1
|
Kelly-Hedrick M, Liu S, Hatfield J, Soto AL, Bartlett AM, Heo HJ, O’Callaghan E, Arulraja E, Kaplan S, Ohnuma T, Krishnamoorthy V, Colton K, Komisarow J. Management of traumatic brain injury and acute respiratory distress syndrome-What evidence exists? A scoping review. J Intensive Care Soc 2025; 26:205-222. [PMID: 39834359 PMCID: PMC11742134 DOI: 10.1177/17511437241311398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
Introduction Up to 20% of patients with traumatic brain injury (TBI) develop acute respiratory distress syndrome (ARDS), which is associated with increased odds of mortality. Guideline-based treatment for ARDS includes "lung protective" ventilation strategies, some of which are in opposition to "brain protective" strategies used for ventilation with patients with TBI. We conducted a scoping review of ventilation management strategies with clinical outcomes among patients with TBI and ARDS. Methods We searched three databases (MEDLINE, Embase, Web of Science) using a systematic search strategy. We included any studies of patients with TBI and ARDS with ventilation strategies including PEEP, oxygenation, prone positioning, recruitment maneuvers, pulmonary vasodilators (e.g., nitric oxide), high frequency oscillatory ventilation (HFOV), and extracorporeal membrane oxygenation (ECMO). All clinical outcomes were included. Extracted data included details about sample (age, gender), study design, inclusion/exclusion criteria, intervention details, and outcomes. Results The search returned 10,514 articles, 35 of which met final inclusion criteria. Interventions studied included ECMO (n = 13 articles), HFOV (n = 4), PEEP interventions (n = 3), prone positioning (n = 3), vasodilators (n = 4), and other lung recruitment maneuvers (n = 9). No randomized controlled trials were identified; studies were mostly case reports (n = 18/35, 51%) and series (n = 7/35, 20%), with some cohort studies (n = 5/35, 14%) and non-randomized experimental trials (n = 5/35, 14%), all at single institutions. Outcomes included physiologic changes (e.g., change in cerebrodynamics or hemodynamics with intervention) and clinical outcomes such as mortality, complications, or neurologic recovery. Five studies (14%) included pediatric patients. Discussion In this scoping review of ventilatory strategies for patients with concurrent TBI and ARDS, we found variation in heterogeneity of study design, interventions, and outcomes. Studies were mostly case report/series and observational studies, seriously limiting our ability to draw conclusions about effectiveness of interventions. Targeted areas of further research are discussed.
Collapse
Affiliation(s)
- Margot Kelly-Hedrick
- Critical Care and Perioperative Population Health Research (CAPER) Program, Department of Anesthesiology, Duke University, Durham, NC, USA
- Duke University School of Medicine, Durham, NC, USA
| | - Sunny Liu
- Critical Care and Perioperative Population Health Research (CAPER) Program, Department of Anesthesiology, Duke University, Durham, NC, USA
- Duke University School of Medicine, Durham, NC, USA
| | - Jordan Hatfield
- Critical Care and Perioperative Population Health Research (CAPER) Program, Department of Anesthesiology, Duke University, Durham, NC, USA
- Department of Neurosurgery, Duke University, Durham, NC, USA
| | | | | | - Helen J. Heo
- Duke University School of Medicine, Durham, NC, USA
| | | | | | - Samantha Kaplan
- Duke University Medical Center Library and Archives, Durham, NC, USA
| | - Tetsu Ohnuma
- Critical Care and Perioperative Population Health Research (CAPER) Program, Department of Anesthesiology, Duke University, Durham, NC, USA
- Anesthesiology, Duke University, Durham, NC, USA
| | - Vijay Krishnamoorthy
- Critical Care and Perioperative Population Health Research (CAPER) Program, Department of Anesthesiology, Duke University, Durham, NC, USA
- Anesthesiology, Duke University, Durham, NC, USA
- Population Health Sciences, Duke University, Durham, NC, USA
| | | | - Jordan Komisarow
- Critical Care and Perioperative Population Health Research (CAPER) Program, Department of Anesthesiology, Duke University, Durham, NC, USA
- Department of Neurosurgery, Duke University, Durham, NC, USA
| |
Collapse
|
2
|
Robateau Z, Lin V, Wahlster S. Acute Respiratory Failure in Severe Acute Brain Injury. Crit Care Clin 2024; 40:367-390. [PMID: 38432701 DOI: 10.1016/j.ccc.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Acute respiratory failure is commonly encountered in severe acute brain injury due to a multitude of factors related to the sequelae of the primary injury. The interaction between pulmonary and neurologic systems in this population is complex, often with competing priorities. Many treatment modalities for acute respiratory failure can result in deleterious effects on cerebral physiology, and secondary brain injury due to elevations in intracranial pressure or impaired cerebral perfusion. High-quality literature is lacking to guide clinical decision-making in this population, and deliberate considerations of individual patient factors must be considered to optimize each patient's care.
