1
|
Budden M, Gilbertson D, Chung S, Benrimoj SI, Mardones F, Dineen-Griffin S. Clinical management protocols for community pharmacist-led management of urinary tract infections: a review of the grey literature and quality appraisal. Int J Clin Pharm 2024; 46:1256-1267. [PMID: 39007989 PMCID: PMC11576775 DOI: 10.1007/s11096-024-01768-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/10/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Pharmacist-led management of urinary tract infections has been introduced as a service in the United Kingdom, Canada, United States of America, New Zealand, and Australia. The management of acute uncomplicated urinary tract infections by community pharmacists has gained increasing attention as a potential avenue to alleviate the burden on primary healthcare services. AIM The objectives of the review were to: (1) identify protocols for community pharmacist management of acute uncomplicated urinary tract infections in women aged 16-65 years; (2) outline their key components; and (3) appraise the quality of protocols. METHOD A grey literature search was undertaken for protocols intended for use by community pharmacists for the management of acute uncomplicated urinary tract infections in women aged 16-65 years, met the definition of a clinical management protocol and written in English. Their quality was appraised using the Appraisal Guidelines for Research and Evaluation version II instrument. RESULTS Forty of the 274 records screened were included. Content analysis identified ten key components: common signs/symptoms, differential diagnosis, red flags/referral, choice of empirical antibiotic therapy, nonprescription medications, nonpharmacological/self-care advice, patient eligibility criteria, patient follow-up, dipstick testing recommendations, and recommendations on antimicrobial resistance. The lowest scoring domains in the quality assessment were 'Editorial Independence' and 'Rigour of Development'. Only four protocols were deemed high-quality. CONCLUSION The review demonstrates that clinical management protocols for pharmacist-led management of urinary tract infections consist of similar recommendations, despite variation in international practice. However, the findings highlight a deficiency in the quality of most clinical management protocols governing pharmacist-led urinary tract infection management.
Collapse
Affiliation(s)
- Mitchell Budden
- College of Health, Medicine and Wellbeing, School of Biomedical Sciences and Pharmacy, University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia.
| | | | - Sean Chung
- Deloitte Consulting, Melbourne, VIC, Australia
| | - Shalom I Benrimoj
- Pharmaceutical Care Research Group, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - Francisco Mardones
- College of Health, Medicine and Wellbeing, School of Biomedical Sciences and Pharmacy, University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - Sarah Dineen-Griffin
- College of Health, Medicine and Wellbeing, School of Biomedical Sciences and Pharmacy, University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| |
Collapse
|
2
|
Feulner J, Weidinger CS, Dörfler A, Birkholz T, Buchfelder M, Sommer B. Early Intravenous Magnesium Sulfate and Its Impact on Cerebral Vasospasm as well as Delayed Cerebral Ischemia in Aneurysmal Subarachnoid Hemorrhage: A Retrospective Matched Case-Control Analysis. World Neurosurg 2024; 186:e106-e113. [PMID: 38514031 DOI: 10.1016/j.wneu.2024.03.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Magnesium sulfate (MgSO4) is a potential neuroprotective agent for patients with aneurysmal subarachnoid hemorrhage (SAH). We analyzed the effect of early application of intraoperative intravenous MgSO4 and compared cerebral vasospasm (CV), delayed cerebral ischemia (DCI), and neurological outcome in 2 patient cohorts. METHODS A retrospective matched-pair analysis from patients at a single center in Germany was performed without (group A) and with (group B) MgSO4 application <24 hours after diagnosis. Pairs were matched according to the known risk factors for DCI and CV (age, Fisher grade, smoking, severity of SAH). Incidence of CV and DCI and neurological outcome using the modified Rankin Scale score 3 and 12 months after SAH were recorded. RESULTS The inclusion criteria were met by 196 patients. After risk stratification, 48 patients were included in the final analysis (age 54.2 ± 8.1 years; 30 women and 18 men) and were assigned to group A (n = 24) or group B (n = 24). CV occurred less frequently in group B (33%) than in group A (46%). Likewise, DCI was present in 13% in group B compared with 42% in group A. After 12 months, 22 patients in group B had a favorable functional outcome (modified Rankin Scale score 0-3) compared with 15 patients in group A. CONCLUSIONS In this study, the incidence of CV and DCI was lower in patients receiving intravenous MgSO4 within 24 hours after aneurysmal SAH onset. Favorable functional outcome was more likely in the MgSO4 group after 12 months of follow-up.
