1
|
Abstract
Improved understanding of post-cardiac arrest syndrome and clinical practices such as targeted temperature management have led to improved mortality in this cohort. Attention has now been placed on development of tools to aid in predicting functional outcome in comatose cardiac arrest survivors. Current practice uses a multimodal approach including physical examination, neuroimaging, and electrophysiologic data, with a primary utility in predicting poor functional outcome. These modalities remain confounded by self-fulfilling prophecy and the withdrawal of life-sustaining therapies. To date, a reliable measure to predict good functional outcome has not been established or validated, but the use of quantitative somatosensory evoked potential (SSEP) shows potential for this use. MEDLINE and EMBASE search using words "Cardiac Arrest" and "SSEP," "Somato sensory evoked potentials," "qSSEP," "quantitative SSEP," "targeted temperature management in cardiac arrest" was conducted. Relevant recent studies on targeted temperature management in cardiac arrest, plus studies on SSEP in cardiac arrest in the setting of hypothermia and without hypothermia, were included. In addition, animal studies evaluating the role of different components of SSEP in cardiac arrest were reviewed. SSEP is a specific indicator of poor outcomes in post-cardiac arrest patients but lacks sensitivity and has not clinically been established to foresee good outcomes. Novel methods of analyzing quantitative SSEP (qSSEP) signals have shown potential to predict good outcomes in animal and human studies. In addition, qSSEP has potential to track cerebral recovery and guide treatment strategy in post-cardiac arrest patients. Lying beyond the current clinical practice of dichotomized absent/present N20 peaks, qSSEP has the potential to emerge as one of the earliest predictors of good outcome in comatose post-cardiac arrest patients. Validation of qSSEP markers in prospective studies to predict good and poor outcomes in the cardiac arrest population in the setting of hypothermia could advance care in cardiac arrest. It has the prospect to guide allocation of health care resources and reduce self-fulfilling prophecy.
Collapse
|
2
|
Ma Q, Feng L, Wang T, Li Y, Li Z, Zhao B, Qin X, Li Q, Wu S, Sun H, Yuan J, Chu L, Wu J, Gu Y, Pang P, Chen Z, Fan D. 2020 expert consensus statement on neuro-protection after cardiac arrest in China. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:175. [PMID: 33569477 PMCID: PMC7867902 DOI: 10.21037/atm-20-7853] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Qingbian Ma
- Emergency Department, Peking University Third Hospital, Beijing, China
| | - Liqun Feng
- Neurology Department, Anzhen Hospital, Capital Medical University, Beijing, China
| | - Tao Wang
- Neurosurgery Department, Peking University Third Hospital, Beijing, China
| | - Yongqiu Li
- Neurology Department, Tangshan Gongren Hospital, Tangshan, China
| | - Zhenzhong Li
- Neurology Department, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bin Zhao
- Emergency Department, Beijing Jishuitan Hospital, Beijing, China
| | - Xiuchuan Qin
- Emergency Department, Anzhen Hospital, Capital Medical University, Beijing, China
| | - Qingxi Li
- Neurosurgery Department, Dandong Central Hospital, Dandong, China
| | - Shizheng Wu
- Neurology Department, Qinghai Provincial People’s Hospital, Xining, China
| | - Hongbin Sun
- Neurology Department, Sichuan Provincial People’s Hospital, Chengdu, China
| | - Jun Yuan
- Neurology Department, Inner Mongolia People’s Hospital, Hohhot, China
| | - Lan Chu
- Neurology Department, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jian Wu
- Neurology Department, Beijing Tsinghua Changgung Hospital, Beijing, China
| | - Yuxiang Gu
- Neurosurgery Department, Fudan University Huashan Hospital, Shanghai, China
| | - Peter Pang
- Accident and Emergency Department, Yan Chai Hospital, Hong Kong, China
| | - Zhi Chen
- Beijing Emergency Medical Center, Beijing, China
| | - Dongsheng Fan
- Neurology Department, Peking University Third Hospital, Beijing, China
| |
Collapse
|
3
|
Rothstein TL. SSEP retains its value as predictor of poor outcome following cardiac arrest in the era of therapeutic hypothermia. Crit Care 2019; 23:327. [PMID: 31647028 PMCID: PMC6813072 DOI: 10.1186/s13054-019-2576-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/19/2019] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVES To re-evaluate the role of median nerve somatosensory evoked potentials (SSEPs) and bilateral loss of the N20 cortical wave as a predictor of unfavorable outcome in comatose patients following cardiac arrest (CA) in the therapeutic hypothermia (TH) era. METHODS Review the results and conclusions drawn from isolated case reports and small series of comatose patients following CA in which the bilateral absence of N20 response has been associated with recovery, and evaluate the proposal that SSEP can no longer be considered a reliable and accurate predictor of unfavorable neurologic outcome. RESULTS There are many methodological limitations in those patients reported in the literature with severe post anoxic encephalopathy who recover despite having lost their N20 cortical potential. These limitations include lack of sufficient clinical and neurologic data, severe core body hypothermia, specifics of electrophysiologic testing, technical issues such as background noise artifacts, flawed interpretations sometimes related to interobserver inconsistency, and the extreme variability in interpretation and quality of SSEP analysis among different clinicians and hospitals. CONCLUSIONS The absence of the SSEP N20 cortical wave remains one of the most reliable early prognostic tools for identifying unfavorable neurologic outcome in the evaluation of patients with severe anoxic-ischemic encephalopathy whether or not they have been treated with TH. When confounding factors are eliminated the false positive rate (FPR) approaches zero.
