1
|
Uryga A, Czosnyka M, Robba C, Nasr N, Kasprowicz M. The time constant of the cerebral arterial bed: exploring age-related implications. J Clin Monit Comput 2024; 38:1227-1236. [PMID: 38573368 DOI: 10.1007/s10877-024-01142-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/17/2024] [Indexed: 04/05/2024]
Abstract
The time constant of the cerebral arterial bed (τ) represents an estimation of the transit time of flow from the point of insonation at the level of the middle cerebral artery to the arteriolar-capillary boundary, during a cardiac cycle. This study assessed differences in τ among healthy volunteers across different age groups. Simultaneous recordings of transcranial Doppler cerebral blood flow velocity (CBFV) and arterial blood pressure (ABP) were performed on two groups: young volunteers (below 30 years of age), and older volunteers (above 40 years of age). τ was estimated using mathematical transformation of ABP and CBFV pulse waveforms. 77 healthy volunteers [52 in the young group, and 25 in the old group] were included. Pulse amplitude of ABP was higher [16.7 (14.6-19.4) mmHg] in older volunteers as compared to younger ones [12.5 (10.9-14.4) mm Hg; p < 0.001]. CBFV was lower in older volunteers [59 (50-66) cm/s] as compared to younger ones [72 (63-78) cm/s p < 0.001]. τ was longer in the younger volunteers [217 (168-237) ms] as compared to the older volunteers [183 (149-211) ms; p = 0.004]. τ significantly decreased with age (rS = - 0.27; p = 0.018). τ is potentially an integrative marker of the changes occurring in cerebral vasculature, as it encompasses the interplay between changes in compliance and resistance that occur with age.
Collapse
Affiliation(s)
- Agnieszka Uryga
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland.
| | - Marek Czosnyka
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Chiara Robba
- IRCCS Policlinico San Martino, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV 16, Genoa, Italy
| | - Nathalie Nasr
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
- IRCCS Policlinico San Martino, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV 16, Genoa, Italy
- Department of Neurology, Poitiers University Hospital, Poitiers, Laboratoire de Neurosciences Expérimentales et Cliniques, University of Poitiers, U1084, Poitiers, France
| | - Magdalena Kasprowicz
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370, Wroclaw, Poland
| |
Collapse
|
2
|
Kasprowicz M, Hendler M, Ziółkowski A, Nasr N, Czosnyka M. Analysis of phase shift between pulse oscillations of macro- and microvascular cerebral blood flow in patients with traumatic brain injury. Acta Neurochir (Wien) 2024; 166:321. [PMID: 39093519 PMCID: PMC11297107 DOI: 10.1007/s00701-024-06209-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
PURPOSE After a traumatic brain injury (TBI), monitoring of both macrovascular and microvascular blood circulation can potentially yield a better understanding of pathophysiology of potential secondary brain lesions. We investigated the changes in phase shift (PS) between cardiac-induced oscillations of cerebral blood flow (CBF) measured at macro (ultrasound Doppler) and microvascular (laser Doppler) level. Further we assessed the impact of intracranial pressure (ICP) on PS in TBI patients. A secondary aim was to compare PS to TCD-derived cerebral arterial time constant (τ), a parameter that reflects the circulatory transit time. METHODS TCD blood flow velocities (FV) in the middle cerebral artery, laser Doppler blood microcirculation flux (LDF), arterial blood pressure (ABP), and ICP were monitored in 29 consecutive patients with TBI. Eight patients were excluded because of poor-quality signals. For the remaining 21 patients (median age = 23 (Q1: 20-Q3: 33); men:16,) data were retrospectively analysed. PS between the fundamental harmonics of FV and LDF signals was determined using spectral analysis. τ was estimated as a product of cerebrovascular resistance and compliance, based on the mathematical transformation of FV and ABP, ICP pulse waveforms. RESULTS PS was negative (median: -26 (Q1: -38-Q3: -15) degrees) indicating that pulse LDF at a heart rate frequency lagged behind TCD pulse. With rising mean ICP, PS became more negative (R = -0.51, p < 0.019) indicating that delay of LDF pulse increases. There was a significant correlation between PS and cerebrovascular time constant (R = -0.47, p = 0.03). CONCLUSIONS Pulse divergence between FV and LDF became greater with elevated ICP, likely reflecting prolonged circulatory travel time.
Collapse
Affiliation(s)
- Magdalena Kasprowicz
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wroclaw, Poland.
| | - Marta Hendler
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Arkadiusz Ziółkowski
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Nathalie Nasr
- Department of Neurology, Poitiers University Hospital, Poitiers, France
- Laboratoire de Neurosciences Expérimentales Et Cliniques, INSERM U-1084, University of Poitiers, Poitiers, France
| | - Marek Czosnyka
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
- Institute of Electronic Systems, Faculty of Electronics and Information Technology, Warsaw University of Technology, Warsaw, Poland
| |
Collapse
|
3
|
Uryga A, Kasprowicz M, Budohoski K, Nasr N, Czosnyka M. Predictive value of cerebrovascular time constant for delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. J Cereb Blood Flow Metab 2024; 44:1208-1217. [PMID: 38295872 PMCID: PMC11179618 DOI: 10.1177/0271678x241228512] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/06/2023] [Accepted: 01/02/2024] [Indexed: 06/13/2024]
Abstract
Time constant of the cerebral arterial bed (τ) is a transcranial Doppler (TCD) based metric that is expected to quantify the transit time of red blood cells from the insonation point to the arteriole-capillary boundary during a cardiac cycle. This study aims to assess the potential of τ as an early predictor of delayed cerebral ischemia (DCI). Consecutive patients (56 ± 15 years) treated for aneurysmal subarachnoid haemorrhage were included in the study. τ was assessed through a modelling approach that involved simultaneous recordings of arterial blood pressure and cerebral blood flow velocity (CBFV) from TCD's first recordings. 71 patients were included. 17 patients experienced DCI. τ was significantly shorter in patients who later developed DCI: 187 ± 64 ms vs. 249 ± 184 ms; p = 0.040 with moderate effect size (rG = 0.24). Logistic regression showed that there was a significant association between increased CBFV, shortened τ, and the development of DCI (χ2 = 11.54; p = 0.003) with AUC for the model 0.75. Patients who had both shortened τ and increased CBFV were 20 times more likely to develop DCI (OR = 20.4 (2.2-187.7)). Our results suggest that early alterations in τ are associated with DCI after aSAH. The highest performance of the model including both CBFV and τ may suggest the importance of both macrovascular and microvascular changes assessment.
Collapse
Affiliation(s)
- Agnieszka Uryga
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Magdalena Kasprowicz
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Karol Budohoski
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, Utah, USA
- Department of Neurosurgery, University of Utah, Salt Lake City, Utah, USA
| | - Nathalie Nasr
- Department of Neurology, Poitiers University Hospital, Laboratoire de Neurosciences Expérimentales et Cliniques, University of Poitiers, Poitiers, France
| | - Marek Czosnyka
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke’s Hospital, University of Cambridge, Cambridge, UK
| |
Collapse
|
4
|
Papaioannou VE, Budohoski KP, Placek MM, Czosnyka Z, Smielewski P, Czosnyka M. Association of transcranial Doppler blood flow velocity slow waves with delayed cerebral ischemia in patients suffering from subarachnoid hemorrhage: a retrospective study. Intensive Care Med Exp 2021; 9:11. [PMID: 33768351 PMCID: PMC7994457 DOI: 10.1186/s40635-021-00378-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/17/2021] [Indexed: 11/25/2022] Open
Abstract
Background Cerebral vasospasm (VS) and delayed cerebral ischemia (DCI) constitute major complications following subarachnoid hemorrhage (SAH). A few studies have examined the relationship between different indices of cerebrovascular dynamics with the occurrence of VS. However, their potential association with the development of DCI remains elusive. In this study, we investigated the pattern of changes of different transcranial Doppler (TCD)-derived indices of cerebrovascular dynamics during vasospasm in patients suffering from subarachnoid hemorrhage, dichotomized by the presence of delayed cerebral ischemia. Methods A retrospective analysis was performed using recordings from 32 SAH patients, diagnosed with VS. Patients were divided in two groups, depending on development of DCI. Magnitude of slow waves (SWs) of cerebral blood flow velocity (CBFV) was measured. Cerebral autoregulation was estimated using the moving correlation coefficient Mxa. Cerebral arterial time constant (tau) was expressed as the product of resistance and compliance. Complexity of CBFV was estimated through measurement of sample entropy (SampEn). Results In the whole population (N = 32), magnitude of SWs of ipsilateral to VS side CBFV was higher during vasospasm (4.15 ± 1.55 vs before: 2.86 ± 1.21 cm/s, p < 0.001). Ipsilateral SWs of CBFV before VS had higher magnitude in DCI group (N = 19, p < 0.001) and were strongly predictive of DCI, with area under the curve (AUC) = 0.745 (p = 0.02). Vasospasm caused a non-significant shortening of ipsilateral values of tau and increase in SampEn in all patients related to pre-VS measurements, as well as an insignificant increase of Mxa in DCI related to non-DCI group (N = 13). Conclusions In patients suffering from subarachnoid hemorrhage, TCD-detected VS was associated with higher ipsilateral CBFV SWs, related to pre-VS measurements. Higher CBFV SWs before VS were significantly predictive of delayed cerebral ischemia.