Collapse
Affiliation(s)
- Julian Feulner
- Department of Neurosurgery, University Hospital Erlangen, Erlangen, Germany; Department of Neurosurgery, Klinikum Fürth, Fürth, Germany
| | | | - Arnd Dörfler
- Department of Neuroradiology, University Hospital Erlangen, Erlangen, Germany
| | - Torsten Birkholz
- Department of Anesthesiology, University Hospital Erlangen, Erlangen, Germany
| | - Michael Buchfelder
- Department of Neurosurgery, University Hospital Erlangen, Erlangen, Germany
| | - Björn Sommer
- Department of Neurosurgery, University Hospital Erlangen, Erlangen, Germany; Department of Neurosurgery, University Hospital Augsburg, Augsburg, Germany.
| |
Collapse
|
3
|
Zhang J, Zhu Q, Wang J, Peng Z, Zhuang Z, Hang C, Li W. Mitochondrial dysfunction and quality control lie at the heart of subarachnoid hemorrhage. Neural Regen Res 2024; 19:825-832. [PMID: 37843218 PMCID: PMC10664111 DOI: 10.4103/1673-5374.381493] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/11/2023] [Accepted: 06/06/2023] [Indexed: 10/17/2023] Open
Abstract
The dramatic increase in intracranial pressure after subarachnoid hemorrhage leads to a decrease in cerebral perfusion pressure and a reduction in cerebral blood flow. Mitochondria are directly affected by direct factors such as ischemia, hypoxia, excitotoxicity, and toxicity of free hemoglobin and its degradation products, which trigger mitochondrial dysfunction. Dysfunctional mitochondria release large amounts of reactive oxygen species, inflammatory mediators, and apoptotic proteins that activate apoptotic pathways, further damaging cells. In response to this array of damage, cells have adopted multiple mitochondrial quality control mechanisms through evolution, including mitochondrial protein quality control, mitochondrial dynamics, mitophagy, mitochondrial biogenesis, and intercellular mitochondrial transfer, to maintain mitochondrial homeostasis under pathological conditions. Specific interventions targeting mitochondrial quality control mechanisms have emerged as promising therapeutic strategies for subarachnoid hemorrhage. This review provides an overview of recent research advances in mitochondrial pathophysiological processes after subarachnoid hemorrhage, particularly mitochondrial quality control mechanisms. It also presents potential therapeutic strategies to target mitochondrial quality control in subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Jiatong Zhang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Qi Zhu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jie Wang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zheng Peng
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Zong Zhuang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Chunhua Hang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Wei Li
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
4
|
Yang S, Tan B, Lin J, Wang X, Fu C, Wang K, Qian J, Liu J, Xian J, Tan L, Feng H, Chen Y, Wang L. Monitoring of Perioperative Microcirculation Dysfunction by Near-Infrared Spectroscopy for Neurological Deterioration and Prognosis of Aneurysmal Subarachnoid Hemorrhage: An Observational, Longitudinal Cohort Study. Neurol Ther 2024; 13:475-495. [PMID: 38367176 PMCID: PMC10951157 DOI: 10.1007/s40120-024-00585-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/25/2024] [Indexed: 02/19/2024] Open
Abstract
INTRODUCTION No evidence has established a direct causal relationship between early microcirculation disturbance after aneurysmal subarachnoid hemorrhage (aSAH) and neurological function prognosis, which is the key pathophysiological mechanism of early brain injury (EBI) in patients with aSAH. METHODS A total of 252 patients with aSAH were enrolled in the Neurosurgical Intensive Care Unit of Southwest Hospital between January 2020 and December 2022 and divided into the no neurological deterioration, early neurological deterioration, and delayed neurological deterioration groups. Indicators of microcirculation disorders in EBI included regional cerebral oxygen saturation (rSO2) measured by near-infrared spectroscopy (NIRS), brain oxygen monitoring, and other clinical parameters for evaluating neurological function and determining the prognosis of patients with aSAH. RESULTS Our data suggest that the rSO2 is generally lower in patients who develop neurological deterioration than in those who do not and that there is at least one time point in the population of patients who develop neurological deterioration where left and right cerebral hemisphere differences can be significantly monitored by NIRS. An unordered multiple-classification logistic regression model was constructed, and the results revealed that multiple factors were effective predictors of early neurological deterioration: reoperation, history of brain surgery, World Federation of Neurosurgical Societies (WFNS) grade 4-5, Fisher grade 3-4, SAFIRE grade 3-5, abnormal serum sodium and potassium levels, and reduced rSO2 during the perioperative period. However, for delayed neurological deterioration in patients with aSAH, only a history of brain surgery and perioperative RBC count were predictive indicators. CONCLUSIONS The rSO2 concentration in patients with neurological deterioration is generally lower than that in patients without neurological deterioration, and at least one time point in the population with neurological deterioration can be significantly monitored via NIRS. However, further studies are needed to determine the role of microcirculation and other predictive factors in the neurocritical management of EBI after aSAH, as these factors can reduce the incidence of adverse outcomes and mortality during hospitalization.