Collapse
Affiliation(s)
- Zachary Robateau
- Department of Neurology, University of Washington, Seattle, USA.
| | - Victor Lin
- Department of Neurology, University of Washington, Seattle, USA
| | - Sarah Wahlster
- Department of Neurology, University of Washington, Seattle, USA; Department of Neurological Surgery, University of Washington, Seattle, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, USA
| |
Collapse
|
3
|
Pellet PL, Stevic N, Degivry F, Louis B, Argaud L, Guérin C, Cour M. Effects on mechanical power of different devices used for inhaled sedation in a bench model of protective ventilation in ICU. Ann Intensive Care 2024; 14:18. [PMID: 38285231 PMCID: PMC10825094 DOI: 10.1186/s13613-024-01245-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/06/2024] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND Inhaled sedation during invasive mechanical ventilation in patients with acute respiratory distress syndrome (ARDS) has received increasing attention. However, inhaled sedation devices increase dead-space ventilation and an undesirable effect is the increase in minute ventilation needed to maintain CO2 removal. A consequence of raising minute ventilation is an increase in mechanical power (MP) that can promote lung injury. However, the effect of inhaled sedation devices on MP remains unknown. METHODS We conducted a bench study to assess and compare the effects of three devices delivering inhaled sevoflurane currently available in ICU (AnaConDa-50 mL (ANA-50), AnaConDa-100 mL (ANA-100), and MIRUS) on MP by using a test lung model set with three compliances (20, 40, and 60 mL/cmH2O). We simulated lung-protective ventilation using a low tidal volume and two levels of positive end-expiratory pressure (5 and 15 cmH2O) under ambient temperature and dry conditions. Following the insertion of the devices, either the respiratory rate or tidal volume was increased in 15%-steps until end-tidal CO2 (EtCO2) returned to the baseline value. MP was calculated at baseline and after EtCO2 correction using a simplified equation. RESULTS Following device insertion, the EtCO2 increase was significantly greater with MIRUS (+ 78 ± 13%) and ANA-100 (+ 100 ± 11%) than with ANA-50 (+ 49 ± 7%). After normalizing EtCO2 by adjusting minute ventilation, MP significantly increased by more than 50% with all inhaled sedation devices compared to controls. The lowest increase in MP was observed with ANA-50 (p < 0.05 versus ANA-100 and MIRUS). The Costa index, another parameter assessing the mechanical energy delivered to the lungs, calculated as driving pressure × 4 + respiratory rate, significantly increased by more than 20% in all experimental conditions. Additional experiments performed under body temperature, ambient pressure, and gas saturated with water vapor conditions, confirmed the main results with an increase in MP > 50% with all devices after normalizing EtCO2 by adjusting minute ventilation. CONCLUSION Inhaled sedation devices substantially increased MP in this bench model of protective ventilation, which might limit their benefits in ARDS.