Collapse
Affiliation(s)
- Vasilios E Papaioannou
- Department of Intensive Care Medicine, Alexandroupolis Hospital, Democritus University of Thrace, 68100, Alexandoupolis, Greece. .,Academic Neurosurgery Unit, Brain Physics Lab, Addenbrooke's Hospital, Box 167, Cambridge, CB20QQ, UK.
| | - Karol P Budohoski
- Academic Neurosurgery Unit, Brain Physics Lab, Addenbrooke's Hospital, Box 167, Cambridge, CB20QQ, UK.,Department of Neurosurgery, Cambridge University Hospitals, Cambridge, CB20QQ, UK
| | - Michal M Placek
- Academic Neurosurgery Unit, Brain Physics Lab, Addenbrooke's Hospital, Box 167, Cambridge, CB20QQ, UK.,Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, 50-370, Wrocław, Poland
| | - Zofia Czosnyka
- Academic Neurosurgery Unit, Brain Physics Lab, Addenbrooke's Hospital, Box 167, Cambridge, CB20QQ, UK
| | - Peter Smielewski
- Academic Neurosurgery Unit, Brain Physics Lab, Addenbrooke's Hospital, Box 167, Cambridge, CB20QQ, UK
| | - Marek Czosnyka
- Academic Neurosurgery Unit, Brain Physics Lab, Addenbrooke's Hospital, Box 167, Cambridge, CB20QQ, UK
| |
Collapse
|
5
|
Heckelmann M, Shivapathasundram G, Cardim D, Smielewski P, Czosnyka M, Gaio R, Sheridan MMP, Jaeger M. Transcranial Doppler-derived indices of cerebrovascular haemodynamics are independent of depth and angle of insonation. J Clin Neurosci 2020; 82:115-121. [PMID: 33317718 DOI: 10.1016/j.jocn.2020.10.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/23/2020] [Accepted: 10/18/2020] [Indexed: 11/27/2022]
Abstract
Continuous measurement of cerebral blood flow velocity (CBFV) of the middle cerebral artery (MCA) using transcranial Doppler (TCD) and arterial blood pressure (ABP) monitoring enables assessment of cerebrovascular haemodynamics. Further indices describing cerebrovascular function can be calculated from ABP and CBFV, such as the mean index (Mxa) of cerebrovascular autoregulation, the 'time constant of the cerebral arterial bed' (tau), the 'critical closing pressure' (CrCP) and a 'non-invasive estimator of ICP' (nICP). However, TCD is operator-dependent and changes in angle and depth of MCA insonation result in different readings of CBFV. The effect of differing CBFV readings on the calculated secondary indices remains unknown. The aim of this study was to investigate variation in angle and depth of MCA insonation on these secondary indices. In eight patients continuous ABP and ipsilateral CBFV monitoring was performed using two different TCD probes, resulting in four simultaneous CBFV readings at different angles and depths per patient. From all individual recordings, the K-means clustering algorithm was applied to the four simultaneous longitudinal measurements. The average ratios of the between-clusters, sum-of-squares and total sum-of-squares were significantly higher for CBFV than for the indices Mxa, tau and CrCP (p < 0.001, p = 0.007 and p = 0.016) but not for nICP (p = 0.175). The results indicate that Mxa, tau and CrCP seemed to be not affected by depth and angle of TCD insonation, whereas nICP was.
Collapse
Affiliation(s)
- Michael Heckelmann
- Department of Neurosurgery, Liverpool Hospital, Liverpool, NSW, Australia.
| | | | - Danilo Cardim
- Department of Clinical Neurosciences, Neurosurgical Unit, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Peter Smielewski
- Department of Clinical Neurosciences, Neurosurgical Unit, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Marek Czosnyka
- Department of Clinical Neurosciences, Neurosurgical Unit, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Rita Gaio
- Department of Mathematics, Faculty of Sciences, University of Porto and Centre of Mathematics of the University of Porto, Porto, Portugal
| | - Mark M P Sheridan
- Department of Neurosurgery, Liverpool Hospital, Liverpool, NSW, Australia; University of New South Wales, South Western Sydney Clinical School, Liverpool, NSW, Australia
| | - Matthias Jaeger
- University of New South Wales, South Western Sydney Clinical School, Liverpool, NSW, Australia; Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; Department of Neurosurgery, Wollongong Hospital, Wollongong, NSW, Australia
| |
Collapse
|
6
|
Uryga A, Kaczmarska K, Burzyńska M, Czosnyka M, Kasprowicz M. A comparison of the time constant of the cerebral arterial bed using invasive and non-invasive arterial blood pressure measurements. Physiol Meas 2020; 41:075001. [PMID: 32526728 DOI: 10.1088/1361-6579/ab9bb6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE The time constant of the cerebral arterial bed (τ), which is an index of brain haemodynamics, can be estimated in patients using continuous monitoring of arterial blood pressure (ABP), transcranial Doppler cerebral blood flow velocity (CBFV) and intracranial pressure (ICP) if these measures are available. But, in some clinical scenarios invasive measurement of ABP is not feasible. Therefore, in this study we aimed to investigate whether invasive ABP can be replaced with non-invasive ABP, monitored using the Finapres photoplethysmograph (fABP). APPROACH Forty-six recordings of ICP, ABP, fABP, and CBFV in the right and left middle cerebral arteries were performed daily for approximately 30 min in 10 head injury patients. Two modelling approaches (constant flow forward [CFF, pulsatile blood inflow and steady blood outflow] and pulsatile flow forward [PFF, where both blood inflow and outflow are pulsatile]) were applied to estimate τ using either invasive ABP (τCFF, τPFF) or non-invasive ABP (fτCFF, fτPFF). MAIN RESULTS Bland-Altman analysis showed quite poor agreement between the fτ and τ methods of estimation. The fτ method produced significantly higher values than the τ method when calculated using both the CFF and PFF models (p < .001 for both). The correlation between fτCFF and τCFF was moderately high (r s = 0.63; p < .001), whereas that between fτPFF and τPFF was weaker (r s = 0.40; p = .009). SIGNIFICANCE Our results suggest that using non-invasive ABP for estimation of τ is inaccurate in head injury patients.
Collapse
Affiliation(s)
- Agnieszka Uryga
- Department of Biomedical Engineering, Wroclaw University of Science and Technology, Wroclaw, Poland
| | | | | | | | | |
Collapse
|
7
|
Sahinovic MM, Vos JJ, Scheeren TWL. Journal of Clinical Monitoring and Computing 2019 end of year summary: monitoring tissue oxygenation and perfusion and its autoregulation. J Clin Monit Comput 2020; 34:389-395. [PMID: 32277310 PMCID: PMC7205776 DOI: 10.1007/s10877-020-00504-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 12/30/2022]
Abstract
Tissue perfusion monitoring is increasingly being employed clinically in a non-invasive fashion. In this end-of-year summary of the Journal of Clinical Monitoring and Computing, we take a closer look at the papers published recently on this subject in the journal. Most of these papers focus on monitoring cerebral perfusion (and associated hemodynamics), using either transcranial doppler measurements or near-infrared spectroscopy. Given the importance of cerebral autoregulation in the analyses performed in most of the studies discussed here, this end-of-year summary also includes a short description of cerebral hemodynamic physiology and its autoregulation. Finally, we review articles on somatic tissue oxygenation and its possible association with outcome.