Collapse
Affiliation(s)
- Shunyan Yang
- School of Nursing, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou Province, China
- Neurosurgical Intensive Care Unit, Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Binbin Tan
- Neurosurgical Intensive Care Unit, Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jie Lin
- Neurosurgical Intensive Care Unit, Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Department of Neurosurgery, The 943 Hospital of Joint Logistics Support Force of PLA, Wuwei, 733099, Gansu Province, China
| | - Xia Wang
- Neurosurgical Intensive Care Unit, Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Congying Fu
- School of Nursing, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou Province, China
| | - Kaishan Wang
- Neurosurgical Intensive Care Unit, Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jinyu Qian
- Neurosurgical Intensive Care Unit, Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jin Liu
- Neurosurgical Intensive Care Unit, Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Jishu Xian
- Neurosurgical Intensive Care Unit, Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Liang Tan
- Neurosurgical Intensive Care Unit, Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Hua Feng
- Neurosurgical Intensive Care Unit, Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yujie Chen
- Neurosurgical Intensive Care Unit, Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Lihua Wang
- Hospital Administration Office, Southwest Hospital, Third Military Medical University (Army Medical University), 29 Gaotanyan Street, Shapingba District, Chongqing, 400038, China.
| |
Collapse
|
5
|
Kaplan A, Kaleem S, Huynh M. Quality Improvement in the Management of Subarachnoid Hemorrhage: Current State and Future Directions. Curr Pain Headache Rep 2023; 27:27-38. [PMID: 36881288 DOI: 10.1007/s11916-022-01097-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2022] [Indexed: 03/08/2023]
Abstract
PURPOSE OF REVIEW Aneurysmal subarachnoid hemorrhage carries high mortality and morbidity. Quality improvement (QI) efforts in the management of this disease process are growing as the field of neurocritical care matures. This review provides updates in QI in subarachnoid hemorrhage (SAH) and discusses gaps and future directions. RECENT FINDINGS Literature published on the topic over the past 3 years were evaluated. An assessment of current QI practices pertaining to the acute care of SAH was conducted. These include processes surrounding acute pain management, inter-hospital coordination of care, complications during the initial hospital stay, role of palliative care, and quality metrics collection, reporting, and monitoring. SAH QI initiatives have shown promise by decreasing ICU and hospital lengths of stay, health care costs, and hospital complications. The review reveals substantial heterogeneity, variability, and limitations in SAH QI protocols, measures, and reporting. Uniformity in QI research, implementation, and monitoring will be crucial as disease-specific QI develops in neurological care.
Collapse
Affiliation(s)
- Aaron Kaplan
- Department of Neurology, New York-Presbyterian Hospital, Weill Cornell Medicine, 525 East 68th Street, NY, New York, USA
| | - Safa Kaleem
- Department of Neurology, New York-Presbyterian Hospital, Weill Cornell Medicine, 525 East 68th Street, NY, New York, USA
| | - Margaret Huynh
- Department of Neurology, New York-Presbyterian Hospital, Weill Cornell Medicine, 525 East 68th Street, NY, New York, USA.