Collapse
Affiliation(s)
- Ted L Rothstein
- Department of Neurology, George Washington University, Washington, DC, USA.
| |
Collapse
|
4
|
Estimating the False Positive Rate of Absent Somatosensory Evoked Potentials in Cardiac Arrest Prognostication. Crit Care Med 2019; 46:e1213-e1221. [PMID: 30247243 DOI: 10.1097/ccm.0000000000003436] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVES Absence of somatosensory evoked potentials is considered a nearly perfect predictor of poor outcome after cardiac arrest. However, reports of good outcomes despite absent somatosensory evoked potentials and high rates of withdrawal of life-sustaining therapies have raised concerns that estimates of the prognostic value of absent somatosensory evoked potentials may be biased by self-fulfilling prophecies. We aimed to develop an unbiased estimate of the false positive rate of absent somatosensory evoked potentials as a predictor of poor outcome after cardiac arrest. DATA SOURCES PubMed. STUDY SELECTION We selected 35 studies in cardiac arrest prognostication that reported somatosensory evoked potentials. DATA EXTRACTION In each study, we identified rates of withdrawal of life-sustaining therapies and good outcomes despite absent somatosensory evoked potentials. We appraised studies for potential biases using the Quality in Prognosis Studies tool. Using these data, we developed a statistical model to estimate the false positive rate of absent somatosensory evoked potentials adjusted for withdrawal of life-sustaining therapies rate. DATA SYNTHESIS Two-thousand one-hundred thirty-three subjects underwent somatosensory evoked potential testing. Five-hundred ninety-four had absent somatosensory evoked potentials; of these, 14 had good functional outcomes. The rate of withdrawal of life-sustaining therapies for subjects with absent somatosensory evoked potential could be estimated in 14 of the 35 studies (mean 80%, median 100%). The false positive rate for absent somatosensory evoked potential in predicting poor neurologic outcome, adjusted for a withdrawal of life-sustaining therapies rate of 80%, is 7.7% (95% CI, 4-13%). CONCLUSIONS Absent cortical somatosensory evoked potentials do not infallibly predict poor outcome in patients with coma following cardiac arrest. The chances of survival in subjects with absent somatosensory evoked potentials, though low, may be substantially higher than generally believed.
Collapse
|
5
|
Abstract
PURPOSE The reliability of somatosensory evoked potentials (SSEPs) in predicting outcome in comatose survivors of cardiac arrest treated with therapeutic hypothermia (TH) has been questioned. We investigated whether the absence of cortical (N20) responses was a reliable predictor of a nonawakening in the setting of TH. METHODS A retrospective review was conducted in cardiac arrest survivors treated with TH admitted to a single tertiary care hospital from April, 2010 to March, 2013 who underwent SSEP testing at various time points after cardiac arrest. N20 responses were categorized as normal, present but abnormal, bilaterally absent, or inadequate for interpretation. Neurologic outcome was assessed at discharge by the Cerebral Performance Category Scale (CPC). RESULTS Ninety-three SSEP studies were performed in 73 patients. Fourteen patients had absent N20 responses; all had poor outcome (CPC 4-5). Eleven patients had absent N20 s during hypothermia, three of whom had follow-up SSEPs after rewarming and cortical responses remained absent. Fifty-seven patients had N20 peaks identified and had variable outcomes. Evaluation of 1 or more N20 peaks was limited or inadequate in 11.4% of SSEPs performed during the cooling because of artifact. CONCLUSIONS Somatosensory evoked potentials remain a reliable prognostic indicator in patients undergoing TH. The limited sample size of patients who had SSEP performed during TH and repeated after normothermia added to the effect of self-fulfilling prophecy limit the interpretation of the reliability of this testing when performed during cooling. Further prospective, multicenter, large scale studies correlating cortical responses in SSEPs during and after TH are warranted. Technical challenges are commonplace during TH and caution is advised in the interpretation of suboptimal recordings.