Collapse
Affiliation(s)
- Pierre-Louis Pellet
- Hospices Civils de Lyon, Service de Médecine Intensive -Réanimation, Hôpital Edouard Herriot, 5 Place d'Arsonval, 69437, Lyon Cedex 03, France
- Université de Lyon, Université Claude Bernard Lyon 1, Faculté de Médecine Lyon-Est, 69373, Lyon, France
| | - Neven Stevic
- Hospices Civils de Lyon, Service de Médecine Intensive -Réanimation, Hôpital Edouard Herriot, 5 Place d'Arsonval, 69437, Lyon Cedex 03, France
- Université de Lyon, Université Claude Bernard Lyon 1, Faculté de Médecine Lyon-Est, 69373, Lyon, France
| | - Florian Degivry
- Hospices Civils de Lyon, Service de Médecine Intensive -Réanimation, Hôpital Edouard Herriot, 5 Place d'Arsonval, 69437, Lyon Cedex 03, France
| | - Bruno Louis
- Institut Mondor de Recherches Biomédicales INSERM 955 CNRS 7000, Créteil, France
| | - Laurent Argaud
- Hospices Civils de Lyon, Service de Médecine Intensive -Réanimation, Hôpital Edouard Herriot, 5 Place d'Arsonval, 69437, Lyon Cedex 03, France
| | - Claude Guérin
- Hospices Civils de Lyon, Service de Médecine Intensive -Réanimation, Hôpital Edouard Herriot, 5 Place d'Arsonval, 69437, Lyon Cedex 03, France
- Université de Lyon, Université Claude Bernard Lyon 1, Faculté de Médecine Lyon-Est, 69373, Lyon, France
| | - Martin Cour
- Hospices Civils de Lyon, Service de Médecine Intensive -Réanimation, Hôpital Edouard Herriot, 5 Place d'Arsonval, 69437, Lyon Cedex 03, France.
- Université de Lyon, Université Claude Bernard Lyon 1, Faculté de Médecine Lyon-Est, 69373, Lyon, France.
| |
Collapse
|
4
|
Frisvold S, Coppola S, Ehrmann S, Chiumello D, Guérin C. Respiratory challenges and ventilatory management in different types of acute brain-injured patients. Crit Care 2023; 27:247. [PMID: 37353832 PMCID: PMC10290317 DOI: 10.1186/s13054-023-04532-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023] Open
Abstract
Acute brain injury (ABI) covers various clinical entities that may require invasive mechanical ventilation (MV) in the intensive care unit (ICU). The goal of MV, which is to protect the lung and the brain from further injury, may be difficult to achieve in the most severe forms of lung or brain injury. This narrative review aims to address the respiratory issues and ventilator management, specific to ABI patients in the ICU.
Collapse
Affiliation(s)
- S Frisvold
- Department of Anesthesia and Intensive Care, University Hospital of North Norway, Tromso, Norway
- Department of Clinical Medicine, UiT the Arctic University of Norway, Tromso, Norway
| | - S Coppola
- Department of Anesthesia and Intensive Care, ASST Santi Paolo e Carlo, San Paolo University Hospital, Milan, Italy
- Department of Health Sciences, University of Milan, Milan, Italy
- Coordinated Research Center On Respiratory Failure, University of Milan, Milan, Italy
| | - S Ehrmann
- CHRU Tours, Médecine Intensive Réanimation, CIC INSERM 1415, CRICS-TriggerSep F-CRIN Research Network, Tours, France
- INSERM, Centre d'étude Des Pathologies Respiratoires, U1100, Université de Tours, Tours, France
| | - D Chiumello
- Department of Anesthesia and Intensive Care, ASST Santi Paolo e Carlo, San Paolo University Hospital, Milan, Italy
- Department of Health Sciences, University of Milan, Milan, Italy
- Coordinated Research Center On Respiratory Failure, University of Milan, Milan, Italy
| | - Claude Guérin
- Faculté de Médecine Lyon Est, Université Claude Bernard Lyon 1, 8 Avenue Rockefeller, 69008, Lyon, France.
| |
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW Recent studies have focused on identifying optimal targets and strategies of mechanical ventilation in patients with acute brain injury (ABI). The present review will summarize these findings and provide practical guidance to titrate ventilatory settings at the bedside, with a focus on managing potential brain-lung conflicts. RECENT FINDINGS Physiologic studies have elucidated the impact of low tidal volume ventilation and varying levels of positive end expiratory pressure on intracranial pressure and cerebral perfusion. Epidemiologic studies have reported the association of different thresholds of tidal volume, plateau pressure, driving pressure, mechanical power, and arterial oxygen and carbon dioxide concentrations with mortality and neurologic outcomes in patients with ABI. The data collectively make clear that injurious ventilation in this population is associated with worse outcomes; however, optimal ventilatory targets remain poorly defined. SUMMARY Although direct data to guide mechanical ventilation in brain-injured patients is accumulating, the current evidence base remains limited. Ventilatory considerations in this population should be extrapolated from high-quality evidence in patients without brain injury - keeping in mind relevant effects on intracranial pressure and cerebral perfusion in patients with ABI and individualizing the chosen strategy to manage brain-lung conflicts where necessary.