| |
Collapse
|
6
|
Chen Y, Galea I, Macdonald RL, Wong GKC, Zhang JH. Rethinking the initial changes in subarachnoid haemorrhage: Focusing on real-time metabolism during early brain injury. EBioMedicine 2022; 83:104223. [PMID: 35973388 PMCID: PMC9396538 DOI: 10.1016/j.ebiom.2022.104223] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/17/2022] [Accepted: 07/30/2022] [Indexed: 11/16/2022] Open
Abstract
Over the last two decades, neurological researchers have uncovered many pathophysiological mechanisms associated with subarachnoid haemorrhage (SAH), with early brain injury and delayed cerebral ischaemia both contributing to morbidity and mortality. The current dilemma in SAH management inspired us to rethink the nature of the insult in SAH: sudden bleeding into the subarachnoid space and hypoxia due to disturbed cerebral circulation and increased intracranial pressure, generating exogenous stimuli and subsequent pathophysiological processes. Exogenous stimuli are defined as factors which the brain tissue is not normally exposed to when in the healthy state. Intersections of these initial pathogenic factors lead to secondary brain injury with related metabolic changes after SAH. Herein, we summarized the current understanding of efforts to monitor and analyse SAH-related metabolic changes to identify those precise pathophysiological processes and potential therapeutic strategies; in particular, we highlight the restoration of normal cerebrospinal fluid circulation and the normalization of brain-blood interface physiology to alleviate early brain injury and delayed neurological deterioration after SAH.
Collapse
Affiliation(s)
- Yujie Chen
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Ian Galea
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, United Kingdom
| | - R Loch Macdonald
- Community Neurosciences Institutes, Community Regional Medical Center, Fresno, CA 93701, USA
| | - George Kwok Chu Wong
- Division of Neurosurgery, Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - John H Zhang
- Neuroscience Research Center, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA.
| |
Collapse
|
7
|
Aneurysmal Subarachnoid Hemorrhage: Review of the Pathophysiology and Management Strategies. Curr Neurol Neurosci Rep 2021; 21:50. [PMID: 34308493 DOI: 10.1007/s11910-021-01136-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW Aneurysmal subarachnoid hemorrhage remains a devastating disease process despite medical advances made over the past 3 decades. Much of the focus was on prevention and treatment of vasospasm to reduce delayed cerebral ischemia and improve outcome. In recent years, there has been a shift of focus onto early brain injury as the precursor to delayed cerebral ischemia. This review will focus on the most recent data surrounding the pathophysiology of aneurysmal subarachnoid hemorrhage and current management strategies. RECENT FINDINGS There is a paucity of successful trials in the management of subarachnoid hemorrhage likely related to the targeting of vasospasm. Pathophysiological changes occurring at the time of aneurysmal rupture lead to early brain injury including cerebral edema, inflammation, and spreading depolarization. These events result in microvascular collapse, vasospasm, and ultimately delayed cerebral ischemia. Management of aneurysmal subarachnoid hemorrhage has remained the same over the past few decades. No recent trials have resulted in new treatments. However, our understanding of the pathophysiology is rapidly expanding and will advise future therapeutic targets.
Collapse
|
8
|
Claassen J, Akbari Y, Alexander S, Bader MK, Bell K, Bleck TP, Boly M, Brown J, Chou SHY, Diringer MN, Edlow BL, Foreman B, Giacino JT, Gosseries O, Green T, Greer DM, Hanley DF, Hartings JA, Helbok R, Hemphill JC, Hinson HE, Hirsch K, Human T, James ML, Ko N, Kondziella D, Livesay S, Madden LK, Mainali S, Mayer SA, McCredie V, McNett MM, Meyfroidt G, Monti MM, Muehlschlegel S, Murthy S, Nyquist P, Olson DM, Provencio JJ, Rosenthal E, Sampaio Silva G, Sarasso S, Schiff ND, Sharshar T, Shutter L, Stevens RD, Vespa P, Videtta W, Wagner A, Ziai W, Whyte J, Zink E, Suarez JI. Proceedings of the First Curing Coma Campaign NIH Symposium: Challenging the Future of Research for Coma and Disorders of Consciousness. Neurocrit Care 2021; 35:4-23. [PMID: 34236619 PMCID: PMC8264966 DOI: 10.1007/s12028-021-01260-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/15/2021] [Indexed: 01/04/2023]
Abstract
Coma and disorders of consciousness (DoC) are highly prevalent and constitute a burden for patients, families, and society worldwide. As part of the Curing Coma Campaign, the Neurocritical Care Society partnered with the National Institutes of Health to organize a symposium bringing together experts from all over the world to develop research targets for DoC. The conference was structured along six domains: (1) defining endotype/phenotypes, (2) biomarkers, (3) proof-of-concept clinical trials, (4) neuroprognostication, (5) long-term recovery, and (6) large datasets. This proceedings paper presents actionable research targets based on the presentations and discussions that occurred at the conference. We summarize the background, main research gaps, overall goals, the panel discussion of the approach, limitations and challenges, and deliverables that were identified.