Collapse
Affiliation(s)
- M M Sahinovic
- Department of Anesthesiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO Box 30001, 9700RB, Groningen, Netherlands
| | - J J Vos
- Department of Anesthesiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO Box 30001, 9700RB, Groningen, Netherlands
| | - T W L Scheeren
- Department of Anesthesiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO Box 30001, 9700RB, Groningen, Netherlands.
| |
Collapse
|
8
|
Estimation of pulsatile cerebral arterial blood volume based on transcranial doppler signals. Med Eng Phys 2019; 74:23-32. [DOI: 10.1016/j.medengphy.2019.07.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 06/30/2019] [Accepted: 07/28/2019] [Indexed: 11/20/2022]
|
9
|
Puppo C, Kasprowicz M, Steiner LA, Yelicich B, Lalou DA, Smielewski P, Czosnyka M. Hypocapnia after traumatic brain injury: how does it affect the time constant of the cerebral circulation? J Clin Monit Comput 2019; 34:461-468. [PMID: 31175502 PMCID: PMC7223592 DOI: 10.1007/s10877-019-00331-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 05/30/2019] [Indexed: 11/09/2022]
Abstract
The time constant of the cerebral arterial bed (“tau”) estimates how fast the blood entering the brain fills the arterial vascular sector. Analogous to an electrical resistor–capacitor circuit, it is expressed as the product of arterial compliance (Ca) and cerebrovascular resistance (CVR). Hypocapnia increases the time constant in healthy volunteers and decreases arterial compliance in head trauma. How the combination of hyocapnia and trauma affects this parameter has yet to be studied. We hypothesized that in TBI patients the intense vasoconstrictive action of hypocapnia would dominate over the decrease in compliance seen after hyperventilation. The predominant vasoconstrictive response would maintain an incoming blood volume in the arterial circulation, thereby lengthening tau. We retrospectively analyzed recordings of intracranial pressure (ICP), arterial blood pressure (ABP), and blood flow velocity (FV) obtained from a cohort of 27 severe TBI patients [(39/30 years (median/IQR), 5 women; admission GCS 6/5 (median/IQR)] studied during a standard clinical CO2 reactivity test. The reactivity test was performed by means of a 50-min increase in ventilation (20% increase in respiratory minute volume). CVR and Ca were estimated from these recordings, and their product calculated to find the time constant. CVR significantly increased [median CVR pre-hypocapnia/during hypocapnia: 1.05/1.35 mmHg/(cm3/s)]. Ca decreased (median Ca pre-hypocapnia/during hypocapnia: 0.130/0.124 arbitrary units) to statistical significance (p = 0.005). The product of these two parameters resulted in a significant prolongation of the time constant (median tau pre-hypocapnia/during hypocapnia: 0.136 s/0.152 s, p ˂ .001). Overall, the increase in CVR dominated over the decrease in compliance, hence tau was longer. We demonstrate a significant increase in the time constant of the cerebral circulation during hypocapnia after severe TBI, and attribute this to an increase in cerebrovascular resistance which outweighs the decrease in cerebral arterial bed compliance.
Collapse
Affiliation(s)
- Corina Puppo
- Intensive Care Unit, Hospital de Clinicas, Universidad de la Republica, Av. Italia s/n, 11600, Montevideo, Uruguay.
| | - Magdalena Kasprowicz
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, wybrzeże Stanisława Wyspiańskiego 27, 50-370, Wroclaw, Poland
| | - Luzius A Steiner
- Surgical Intensive Care, Prehospital Emergency Medicine and Pain Therapy, University Hospital Basel, University of Basel, Spitalstrasse 21, 4031, Basel, Switzerland
| | - Bernardo Yelicich
- Intensive Care Unit, Hospital de Clinicas, Universidad de la Republica, Av. Italia s/n, 11600, Montevideo, Uruguay
| | - Despina Afrodite Lalou
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Hills Rd, Cambridge, CB2 0QQ, UK
| | - Peter Smielewski
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Hills Rd, Cambridge, CB2 0QQ, UK
| | - Marek Czosnyka
- Division of Academic Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Hills Rd, Cambridge, CB2 0QQ, UK
| |
Collapse
|
10
|
Uryga A, Kasprowicz M, Burzyńska M, Calviello L, Kaczmarska K, Czosnyka M. Cerebral arterial time constant calculated from the middle and posterior cerebral arteries in healthy subjects. J Clin Monit Comput 2018; 33:605-613. [PMID: 30291539 DOI: 10.1007/s10877-018-0207-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/01/2018] [Indexed: 10/28/2022]
Abstract
The cerebral arterial blood volume changes (∆CaBV) during a single cardiac cycle can be estimated using transcranial Doppler ultrasonography (TCD) by assuming pulsatile blood inflow, constant, and pulsatile flow forward from large cerebral arteries to resistive arterioles [continuous flow forward (CFF) and pulsatile flow forward (PFF)]. In this way, two alternative methods of cerebral arterial compliance (Ca) estimation are possible. Recently, we proposed a TCD-derived index, named the time constant of the cerebral arterial bed (τ), which is a product of Ca and cerebrovascular resistance and is independent of the diameter of the insonated vessel. In this study, we aim to examine whether the τ estimated by either the CFF or the PFF model differs when calculated from the middle cerebral artery (MCA) and the posterior cerebral artery (PCA). The arterial blood pressure and TCD cerebral blood flow velocity (CBFVa) in the MCA and in the PCA were non-invasively measured in 32 young, healthy volunteers (median age: 24, minimum age: 18, maximum age: 31). The τ was calculated using both the PFF and CFF models from the MCA and the PCA and compared using a non-parametric Wilcoxon signed-rank test. Results are presented as medians (25th-75th percentiles). The cerebrovascular time constant estimated in both arteries using the PFF model was shorter than when using the CFF model (ms): [64.83 (41.22-104.93) vs. 178.60 (160.40-216.70), p < 0.001 in the MCA, and 44.04 (17.15-81.17) vs. 183.50 (153.65-204.10), p < 0.001 in the PCA, respectively]. The τ obtained using the PFF model was significantly longer from the MCA than from the PCA, p = 0.004. No difference was found in the τ when calculated using the CFF model. Longer τ from the MCA might be related to the higher Ca of the MCA than that of the PCA. Our results demonstrate MCA-PCA differences in the τ, but only when the PFF model was applied.
Collapse
Affiliation(s)
- Agnieszka Uryga
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370, Wrocław, Poland.
| | - Magdalena Kasprowicz
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370, Wrocław, Poland
| | - Małgorzata Burzyńska
- Department of Anesthesiology and Intensive Care, Wroclaw Medical University, Wrocław, Poland
| | - Leanne Calviello
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Katarzyna Kaczmarska
- Department of Neurosurgery, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland.,Institute of Electronic Systems, Faculty of Electronics and Information Technology, Warsaw University of Technology, Warsaw, Poland
| | - Marek Czosnyka
- Brain Physics Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Institute of Electronic Systems, Faculty of Electronics and Information Technology, Warsaw University of Technology, Warsaw, Poland
| |
Collapse
|
11
|
Uryga A, Kasprowicz M, Calviello L, Diehl RR, Kaczmarska K, Czosnyka M. Assessment of cerebral hemodynamic parameters using pulsatile versus non-pulsatile cerebral blood outflow models. J Clin Monit Comput 2018; 33:85-94. [DOI: 10.1007/s10877-018-0136-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/29/2018] [Indexed: 11/28/2022]
|
12
|
Abstract
PURPOSE OF REVIEW With recent research trying to explore the pathophysiologic mechanisms behind vasospasm, newer pharmacological and nonpharmacological treatments are being targeted at various pathways involved. This review is aimed at understanding the mechanisms and current and future therapies available to treat vasospasm. RECENT FINDINGS Computed tomography perfusion is a useful alternative tool to digital subtraction angiography to diagnose vasospasm. Various biomarkers have been tried to predict the onset of vasospasm but none seems to be helpful. Transcranial Doppler still remains a useful tool at the bedside to screen and follow up patients with vasospasm. Hypertension rather than hypervolemia and hemodilution in 'Triple-H' therapy has been found to be helpful in reversing the vasospasm. Hyperdynamic therapy in addition to hypertension has shown promising effects. Endovascular approaches with balloon angioplasty and intra-arterial nimodipine, nicardipine, and milrinone have shown consistent benefits. Endothelin receptor antagonists though relieved vasospasm, did not show any benefit on functional outcome. SUMMARY Endovascular therapy has shown consistent benefit in relieving vasospasm. An aggressive combination therapy through various routes seems to be the most useful approach to reduce the complications of vasospasm.
