation of sphingosine to S1P, by a variety of agonists, including growth factors, cytokines, hormones, and antigen, increases intracellular S1P. Many of the biological effects of S1P are mediated by its binding to five specific G protein-coupled receptors located on the cell surface in an autocrine and/or paracrine manner. Therefore, understanding the mechanism by which intracellularly generated S1P is released out of cells is both interesting and important. In this review, we will discuss how S1P is formed and released. We will focus particularly on the current knowledge of how the S1P gradient between tissues and blood is maintained, and the role of ABC transporters in S1P release.
Collapse
Affiliation(s)
- Roger H Kim
- Division of Surgical Oncology, Department of Surgery and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, USA
| | | | | | | |
Collapse
|
9
|
Cho H, Kehrl JH. Chapter 9 Regulation of Immune Function by G Protein‐Coupled Receptors, Trimeric G Proteins, and RGS Proteins. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 86:249-98. [DOI: 10.1016/s1877-1173(09)86009-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|