Collapse
Affiliation(s)
- Jan Claassen
- Department of Neurology, Columbia University and New York-Presbyterian Hospital, 177 Fort Washington Avenue, MHB 8 Center, Room 300, New York City, NY, 10032, USA.
| | - Yama Akbari
- Departments of Neurology, Neurological Surgery, and Anatomy & Neurobiology and Beckman Laser Institute and Medical Clinic, University of California, Irvine, Irvine, CA, USA
| | - Sheila Alexander
- Acute and Tertiary Care, School of Nursing and Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Kathleen Bell
- Department of Physical Medicine and Rehabilitation, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Thomas P Bleck
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Melanie Boly
- Department of Neurology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Jeremy Brown
- Office of Emergency Care Research, Division of Clinical Research, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Sherry H-Y Chou
- Departments of Critical Care Medicine, Neurology, and Neurosurgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael N Diringer
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Brian L Edlow
- Department of Neurology, Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital and Harvard Medical School, Harvard University, Boston, MA, USA
| | - Brandon Foreman
- Departments of Neurology and Rehabilitation Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Joseph T Giacino
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Olivia Gosseries
- GIGA Consciousness After Coma Science Group, University of Liege, Liege, Belgium
| | - Theresa Green
- School of Nursing, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - David M Greer
- Department of Neurology, School of Medicine, Boston University, Boston, MA, USA
| | - Daniel F Hanley
- Division of Brain Injury Outcomes, Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jed A Hartings
- Department of Neurosurgery, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Raimund Helbok
- Neurocritical Care Unit, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - J Claude Hemphill
- Department of Neurology, Weill Institute for Neurosciences, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - H E Hinson
- Department of Neurology, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Karen Hirsch
- Department of Neurology, Stanford University, Palo Alto, CA, USA
| | - Theresa Human
- Department of Pharmacy, Barnes Jewish Hospital, St. Louis, MO, USA
| | - Michael L James
- Departments of Anesthesiology and Neurology, Duke University, Durham, NC, USA
| | - Nerissa Ko
- Department of Neurology, Weill Institute for Neurosciences, School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Daniel Kondziella
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Sarah Livesay
- College of Nursing, Rush University, Chicago, IL, USA
| | - Lori K Madden
- Center for Nursing Science, University of California, Davis, Sacramento, CA, USA
| | - Shraddha Mainali
- Department of Neurology, The Ohio State University, Columbus, OH, USA
| | - Stephan A Mayer
- Department of Neurology, New York Medical College, Valhalla, NY, USA
| | - Victoria McCredie
- Interdepartmental Division of Critical Care, Department of Respirology, University of Toronto, Toronto, ON, Canada
| | - Molly M McNett
- College of Nursing, The Ohio State University, Columbus, OH, USA
| | - Geert Meyfroidt
- Department of Intensive Care Medicine, University Hospitals Leuven and University of Leuven, Leuven, Belgium
| | - Martin M Monti
- Departments of Neurosurgery and Psychology, Brain Injury Research Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Susanne Muehlschlegel
- Departments of Neurology, Anesthesiology/Critical Care, and Surgery, Medical School, University of Massachusetts, Worcester, MA, USA
| | - Santosh Murthy
- Department of Neurology, Weill Cornell Medical College, New York City, NY, USA
| | - Paul Nyquist
- Division of Neurosciences Critical Care, Departments of Anesthesiology and Critical Care Medicine, Neurology, and Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - DaiWai M Olson
- Departments of Neurology and Neurosurgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - J Javier Provencio
- Departments of Neurology and Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Eric Rosenthal
- Department of Neurology, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Gisele Sampaio Silva
- Department of Neurology, Albert Einstein Israelite Hospital and Universidade Federal de São Paulo, São Paulo, Brazil