Collapse
|
13
|
Ghantous CM, Azrak Z, Rahman FA, Itani HA, Zeidan A. Assessment of Basilar Artery Reactivity in Stroke and Subarachnoid Hemorrhage Using Wire Myograph. Methods Mol Biol 2018; 1462:625-43. [PMID: 27604742 DOI: 10.1007/978-1-4939-3816-2_34] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Blood flow regulation of normal cerebral arteries is a critical and important factor to supply the brain tissue with nutrients and oxygen. Stroke insult results in a disruption or reduction in cerebral arteries' blood flow with subsequent brain tissue damage. Hemorrhagic stroke is one type of stroke and accounts for about 13 % of all of stroke insults. In this type of stroke, the cerebral artery breaks open and causes bleeding in or surrounding the brain. Subsequently, this bleeding causes blood vessels to constrict in a process called vasospasm, in which the vessels narrow and impede the blood flow to brain tissue. Hemorrhagic stroke is the major cause of prolonged constriction of cerebral arteries. This leads to partial brain damage and sometimes death in patients with aneurysmal subarachnoid hemorrhage. Among the key delicate techniques to assess small blood vessel functionality is the wire myograph, which can be utilized in several cerebral injury models including stroke. The wire myograph is a device that provides information about the reactivity, stiffness, and elasticity of small blood vessels under isometric conditions. In this book chapter, we describe the techniques involved in wire myography assessment and the different measures and parameters recorded; we describe the utility of this technique in evaluating the effects of subarachnoid hemorrhage on basilar artery sensitivity to different agonists.
Collapse
Affiliation(s)
- Crystal M Ghantous
- Department of Anatomy, Cell biology and Physiology, American University of Beirut, DTS-255, 11-0236, Beirut, 1107-2020, Lebanon
| | - Zeina Azrak
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon
| | - Farah Abdel Rahman
- Department of Anatomy, Cell biology and Physiology, American University of Beirut, DTS-255, 11-0236, Beirut, 1107-2020, Lebanon
| | - Hana A Itani
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Asad Zeidan
- Department of Anatomy, Cell biology and Physiology, American University of Beirut, DTS-255, 11-0236, Beirut, 1107-2020, Lebanon.
| |
Collapse
|
14
|
Cerebral Critical Closing Pressure: Is the Multiparameter Model Better Suited to Estimate Physiology of Cerebral Hemodynamics? Neurocrit Care 2017; 25:446-454. [PMID: 27389005 DOI: 10.1007/s12028-016-0288-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Cerebral critical closing pressure (CrCP) is the level of arterial blood pressure (ABP) at which small brain vessels close and blood flow stops. This value is always greater than intracranial pressure (ICP). The difference between CrCP and ICP is explained by the tone of the small cerebral vessels (wall tension). CrCP value is used in several dynamic cerebral autoregulation models. However, the different methods for calculation of CrCP show frequent negative values. These findings are viewed as a methodological limitation. We intended to evaluate CrCP in patients with severe traumatic brain injury (TBI) with a new multiparameter impedance-based model and compare it with results found earlier using a transcranial Doppler (TCD)-ABP pulse waveform-based method. METHODS Twelve severe TBI patients hospitalized during September 2005-May 2007. Ten men, mean age 32 years (16-61). Four had decompressive craniectomies (DC); three presented anisocoria. Patients were monitored with TCD cerebral blood flow velocity (FV), invasive ABP, and ICP. Data were acquired at 50 Hz with an in-house developed data acquisition system. We compared the earlier studied "first harmonic" method (M1) results with results from a new recently developed (M2) "multiparameter method." RESULTS M1: In seven patients CrCP values were negative, reaching -150 mmHg. M2: All positive values; only one lower than ICP (ICP 60 mmHg/ CrCP 57 mmHg). There was a significant difference between M1 and M2 values (M1 < M2) and between ICP and M2 (M2 > ICP). CONCLUSION M2 results in positive values of CrCP, higher than ICP, and are physiologically interpretable.
Collapse
|
15
|
Robba C, Cardim D, Sekhon M, Budohoski K, Czosnyka M. Transcranial Doppler: a stethoscope for the brain-neurocritical care use. J Neurosci Res 2017; 96:720-730. [PMID: 28880397 DOI: 10.1002/jnr.24148] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 06/12/2017] [Accepted: 08/10/2017] [Indexed: 02/03/2023]
Abstract
Transcranial Doppler (TCD) ultrasonography is a noninvasive bedside monitoring technique that can evaluate cerebral blood flow hemodynamics in the intracranial arterial vasculature. TCD allows assessment of linear cerebral blood flow velocity, with a high temporal resolution and is inexpensive, reproducible, and portable. The aim of this review is to provide an overview of the most commonly used TCD derived signals and measurements used commonly in neurocritical care. We describe both basic (flow velocity, pulsatility index) and advanced concepts, including critical closing pressure, wall tension, autoregulation, noninvasive intracranial pressure, brain compliance, and cerebrovascular time constant; we also describe the clinical applications of TCD to highlight their utility in the diagnosis and monitoring of cerebrovascular diseases as the "stethoscope for the brain."
Collapse
Affiliation(s)
- Chiara Robba
- Neurocritical Care Unit, Addenbrooke's Hospital, Cambridge University, Box 1, Addenbrooke's Hospital, Cambridge University Hospitals Trust, Hills Road, Cambridge, CB2 0QQ.,Division of Neuroscience, University of Genoa, Genoa, Italy
| | - Danilo Cardim
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Mypinder Sekhon
- Division of Critical Care Medicine, Department of Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, British Columbia
| | - Karol Budohoski
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Marek Czosnyka
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
16
|
Baker WB, Parthasarathy AB, Gannon KP, Kavuri VC, Busch DR, Abramson K, He L, Mesquita RC, Mullen MT, Detre JA, Greenberg JH, Licht DJ, Balu R, Kofke WA, Yodh AG. Noninvasive optical monitoring of critical closing pressure and arteriole compliance in human subjects. J Cereb Blood Flow Metab 2017; 37:2691-2705. [PMID: 28541158 PMCID: PMC5536813 DOI: 10.1177/0271678x17709166] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The critical closing pressure ( CrCP) of the cerebral circulation depends on both tissue intracranial pressure and vasomotor tone. CrCP defines the arterial blood pressure ( ABP) at which cerebral blood flow approaches zero, and their difference ( ABP - CrCP) is an accurate estimate of cerebral perfusion pressure. Here we demonstrate a novel non-invasive technique for continuous monitoring of CrCP at the bedside. The methodology combines optical diffuse correlation spectroscopy (DCS) measurements of pulsatile cerebral blood flow in arterioles with concurrent ABP data during the cardiac cycle. Together, the two waveforms permit calculation of CrCP via the two-compartment Windkessel model for flow in the cerebral arterioles. Measurements of CrCP by optics (DCS) and transcranial Doppler ultrasound (TCD) were carried out in 18 healthy adults; they demonstrated good agreement (R = 0.66, slope = 1.14 ± 0.23) with means of 11.1 ± 5.0 and 13.0 ± 7.5 mmHg, respectively. Additionally, a potentially useful and rarely measured arteriole compliance parameter was derived from the phase difference between ABP and DCS arteriole blood flow waveforms. The measurements provide evidence that DCS signals originate predominantly from arteriole blood flow and are well suited for long-term continuous monitoring of CrCP and assessment of arteriole compliance in the clinic.