Collapse
Affiliation(s)
- Shaurya Taran
- Department of Neurology, Massachusetts General Hospital, Harvard University, Boston, MA, USA
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Sarah Wahlster
- Department of Neurology
- Department of Neurological Surgery
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington, USA
| | - Chiara Robba
- IRCCS, Policlinico San Martino
- Department of Surgical Sciences and Diagnostic Integrated, University of Genoa, Genoa, Italy
| |
Collapse
|
6
|
Lavoie-Bérard CA, Lefebvre JC, Bouchard PA, Simon M, Lellouche F. Impact of Airway Humidification Strategy in Mechanically Ventilated COVID-19 Patients. Respir Care 2022; 67:157-166. [PMID: 34670857 PMCID: PMC9993947 DOI: 10.4187/respcare.09314] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Humidification of inspiratory gases is mandatory in all mechanically ventilated patients in ICUs, either with heated humidifiers (HHs) or with heat and moisture exchangers (HMEs). In patients with COVID-19, the choice of the humidification device may have relevant impact on patients' management as demonstrated in recent studies. We reported data from 2 ICUs using either HME or HH. METHODS Data from patients with COVID-19 requiring invasive mechanical ventilation during the first wave in 2 ICUs in Québec City were reviewed. In one ICU, HMEs were used, whereas heated-wire HHs were used in the other ICU. We compared ventilator settings and arterial blood gases at day one after adjustment of ventilator settings. Episodes of endotracheal tube occlusions (ETOs) or subocclusions and a strategy to limit the risk of under-humidification were reported. On a bench test, we measured humidity with psychrometry with HH at different ambient temperature and evaluated the relation with heater plate temperature. RESULTS We reported data from 20 subjects positive for SARS-Cov-2, including 6 in the ICU using HME and 14 in the ICU using HH. In the HME group, PaCO2 was higher (48 vs 42 mm Hg) despite higher minute ventilation (171 vs 145 mL/kg/min predicted body weight [PBW]). We also reported 3 ETOs occurring in the ICU using HH. The hygrometric bench study reported a strong correlation between heater plate temperatures of the HH and humidity delivered. After implementation of measures to avoid under-humidification, including heater plate temperature monitoring, no more ETOs occurred. CONCLUSIONS The choice of the humidification device used in subjects with COVID-19 had a relevant impact on ventilation efficiency (increased CO2 removal with lower dead space) and on complications related to low humidity, including ETOs that may be present with heated-wire HHs when used with high ambient temperatures.
Collapse
Affiliation(s)
- Carole-Anne Lavoie-Bérard
- département d'anesthésiologie et de soins intensifs, division de soins intensifs, Université Laval, Québec City, Canada
| | - Jean-Claude Lefebvre
- département d'anesthésiologie et de soins intensifs, division de soins intensifs, Université Laval, Québec City, Canada
| | - Pierre-Alexandre Bouchard
- centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec City, Canada
| | - Mathieu Simon
- centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec City, Canada
| | - François Lellouche
- centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec City, Canada.