Collapse
|
6
|
McCarthy JJ, Carr B, Sasson C, Bobrow BJ, Callaway CW, Neumar RW, Ferrer JME, Garvey JL, Ornato JP, Gonzales L, Granger CB, Kleinman ME, Bjerke C, Nichol G. Out-of-Hospital Cardiac Arrest Resuscitation Systems of Care: A Scientific Statement From the American Heart Association. Circulation 2018; 137:e645-e660. [DOI: 10.1161/cir.0000000000000557] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The American Heart Association previously recommended implementation of cardiac resuscitation systems of care that consist of interconnected community, emergency medical services, and hospital efforts to measure and improve the process of care and outcome for patients with cardiac arrest. In addition, the American Heart Association proposed a national process to develop and implement evidence-based guidelines for cardiac resuscitation systems of care. Significant experience has been gained with implementing these systems, and new evidence has accumulated. This update describes recent advances in the science of cardiac resuscitation systems and evidence of their effectiveness, as well as recent progress in dissemination and implementation throughout the United States. Emphasis is placed on evidence published since the original recommendations (ie, including and since 2010).
Collapse
|
7
|
Robinson LR, Chapman M, Schwartz M, Bethune AJ, Potapova E, Strauss R, Scales DC. Patterns of use of somatosensory-evoked potentials for comatose patients in Canada. J Crit Care 2016; 36:130-133. [PMID: 27546761 DOI: 10.1016/j.jcrc.2016.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/06/2016] [Accepted: 07/03/2016] [Indexed: 11/29/2022]
Abstract
PURPOSE To measure how frequently somatosensory-evoked potentials (SEPs) are used in comatose patients after traumatic brain injury (TBI) and hypoxic ischemic encephalopathy (HIE), how SEPs contribute to outcome prediction and clinical decision making, and how available they are to clinicians. METHODS A novel factual and scenario-based survey instrument to measure patterns of SEPs use in comatose patients due to HIE or TBI was distributed to critical care, neurology, and neurosurgical physicians across Canada. The analysis was based on 86 completed surveys from specialists in neurology (36), neurosurgery (24), and critical care (22). RESULTS Most (73%) of respondents reported that SEPs were available. When provided clinical vignettes, only 36% indicated that they would use them in TBI and 49% would use them in HIE. When respondents ranked the various methods available for establishing prognosis for awakening, SEP was ranked after cerebral blood flow and magnetic resonance imaging. The majority did not accurately estimate chances of awakening when SEP responses were bilaterally absent. CONCLUSIONS There are significant opportunities to optimize the use of SEPs in comatose patients including standardizing SEP testing and reporting, better communicating results to critical care physicians, and improving the understanding regarding the recommended use and interpretation of these tests.
Collapse
Affiliation(s)
| | - Martin Chapman
- Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.
| | | | | | | | - Rachel Strauss
- Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.
| | - Damon C Scales
- Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada.
| |
Collapse
|
8
|
Coppo A, Beretta S, Migliari M, Ferrarese C, Avalli L. Absence and reappearance of N20 response after thiopental withdrawal in postanoxic coma. Neurol Clin Pract 2015; 5:488-490. [DOI: 10.1212/cpj.0000000000000135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Abstract
Cardiopulmonary resuscitation, basic life support and early defibrillation are leading to more survivors of out-of-hospital cardiac arrest reaching hospital. Once stabilised on an intensive care unit, it can be difficult to predict the neurological outcome using clinical criteria alone, particularly with modern management using sedation, neuromuscular blockade and hypothermia. If we are to prevent ongoing futile life support, it is important to try to identify the majority of patients who, despite best efforts, will not make a meaningful recovery. Somatosensory evoked potentials are widely available electrophysiological tests that can provide an objective biomarker of a poor neurological outcome and assist in predicting the prognosis.
Collapse
Affiliation(s)
- Nick Kane
- Grey Walter Department of Clinical Neurophysiology, North Bristol NHS Trust, Bristol, UK
| | - Agyepong Oware
- Grey Walter Department of Clinical Neurophysiology, North Bristol NHS Trust, Bristol, UK
| |
Collapse
|
10
|
Schorl M, Valerius-Kukula SJ, Kemmer TP. Median-evoked somatosensory potentials in severe brain injury: Does initial loss of cortical potentials exclude recovery? Clin Neurol Neurosurg 2014; 123:25-33. [DOI: 10.1016/j.clineuro.2014.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 04/27/2014] [Accepted: 05/03/2014] [Indexed: 11/28/2022]
|
11
|
Abstract
Brain injury represents the major cause of long-term disability and mortality among patients resuscitated from cardiac arrest. Brain-directed therapies include maintenance of normal oxygenation, hemodynamic support to optimize cerebral perfusion, glycemic control, and targeted temperature management. Pertinent guidelines and recommendations are reviewed for brain-directed treatment. The latest clinical trial data regarding targeted temperature management are also reviewed. Contemporary prognostication among initially comatose cardiac arrest survivors uses a combination of clinical and electrophysiologic tests. The most recent guidelines for prognostication after cardiac arrest are reviewed. Ongoing research regarding the effects of induced hypothermia on prognostic algorithms is also reviewed.
Collapse
|
12
|
Morgenegg R, Oddo M. Improving prognostic prediction of coma after cardiac arrest: New data, new clinical approach. TRENDS IN ANAESTHESIA AND CRITICAL CARE 2012. [DOI: 10.1016/j.tacc.2012.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|