Collapse
Affiliation(s)
- Wesley B Baker
- 1 Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, USA
| | - Ashwin B Parthasarathy
- 2 Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, USA.,3 Department of Electrical Engineering, University of South Florida, Tampa, USA
| | - Kimberly P Gannon
- 4 Department of Neurology, University of Pennsylvania, Philadelphia, USA
| | - Venkaiah C Kavuri
- 2 Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, USA
| | - David R Busch
- 5 Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Kenneth Abramson
- 2 Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, USA
| | - Lian He
- 2 Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, USA
| | | | - Michael T Mullen
- 4 Department of Neurology, University of Pennsylvania, Philadelphia, USA
| | - John A Detre
- 4 Department of Neurology, University of Pennsylvania, Philadelphia, USA
| | - Joel H Greenberg
- 4 Department of Neurology, University of Pennsylvania, Philadelphia, USA
| | - Daniel J Licht
- 5 Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, USA
| | - Ramani Balu
- 4 Department of Neurology, University of Pennsylvania, Philadelphia, USA
| | - W Andrew Kofke
- 1 Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, USA
| | - Arjun G Yodh
- 2 Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
17
|
Rhee CJ, Fraser CD, Kibler K, Easley RB, Andropoulos DB, Czosnyka M, Varsos GV, Smielewski P, Rusin CG, Brady KM, Kaiser JR. The Ontogeny of Cerebrovascular Critical Closing Pressure. ACTA NEUROCHIRURGICA. SUPPLEMENT 2017; 122:249-53. [PMID: 27165916 DOI: 10.1007/978-3-319-22533-3_50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Premature infants are at risk of vascular neurological insults. Hypotension and hypertension are considered injurious, but neither condition is defined with consensus. Critical closing pressure (CrCP) is the arterial blood pressure (ABP) at which cerebral blood flow ceases. CrCP may serve to define subject-specific low or high ABP. Our objective was to quantify CrCP as a function of gestational age (GA). One hundred eighty-six premature infants with a GA range of 23-33 weeks, were monitored with umbilical artery catheters and transcranial Doppler insonation of middle cerebral artery flow velocity (FV) for 1-h sessions over the first week of life. CrCP was calculated using an impedance model derivation with Doppler-based estimations of cerebrovascular resistance and compliance. CrCP increased significantly with GA (r = 0.47; slope = 1.4 mmHg/week gestation), an association that persisted with multivariate analysis (p < 0.001). Higher diastolic ABP and higher GA were associated with increased CrCP (p <0.001 for both). CrCP increases significantly at the end of the second and beginning of the third trimester. The low CrCP observed in premature infants may explain their ability to tolerate low ABP without global cerebral infarct or hemorrhage.
Collapse
Affiliation(s)
- Christopher J Rhee
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, 6621 Fannin Street, W6-104, Houston, TX, USA.
| | - Charles D Fraser
- University of Texas at Houston School of Medicine, Houston, TX, USA
| | - Kathleen Kibler
- Departments of Pediatrics and Anesthesiology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Ronald B Easley
- Departments of Pediatrics and Anesthesiology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Dean B Andropoulos
- Departments of Pediatrics and Anesthesiology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Marek Czosnyka
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Georgios V Varsos
- Division of Neurosurgery, Addenbrooke's Hospital, Cambridge University, Cambridge, UK
| | - Peter Smielewski
- Division of Neurosurgery, Addenbrooke's Hospital, Cambridge University, Cambridge, UK
| | - Craig G Rusin
- Department of Cardiology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Ken M Brady
- Departments of Pediatrics and Anesthesiology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Jeffrey R Kaiser
- Departments of Pediatrics and Obstetrics and Gynecology, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
18
|
Varsos GV, Czosnyka M, Smielewski P, Garnett MR, Liu X, Adams H, Pickard JD, Czosnyka Z. Cerebral Critical Closing Pressure During Infusion Tests. ACTA NEUROCHIRURGICA. SUPPLEMENT 2016; 122:215-220. [PMID: 27165909 DOI: 10.1007/978-3-319-22533-3_43] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We studied possible correlations between cerebral hemodynamic indices based on critical closing pressure (CrCP) and cerebrospinal fluid (CSF) compensatory dynamics, as assessed during lumbar infusion tests. Our data consisted of 34 patients with normal-pressure hydrocephalus who undertook an infusion test, in conjunction with simultaneous transcranial Doppler ultrasonography (TCD) monitoring of blood flow velocity (FV). CrCP was calculated from the monitored signals of ICP, arterial blood pressure (ABP), and FV, whereas vascular wall tension (WT) was estimated as CrCP - ICP. The closing margin (CM) expresses the difference between ABP and CrCP. ICP increased during infusion from 6.67 ± 4.61 to 24.98 ± 10.49 mmHg (mean ± SD; p < 0.001), resulting in CrCP rising by 22.93 % (p < 0.001), with WT decreasing by 11.33 % (p = 0.005) owing to vasodilatation. CM showed a tendency to decrease, albeit not significantly (p = 0.070), because of rising ABP (9.12 %; p = 0.005), and was significantly different from zero for the whole duration of the tests (52.78 ± 22.82 mmHg; p < 0.001). CM at baseline correlated inversely with brain elasticity (R = -0.358; p = 0.038). Neither CrCP nor WT correlated with CSF compensatory parameters. Overall, CrCP increases and WT decreases during infusion tests, whereas CM at baseline pressure may act as a characterizing indicator of the cerebrospinal compensatory reserve.
Collapse
Affiliation(s)
- Georgios V Varsos
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.
| | - Marek Czosnyka
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Peter Smielewski
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Matthew R Garnett
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Xiuyun Liu
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Hadie Adams
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
- Department of Neurosurgery, St Radboud University Medical Center, Nijmegen, The Netherlands
| | - John D Pickard
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Zofia Czosnyka
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| |
Collapse
|
19
|
Kasprowicz M, Czosnyka M, Poplawska K, Reinhard M. Cerebral Arterial Time Constant Recorded from the MCA and PICA in Normal Subjects. ACTA NEUROCHIRURGICA. SUPPLEMENT 2016; 122:211-4. [PMID: 27165908 DOI: 10.1007/978-3-319-22533-3_42] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cerebral arterial time constant (τ) estimates how quickly the cerebral arterial bed distal to the point of insonation is filled with arterial blood following a cardiac contraction. It is not known how τ behaves in different vascular territories in the brain. We therefore investigated the differences in τ of two cerebral arteries: the posterior inferior cerebellar artery (PICA) and the middle cerebral artery (MCA).Transcranial Doppler cerebral blood flow velocity (CBFV) in the PICA and left MCA along with Finapres arterial blood pressure (ABP) were simultaneously recorded in 35 young healthy volunteers. τ was estimated using mathematical transformations of pulse waveforms of ABP and the CBFV of the MCA and the PICA. Since τ is independent from the vessel radius, its comparison in different cerebral arteries was feasible. Mean ABP was 76.1 ± 9.6 mmHg. The CBFV of the MCA was higher than that of the PICA (59.7 ± 7.7 vs. 41.0 ± 4.5 cm/s; p < 0.000001). τ of the PICA was shorter than that of the MCA (0.15 ± 0.03 vs. 0.18 ± 0.03 s; p < 0.000001). The MCA-supplied vascular bed has a longer distal average length, measured from the place of insonation up to the small arterioles, than the PICA-supplied vascular bed. Therefore, a longer time is needed to fill it with arterial blood volume. This study thus confirms the physiological validity of the τ concept.