| | - Simone Sarasso
- Department of Biomedical and Clinical Sciences "L. Sacco", Università degli Studi di Milano, Milan, Italy
| | - Nicholas D Schiff
- Department of Neurology and Brain Mind Research Institute, Weill Cornell Medicine, Cornell University, New York City, NY, USA
| | - Tarek Sharshar
- Department of Intensive Care, Paris Descartes University, Paris, France
| | - Lori Shutter
- Departments of Critical Care Medicine, Neurology, and Neurosurgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robert D Stevens
- Division of Neurosciences Critical Care, Departments of Anesthesiology and Critical Care Medicine, Neurology, and Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Paul Vespa
- Departments of Neurosurgery and Neurology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Walter Videtta
- National Hospital Alejandro Posadas, Buenos Aires, Argentina
| | - Amy Wagner
- Department of Physical Medicine and Rehabilitation, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Wendy Ziai
- Division of Neurosciences Critical Care, Departments of Anesthesiology and Critical Care Medicine, Neurology, and Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - John Whyte
- Moss Rehabilitation Research Institute, Elkins Park, PA, USA
| | - Elizabeth Zink
- Division of Neurosciences Critical Care, Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jose I Suarez
- Division of Neurosciences Critical Care, Departments of Anesthesiology and Critical Care Medicine, Neurology, and Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
9
|
Hammer A, Erbguth F, Hohenhaus M, Hammer CM, Lücking H, Gesslein M, Killer-Oberpfalzer M, Steiner HH, Janssen H. Neurocritical care complications and interventions influence the outcome in aneurysmal subarachnoid hemorrhage. BMC Neurol 2021; 21:27. [PMID: 33468099 PMCID: PMC7814559 DOI: 10.1186/s12883-021-02054-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/12/2021] [Indexed: 12/29/2022] Open
Abstract
Background This observational study was performed to show the impact of complications and interventions during neurocritical care on the outcome after aneurysmal subarachnoid hemorrhage (SAH). Methods We analyzed 203 cases treated for ruptured intracranial aneurysms, which were classified regarding clinical outcome after one year according to the modified Rankin Scale (mRS). We reviewed the data with reference to the occurrence of typical complications and interventions in neurocritical care units. Results Decompressive craniectomy (odds ratio 21.77 / 6.17 ; p < 0.0001 / p = 0.013), sepsis (odds ratio 14.67 / 6.08 ; p = 0.037 / 0.033) and hydrocephalus (odds ratio 3.71 / 6.46 ; p = 0.010 / 0.00095) were significant predictors for poor outcome and death after one year beside “World Federation of Neurosurgical Societies” (WFNS) grade (odds ratio 3.86 / 4.67 ; p < 0.0001 / p < 0.0001) and age (odds ratio 1.06 / 1.10 ; p = 0.0030 / p < 0.0001) in our multivariate analysis (binary logistic regression model). Conclusions In summary, decompressive craniectomy, sepsis and hydrocephalus significantly influence the outcome and occurrence of death after aneurysmal SAH.
Collapse
Affiliation(s)
- Alexander Hammer
- Department of Neurosurgery, Paracelsus Medical University, Breslauer Straße 201, 90471, Bavaria, Nuremberg, Germany.
| | - Frank Erbguth
- Department of Neurology, Paracelsus Medical University, Breslauer Str. 201, 90471, Bavaria, Nuremberg, Germany
| | - Matthias Hohenhaus
- Department of Anaesthesiology, Paracelsus Medical University, Breslauer Str. 201, 90471, Bavaria, Nuremberg, Germany
| | - Christian M Hammer
- Department of Anatomy 2, University of Erlangen-Nuremberg, Universitätsstraße 19, 91054, Bavaria, Erlangen, Germany
| | - Hannes Lücking
- Department of Neuroradiology, University of Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Markus Gesslein
- Department of Orthopaedics and Traumatology, Paracelsus Medical University, Breslauer Str. 201, 90471, Bavaria, Nuremberg, Germany
| | - Monika Killer-Oberpfalzer
- Neurology/Research Institute of Neurointervention, Paracelsus Medical University, Ignaz Harrer Str. 79, Salzburg, Austria
| | - Hans-Herbert Steiner
- Department of Neurosurgery, Paracelsus Medical University, Breslauer Straße 201, 90471, Bavaria, Nuremberg, Germany
| | - Hendrik Janssen
- Department of Neuroradiology, Ingolstadt General Hospital, Krumenauerstraße 25, 85049, Bavaria, Ingolstadt, Germany
| |
Collapse
|