| |
Collapse
|
7
|
Individualized positive end-expiratory pressure guided by end-expiratory lung volume in early acute respiratory distress syndrome: study protocol for the multicenter, randomized IPERPEEP trial. Trials 2022; 23:63. [PMID: 35057852 PMCID: PMC8772175 DOI: 10.1186/s13063-021-05993-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 12/30/2021] [Indexed: 12/16/2022] Open
Abstract
Background In acute respiratory distress syndrome (ARDS), response to positive end-expiratory pressure (PEEP) is variable according to different degrees of lung recruitability. The search for a tool to individualize PEEP based on patients’ individual response is warranted. End-expiratory lung volume (EELV) assessment by nitrogen washing-washout aids bedside estimation of PEEP-induced alveolar recruitment and may therefore help titrate PEEP on patient’s individual recruitability. We designed a randomized trial to test whether an individualized PEEP setting protocol driven by EELV measurement may improve a composite clinical outcome in patients with moderate-to-severe ARDS (IPERPEEP trial). Methods IPERPEEP is an open-label, multicenter, randomized trial that will be conducted in 10 intensive care units in Italy and will enroll 132 ARDS patients showing PaO2/FiO2 ratio ≤ 150 mmHg within 24 h from endotracheal intubation while on mechanical ventilation with PEEP 5 cmH2O. To standardize lung volumes at study initiation, all patients will undergo mechanical ventilation with tidal volume of 6 ml/kg of predicted body weight and PEEP set to obtain a plateau pressure within 28 and 30 cmH2O for 30 min (EXPRESS PEEP). Afterwards, a 5-step decremental PEEP trial will be conducted (EXPRESS PEEP to PEEP 5 cmH2O), and EELV will be measured at each step. Recruitment-to-inflation ratio will be calculated for each PEEP range from EELV difference. Patients will be then randomized to receive mechanical ventilation with PEEP set according to the optimal recruitment observed in the PEEP trial (IPERPEEP arm) trial or to achieve a plateau pressure of 28–30 cmH2O (control arm, EXPRESS strategy). In both groups, tidal volume size, use of prone positioning and neuromuscular blocking agents, and weaning from PEEP and from mechanical ventilation will be standardized. The primary endpoint of the study is a composite clinical outcome incorporating in-ICU mortality, 60-day ventilator-free days, and serum interleukin-6 concentration over the course of the initial 72 h of treatment. Discussion The IPERPEEP study is a randomized trial powered to elucidate whether an individualized PEEP setting protocol based on bedside assessment of lung recruitability can improve a composite clinical outcome during moderate-to-severe ARDS. Trial registration ClinicalTrials.govNCT04012073. Registered 9 July 2019. Supplementary Information The online version contains supplementary material available at 10.1186/s13063-021-05993-0.
Collapse
|
8
|
Brasil S, Renck AC, Taccone FS, Fontoura Solla DJ, Tomazini BM, Wayhs SY, Fonseca S, Bassi E, Lucena B, De Carvalho Nogueira R, Paiva W, Teixeira MJ, Frade Costa EM, Sá Malbouisson LM. Obesity and its implications on cerebral circulation and intracranial compliance in severe COVID-19. Obes Sci Pract 2021; 7:751-759. [PMID: 34226849 PMCID: PMC8242615 DOI: 10.1002/osp4.534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/11/2021] [Accepted: 05/15/2021] [Indexed: 12/16/2022] Open
Abstract
Objective Multiple factors have been identified as causes of intracranial compliance impairment (ICCI) among patients with obesity. On the other hand, obesity has been linked with worst outcomes in COVID-19. Thus, the hypothesis of severe acute respiratory syndrome (SARS) conducing to cerebral hemodynamic disorders (CHD) able to worsen ICCI and play an additional role on prognosis determination for COVID-19 among obese patients becomes suitable. Methods 50 cases of SARS by COVID-19 were evaluated, for the presence of ICCI and cerebrovascular circulatory disturbances in correspondence with whether unfavorable outcomes (death or impossibility for mechanical ventilation weaning [MVW]) within 7 days after evaluation. The objective was to observe whether obese patients (BMI ≥ 30) disclosed worse outcomes and tests results compared with lean subjects with same clinical background. Results 23 (46%) patients among 50 had obesity. ICCI was verified in 18 (78%) obese, whereas in 13 (48%) of 27 non-obese (p = 0,029). CHD were not significantly different between groups, despite being high prevalent in both. 69% unfavorable outcomes were observed among obese and 44% for lean subjects (p = 0,075). Conclusion In the present study, intracranial compliance impairment was significantly more observed among obese subjects and may have contributed for SARS COVID-19 worsen prognosis.