Collapse
Affiliation(s)
- Magdalena Kasprowicz
- Department of Biomedical Engineering, Wroclaw University of Technology, Wroclaw, Poland.
| | - Marek Czosnyka
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Karolina Poplawska
- Department of Biomedical Engineering, Wroclaw University of Technology, Wroclaw, Poland
| | | |
Collapse
|
20
|
Rhee CJ, Fraser CD, Kibler K, Easley RB, Andropoulos DB, Czosnyka M, Varsos GV, Smielewski P, Rusin CG, Brady KM, Kaiser JR. Ontogeny of cerebrovascular critical closing pressure. Pediatr Res 2015; 78:71-5. [PMID: 25826118 DOI: 10.1038/pr.2015.67] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 01/05/2015] [Indexed: 11/10/2022]
Abstract
BACKGROUND Premature infants are at risk of vascular neurologic insults. Hypotension and hypertension are considered injurious, but neither condition is defined with consensus. Cerebrovascular critical closing pressure (CrCP) is the arterial blood pressure (ABP) at which cerebral blood flow (CBF) ceases. CrCP may serve to define subject-specific low or high ABP. Our objective was to determine the ontogeny of CrCP. METHODS Premature infants (n = 179) with gestational age (GA) from 23-31 wk had recordings of ABP and middle cerebral artery flow velocity twice daily for 3 d and then daily for the duration of the first week of life. All infants received mechanical ventilation. CrCP was calculated using an impedance-model derivation with Doppler-based estimations of cerebrovascular resistance and compliance. The association between GA and CrCP was determined in a multivariate analysis. RESULTS The median (interquartile range) CrCP for the cohort was 22 mm Hg (19-25 mm Hg). CrCP increased significantly with GA (r = 0.6; slope = 1.4 mm Hg/wk gestation), an association that persisted with multivariate analysis (P < 0.0001). CONCLUSION CrCP increased significantly from 23 to 31 wk gestation. The low CrCP observed in very premature infants may explain their ability to tolerate low ABP without global cerebral infarct or hemorrhage.
Collapse
Affiliation(s)
| | - Charles D Fraser
- University of Texas at Houston School of Medicine, Houston, Texas
| | - Kathleen Kibler
- 1] Department of Pediatrics, Baylor College of Medicine, Houston, Texas [2] Department of Anesthesiology, Baylor College of Medicine, Houston, Texas
| | - Ronald B Easley
- 1] Department of Pediatrics, Baylor College of Medicine, Houston, Texas [2] Department of Anesthesiology, Baylor College of Medicine, Houston, Texas
| | - Dean B Andropoulos
- 1] Department of Pediatrics, Baylor College of Medicine, Houston, Texas [2] Department of Anesthesiology, Baylor College of Medicine, Houston, Texas
| | - Marek Czosnyka
- Division of Neurosurgery, Cambridge University, Cambridge, England, UK
| | - Georgios V Varsos
- Division of Neurosurgery, Cambridge University, Cambridge, England, UK
| | - Peter Smielewski
- Division of Neurosurgery, Cambridge University, Cambridge, England, UK
| | - Craig G Rusin
- Department of Cardiology, Baylor College of Medicine, Houston, Texas
| | - Ken M Brady
- 1] Department of Pediatrics, Baylor College of Medicine, Houston, Texas [2] Department of Anesthesiology, Baylor College of Medicine, Houston, Texas
| | - Jeffrey R Kaiser
- 1] Department of Pediatrics, Baylor College of Medicine, Houston, Texas [2] Department Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
21
|
Varsos GV, Budohoski KP, Kolias AG, Liu X, Smielewski P, Varsos VG, Hutchinson PJ, Pickard JD, Czosnyka M. Relationship of vascular wall tension and autoregulation following traumatic brain injury. Neurocrit Care 2015; 21:266-74. [PMID: 24682849 DOI: 10.1007/s12028-014-9971-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The vascular wall tension (WT) of small cerebral vessels can be quantitatively estimated through the concept of critical closing pressure (CrCP), which denotes the lower limit of arterial blood pressure (ABP), below which small cerebral arterial vessels collapse and blood flow ceases. WT can be expressed as the difference between CrCP and intracranial pressure (ICP) and represent active vasomotor tone. In this study, we investigated the association of WT and CrCP with autoregulation and outcome of a large group of patients after traumatic brain injury (TBI). METHODS We retrospectively analysed recordings of ABP, ICP and transcranial Doppler (TCD) blood flow velocity from 280 TBI patients (median age: 29 years; interquartile range: 20-43). CrCP and WT were calculated using the cerebrovascular impedance methodology. Autoregulation was assessed based on TCD-based indices, Mx and ARI. RESULTS Low values of WT were found to be associated with an impaired autoregulatory capacity, signified by its correlation to FV-based indices Mx (R = -0.138; p = 0.021) and ARI (R = 0.118; p = 0.048). No relationship could be established between CrCP and any of the autoregulatory indices. Neither CrCP nor WT was found to correlate with outcome. CONCLUSIONS Impaired autoregulation was found to be associated with a lower WT supporting the role of vasoparalysis in the loss of autoregulatory capacity. In contrast, no links between CrCP and autoregulation could be identified.
Collapse
Affiliation(s)
- Georgios V Varsos
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Hills Road, Cambridge, CB2 0QQ, UK,
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Acosta S, Penny DJ, Rusin CG. An effective model of blood flow in capillary beds. Microvasc Res 2015; 100:40-7. [PMID: 25936622 DOI: 10.1016/j.mvr.2015.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/24/2015] [Accepted: 04/24/2015] [Indexed: 12/25/2022]
Abstract
In this article we derive applicable expressions for the macroscopic compliance and resistance of microvascular networks. This work yields a lumped-parameter model to describe the hemodynamics of capillary beds. Our derivation takes into account the multiscale nature of capillary networks, the influence of blood volume and pressure on the effective resistance and compliance, as well as, the nonlinear interdependence between these two properties. As a result, we obtain a simple and useful model to study hypotensive and hypertensive phenomena. We include two implementations of our theory: (i) pulmonary hypertension where the flow resistance is predicted as a function of pulmonary vascular tone. We derive from first-principles the inverse proportional relation between resistance and compliance of the pulmonary tree, which explains why the RC factor remains nearly constant across a population with increasing severity of pulmonary hypertension. (ii) The critical closing pressure in pulmonary hypotension where the flow rate dramatically decreases due to the partial collapse of the capillary bed. In both cases, the results from our proposed model compare accurately with experimental data.
Collapse
Affiliation(s)
- Sebastian Acosta
- Department of Pediatrics - Cardiology, Baylor College of Medicine, Houston TX, USA; Department of Pediatric Medicine - Cardiology, Texas Children's Hospital, Houston TX, USA.
| | - Daniel J Penny
- Department of Pediatrics - Cardiology, Baylor College of Medicine, Houston TX, USA; Department of Pediatric Medicine - Cardiology, Texas Children's Hospital, Houston TX, USA.
| | - Craig G Rusin
- Department of Pediatrics - Cardiology, Baylor College of Medicine, Houston TX, USA; Department of Pediatric Medicine - Cardiology, Texas Children's Hospital, Houston TX, USA.
| |
Collapse
|
23
|
Varsos GV, Richards HK, Kasprowicz M, Reinhard M, Smielewski P, Brady KM, Pickard JD, Czosnyka M. Cessation of diastolic cerebral blood flow velocity: the role of critical closing pressure. Neurocrit Care 2015; 20:40-8. [PMID: 24248737 DOI: 10.1007/s12028-013-9913-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Reducing cerebral perfusion pressure (CPP) below the lower limit of autoregulation (LLA) causes cerebral blood flow (CBF) to become pressure passive. Further reductions in CPP can cause cessation of CBF during diastole. We hypothesized that zero diastolic flow velocity (FV) occurs when diastolic blood pressure becomes less than the critical closing pressure (CrCP). METHODS We retrospectively analyzed studies of 34 rabbits with CPP below the LLA, induced with pharmacologic sympathectomy (N = 23) or cerebrospinal fluid infusion (N = 11). Basilar artery blood FV and cortical Laser Doppler Flow (LDF) were monitored. CrCP was trended using a model of cerebrovascular impedance. The diastolic closing margin (DCM) was monitored as the difference between diastolic blood pressure and CrCP. LDF was recorded for DCM values greater than and less than zero. RESULTS Arterial hypotension caused a reduction of CrCP (p < 0.001), consistent with decreased wall tension (p < 0.001) and a drop in intracranial pressure (ICP; p = 0.004). Cerebrospinal infusion caused an increase of CrCP (p = 0.002) accounted for by increasing ICP (p < 0.001). The DCM was compromised by either arterial hypotension or intracranial hypertension (p < 0.001 for both). When the DCM reached zero, diastolic FV ceased for a short period during each heart cycle (R = 0.426, p < 0.001). CBF pressure passivity accelerated when DCM decreased below zero (from 1.51 ± 0.51 to 2.17 ± 1.17 % ΔLDF/ΔmmHg; mean ± SD; p = 0.010). CONCLUSIONS The disappearance of diastolic CBF below LLA can be explained by DCM reaching zero or negative values. Below this point the decrease in CBF accelerates with further decrements of CPP.
Collapse
Affiliation(s)
- Georgios V Varsos
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge Biomedical Campus, Cambridge, CB20QQ, UK,
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Varsos GV, Kasprowicz M, Smielewski P, Czosnyka M. Model-based indices describing cerebrovascular dynamics. Neurocrit Care 2015; 20:142-57. [PMID: 24091657 DOI: 10.1007/s12028-013-9868-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Understanding the dynamic relationship between cerebral blood flow (CBF) and the circulation of cerebrospinal fluid (CSF) can facilitate management of cerebral pathologies. For this reason, various hydrodynamic models have been introduced in order to simulate the phenomena governing the interaction between CBF and CSF. The identification of hydrodynamic models requires an array of signals as input, with the most common of them being arterial blood pressure, intracranial pressure, and cerebral blood flow velocity; monitoring all of them is considered as a standard practice in neurointensive care. Based on these signals, physiological parameters like cerebrovascular resistance, compliances of cerebrovascular bed, and CSF space could then be estimated. Various secondary model-based indices describing cerebrovascular dynamics have been introduced, like the cerebral arterial time constant or critical closing pressure. This review presents model-derived indices that describe cerebrovascular phenomena, the nature of which is both physiological (carbon dioxide reactivity and arterial hypotension) and pathological (cerebral artery stenosis, intracranial hypertension, and cerebral vasospasm). In a neurointensive environment, real-time monitoring of a patient with these indices may be able to provide a detection of the onset of a cerebrovascular phenomenon, which could have otherwise been missed. This potentially "early warning" indicator may then prove to be important for the therapeutic management of the patient.
Collapse
Affiliation(s)
- Georgios V Varsos
- Neurosurgical Unit, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK,
| | | | | | | |
Collapse
|
25
|
Cerebral vasospasm affects arterial critical closing pressure. J Cereb Blood Flow Metab 2015; 35:285-91. [PMID: 25465041 PMCID: PMC4814058 DOI: 10.1038/jcbfm.2014.198] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 10/20/2014] [Accepted: 10/21/2014] [Indexed: 11/08/2022]
Abstract
The effect of cerebral vasospasm (CVS) after aneurysmal subarachnoid hemorrhage (SAH) on critical closing pressure (CrCP) has not been fully delineated. Using cerebral impedance methodology, we sought to assess the behavior of CrCP during CVS. As CrCP expresses the sum of intracranial pressure (ICP) and vascular wall tension, we also explored its role in reflecting changes in vascular tone occurring in small vessels distal to spasm. This retrospective analysis was performed using recordings from 52 patients, diagnosed with CVS through transcranial Doppler measurements. Critical closing pressure was calculated noninvasively using arterial blood pressure and blood flow velocity. Outcome was assessed at both discharge and 3 months after ictus with the Glasgow Outcome Scale. The onset of CVS caused significant decreases in CrCP (P=0.025), without any observed significant changes in ICP (P=0.134). Vasospasm induced asymmetry, with CrCP ipsilateral to CVS becoming significantly lower than contralateral (P=0.025). Unfavorable outcomes were associated with a significantly lower CrCP after the onset of CVS (discharge: P=0.014; 3 months after SAH: P=0.020). Critical closing pressure is reduced in the presence of CVS in both temporal and spatial assessments. As ICP remained unchanged during CVS, reduced CrCP most probably reflects a lower wall tension in dilated small vessels distal to spasm.
Collapse
|
26
|
Varsos GV, Kolias AG, Smielewski P, Brady KM, Varsos VG, Hutchinson PJ, Pickard JD, Czosnyka M. A noninvasive estimation of cerebral perfusion pressure using critical closing pressure. J Neurosurg 2015; 123:638-48. [PMID: 25574566 DOI: 10.3171/2014.10.jns14613] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Cerebral blood flow is associated with cerebral perfusion pressure (CPP), which is clinically monitored through arterial blood pressure (ABP) and invasive measurements of intracranial pressure (ICP). Based on critical closing pressure (CrCP), the authors introduce a novel method for a noninvasive estimator of CPP (eCPP). METHODS Data from 280 head-injured patients with ABP, ICP, and transcranial Doppler ultrasonography measurements were retrospectively examined. CrCP was calculated with a noninvasive version of the cerebrovascular impedance method. The eCPP was refined with a predictive regression model of CrCP-based estimation of ICP from known ICP using data from 232 patients, and validated with data from the remaining 48 patients. RESULTS Cohort analysis showed eCPP to be correlated with measured CPP (R = 0.851, p < 0.001), with a mean ± SD difference of 4.02 ± 6.01 mm Hg, and 83.3% of the cases with an estimation error below 10 mm Hg. eCPP accurately predicted low CPP (< 70 mm Hg) with an area under the curve of 0.913 (95% CI 0.883-0.944). When each recording session of a patient was assessed individually, eCPP could predict CPP with a 95% CI of the SD for estimating CPP between multiple recording sessions of 1.89-5.01 mm Hg. CONCLUSIONS Overall, CrCP-based eCPP was strongly correlated with invasive CPP, with sensitivity and specificity for detection of low CPP that show promise for clinical use.
Collapse
Affiliation(s)
- Georgios V Varsos
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, United Kingdom
| | - Angelos G Kolias
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, United Kingdom
| | - Peter Smielewski
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, United Kingdom
| | - Ken M Brady
- Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| | | | - Peter J Hutchinson
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, United Kingdom
| | - John D Pickard
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, United Kingdom
| | - Marek Czosnyka
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, United Kingdom;,Institute of Electronic Systems, Warsaw University of Technology, Warsaw, Poland
| |
Collapse
|
27
|
Capel C, Kasprowicz M, Czosnyka M, Baledent O, Smielewski P, Pickard JD, Czosnyka Z. Cerebrovascular time constant in patients suffering from hydrocephalus. Neurol Res 2014; 36:255-61. [PMID: 24512019 DOI: 10.1179/1743132813y.0000000282] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
OBJECTIVES We studied possible link between cerebrospinal fluid (CSF) compensation and indices describing pulsatile inflow of cerebral arterial blood. METHODS A total of 50 infusion tests performed in patients with symptoms of normal pressure hydrocephalus (NPH) were examined retrospectively. Waveforms of CSF pressure, noninvasive arterial blood pressure (ABP), and transcranial Doppler (TCD) cerebral blood flow velocity (CBFV) were used to estimate relative changes in cerebral arterial compliance (Ca) and cerebrovascular resistance (CVR). Product of Ca and CVR, called cerebral arterial time constant (τ, unit: seconds), was calculated at the baseline and plateau phase of the test and compared with CSF compensatory parameters such as resistance to CSF outflow, elasticity, slope of amplitude-pressure line, and pulse amplitude of CSF pressure. RESULTS Neither of CSF compensatory parameters correlated with hemodynamic indices. However, the change in cerebral perfusion pressure (CPP) provoked change in τ (R = 0.33; P = 0.017) secondary to a change in CVR (R = 0.81; P < 0.0001). Changes in CVR and Ca had a reciprocal character (R = -0.64; P < 0.0001) with magnitude of variation in CVR (68%) prevailing over magnitude of changes in Ca (49%). DISCUSSION Hemodynamics of pulsatile inflow of cerebral arterial blood assessed by cerebral arterial time constant is not directly linked to dynamics of CSF circulation and pressure-volume compensation but is sensitive to changes in CPP during infusion test.
Collapse
|
28
|
Østergaard L, Aamand R, Karabegovic S, Tietze A, Blicher JU, Mikkelsen IK, Iversen NK, Secher N, Engedal TS, Anzabi M, Jimenez EG, Cai C, Koch KU, Naess-Schmidt ET, Obel A, Juul N, Rasmussen M, Sørensen JCH. The role of the microcirculation in delayed cerebral ischemia and chronic degenerative changes after subarachnoid hemorrhage. J Cereb Blood Flow Metab 2013; 33:1825-37. [PMID: 24064495 PMCID: PMC3851911 DOI: 10.1038/jcbfm.2013.173] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 08/31/2013] [Accepted: 09/08/2013] [Indexed: 02/07/2023]
Abstract
The mortality after aneurysmal subarachnoid hemorrhage (SAH) is 50%, and most survivors suffer severe functional and cognitive deficits. Half of SAH patients deteriorate 5 to 14 days after the initial bleeding, so-called delayed cerebral ischemia (DCI). Although often attributed to vasospasms, DCI may develop in the absence of angiographic vasospasms, and therapeutic reversal of angiographic vasospasms fails to improve patient outcome. The etiology of chronic neurodegenerative changes after SAH remains poorly understood. Brain oxygenation depends on both cerebral blood flow (CBF) and its microscopic distribution, the so-called capillary transit time heterogeneity (CTH). In theory, increased CTH can therefore lead to tissue hypoxia in the absence of severe CBF reductions, whereas reductions in CBF, paradoxically, improve brain oxygenation if CTH is critically elevated. We review potential sources of elevated CTH after SAH. Pericyte constrictions in relation to the initial ischemic episode and subsequent oxidative stress, nitric oxide depletion during the pericapillary clearance of oxyhemoglobin, vasogenic edema, leukocytosis, and astrocytic endfeet swelling are identified as potential sources of elevated CTH, and hence of metabolic derangement, after SAH. Irreversible changes in capillary morphology and function are predicted to contribute to long-term relative tissue hypoxia, inflammation, and neurodegeneration. We discuss diagnostic and therapeutic implications of these predictions.
Collapse
Affiliation(s)
- Leif Østergaard
- 1] Department of Neuroradiology, Aarhus University Hospital, Aarhus, Denmark [2] Center of Functionally Integrative Neuroscience and MINDLab, Aarhus University, Aarhus, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Varsos GV, de Riva N, Smielewski P, Pickard JD, Brady KM, Reinhard M, Avolio A, Czosnyka M. Critical closing pressure during intracranial pressure plateau waves. Neurocrit Care 2013; 18:341-8. [PMID: 23512327 DOI: 10.1007/s12028-013-9830-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND Critical closing pressure (CCP) denotes a threshold of arterial blood pressure (ABP) below which brain vessels collapse and cerebral blood flow ceases. Theoretically, CCP is the sum of intracranial pressure (ICP) and arterial wall tension (WT). The aim of this study is to describe the behavior of CCP and WT during spontaneous increases of ICP, termed plateau waves, in order to quantify ischemic risk. METHODS To calculate CCP, we used a recently introduced multi-parameter method (CCPm) which is based on the modulus of cerebrovascular impedance. CCP is derived from cerebral perfusion pressure, ABP, transcranial Doppler estimators of cerebrovascular resistance and compliance, and heart rate. Arterial WT was estimated as CCPm-ICP. The clinical data included recordings of ABP, ICP, and transcranial Doppler-based blood flow velocity from 38 events of ICP plateau waves, recorded in 20 patients after head injury. RESULTS Overall, CCPm increased significantly from 51.89 ± 8.76 mmHg at baseline ICP to 63.31 ± 10.83 mmHg at the top of the plateau waves (mean ± SD; p < 0.001). Cerebral arterial WT decreased significantly during plateau waves by 34.3% (p < 0.001), confirming their vasodilatatory origin. CCPm did not exhibit the non-physiologic negative values that have been seen with traditional methods for calculation, therefore rendered a more plausible estimation of CCP. CONCLUSIONS Rising CCP during plateau waves increases the probability of cerebral vascular collapse and zero flow when the difference: ABP-CCP (the "collapsing margin") becomes zero or negative.
Collapse
Affiliation(s)
- Georgios V Varsos
- Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Varsos GV, Richards H, Kasprowicz M, Budohoski KP, Brady KM, Reinhard M, Avolio A, Smielewski P, Pickard JD, Czosnyka M. Critical closing pressure determined with a model of cerebrovascular impedance. J Cereb Blood Flow Metab 2013; 33:235-43. [PMID: 23149558 PMCID: PMC3564193 DOI: 10.1038/jcbfm.2012.161] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 09/13/2012] [Accepted: 10/01/2012] [Indexed: 02/02/2023]
Abstract
Critical closing pressure (CCP) is the arterial blood pressure (ABP) at which brain vessels collapse and cerebral blood flow (CBF) ceases. Using the concept of impedance to CBF, CCP can be expressed with brain-monitoring parameters: cerebral perfusion pressure (CPP), ABP, blood flow velocity (FV), and heart rate. The novel multiparameter method (CCPm) was compared with traditional transcranial Doppler (TCD) calculations of CCP (CCP1). Digital recordings of ABP, intracranial pressure (ICP), and TCD-based FV from previously published studies of 29 New Zealand White rabbits were reanalyzed. Overall, CCP1 and CCPm showed correlation across wide ranges of ABP, ICP, and PaCO2 (R=0.93, P<0.001). Three physiological perturbations were studied: increase in ICP (n=29) causing both CCP1 and CCPm to increase (P<0.001 for both); reduction of ABP (n=10) resulting in decrease of CCP1 (P=0.006) and CCPm (P=0.002); and controlled increase of PaCO2 (n=8) to hypercapnic levels, which decreased CCP1 and CCPm, albeit insignificantly (P=0.123 and P=0.306 respectively), caused by a spontaneous significant increase in ABP (P=0.025). Multiparameter mathematical model of critical closing pressure explains the relationship of CCP on brain-monitoring variables, allowing the estimation of CCP during cases such as hypercapnia-induced hyperemia, where traditional calculations, like CCP1, often reach negative non-physiological values.
Collapse
Affiliation(s)
- Georgios V Varsos
- Neurosurgical Unit, Department of Clinical Neurosciences, Division of Neurosurgery, Addenbrooke's Hospital, Cambridge, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kasprowicz M, Diedler J, Reinhard M, Carrera E, Steiner LA, Smielewski P, Budohoski KP, Haubrich C, Pickard JD, Czosnyka M. Time constant of the cerebral arterial bed in normal subjects. ULTRASOUND IN MEDICINE & BIOLOGY 2012; 38:1129-1137. [PMID: 22677254 DOI: 10.1016/j.ultrasmedbio.2012.02.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 02/10/2012] [Accepted: 02/16/2012] [Indexed: 06/01/2023]
Abstract
The time constant of cerebral arterial bed (in brief time constant) is a product of brain arterial compliance (C(a)) and resistance (CVR). We tested the hypothesis that in normal subjects, changes in end-tidal CO(2) (EtCO(2)) affect the value of the time constant. C(a) and CVR were estimated using mathematical transformations of arterial pressure (ABP) and transcranial Doppler (TCD) cerebral blood flow velocity waveforms. Responses of the time constant to controlled changes in EtCO(2) were compared in 34 young volunteers. Hypercapnia shortened the time constant (0.22 s [0.17, 0.26] vs. 0.16 s [0.13, 0.20]; p = 0.000001), while hypocapnia lengthened the time constant (0.22 s [0.17, 0.26] vs. 0.23 s [0.19, 0.32]; p < 0.0032). The time constant was negatively correlated with changes in EtCO(2) (R(partial) = -0.68, p < 0.000001). This was associated with a decrease in CVR when EtCO(2) increased (R(partial) = -0.80, p < 0.000001) and C(a) remained independent of changes in EtCO(2). C(a) was negatively correlated with mean ABP (R(partial) = -0.68, p < 0.000001). In summary, the time constant shortens with increasing EtCO(2). Its potential role in cerebrovascular investigations needs further studies.
Collapse
|