Collapse
|
9
|
Shimoda T, Sekino M, Higashijima U, Matsumoto S, Sato S, Yano R, Egashira T, Araki H, Naoya I, Miki S, Koyanagi R, Hayashi M, Kurihara S, Hara T. Removal of a catheter mount and heat-and-moisture exchanger improves hypercapnia in patients with acute respiratory distress syndrome: A retrospective observational study. Medicine (Baltimore) 2021; 100:e27199. [PMID: 34516524 PMCID: PMC8428744 DOI: 10.1097/md.0000000000027199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/29/2021] [Accepted: 08/24/2021] [Indexed: 01/05/2023] Open
Abstract
ABSTRACT To avoid ventilator-associated lung injury in acute respiratory distress syndrome (ARDS) treatment, respiratory management should be performed at a low tidal volume of 6 to 8 mL/kg and plateau pressure of ≤30 cmH2O. However, such lung-protective ventilation often results in hypercapnia, which is a risk factor for poor outcomes. The purpose of this study was to retrospectively evaluate the effectiveness and safety of the removal of a catheter mount (CM) and using heated humidifiers (HH) instead of a heat-and-moisture exchanger (HME) for reducing the mechanical dead space created by the CM and HME, which may improve hypercapnia in patients with ARDS.This retrospective observational study included adult patients with ARDS, who developed hypercapnia (PaCO2 > 45 mm Hg) during mechanical ventilation, with target tidal volumes between 6 and 8 mL/kg and a plateau pressure of ≤30 cmH2O, and underwent stepwise removal of CM and HME (replaced with HH). The PaCO2 values were measured at 3 points: ventilator circuit with CM and HME (CM + HME) use, with HME (HME), and with HH (HH), and the overall number of accidental extubations was evaluated. Ventilator values (tidal volume, respiratory rate, minutes volume) were evaluated at the same points.A total of 21 patients with mild-to-moderate ARDS who were treated under deep sedation were included. The values of PaCO2 at HME (52.7 ± 7.4 mm Hg, P < .0001) and HH (46.3 ± 6.8 mm Hg, P < .0001) were significantly lower than those at CM + HME (55.9 ± 7.9 mm Hg). Measured ventilator values were similar at CM + HME, HME, and HH. There were no cases of reintubation due to accidental extubation after the removal of CM.The removal of CM and HME reduced PaCO2 values without changing the ventilator settings in deeply sedated patients with mild-to-moderate ARDS on lung-protective ventilation. Caution should be exercised, as the removal of a CM may result in circuit disconnection or accidental extubation. Nevertheless, this intervention may improve hypercapnia and promote lung-protective ventilation.
Collapse
Affiliation(s)
- Takaya Shimoda
- Medical Engineering Equipment Center, Nagasaki University Hospital, Nagasaki, Japan
| | - Motohiro Sekino
- Department of Anesthesiology and Intensive Care Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Ushio Higashijima
- Department of Anesthesiology and Intensive Care Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Sojiro Matsumoto
- Department of Anesthesiology and Intensive Care Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shuntaro Sato
- Clinical Research Center, Nagasaki University Hospital, Nagasaki, Japan
| | - Rintaro Yano
- Department of Anesthesiology and Intensive Care Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takashi Egashira
- Department of Intensive Care, Nagasaki Harbor Medical Center, Nagasaki, Japan
| | - Hiroshi Araki
- Department of Anesthesiology and Intensive Care Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Iwasaki Naoya
- Department of Anesthesiology and Intensive Care Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Suzumura Miki
- Department of Anesthesiology and Intensive Care Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Ryo Koyanagi
- Medical Engineering Equipment Center, Nagasaki University Hospital, Nagasaki, Japan
| | - Makoto Hayashi
- Medical Engineering Equipment Center, Nagasaki University Hospital, Nagasaki, Japan
| | - Shintaro Kurihara
- Medical Engineering Equipment Center, Nagasaki University Hospital, Nagasaki, Japan
| | - Tetsuya Hara
- Department of Anesthesiology and Intensive Care Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
10
|
Wang L, Ren C, Li Y, Gao C, Li N, Li H, Wu D, He X, Xia C, Ji X. Remote ischemic conditioning enhances oxygen supply to ischemic brain tissue in a mouse model of stroke: Role of elevated 2,3-biphosphoglycerate in erythrocytes. J Cereb Blood Flow Metab 2021; 41:1277-1290. [PMID: 32933360 PMCID: PMC8142126 DOI: 10.1177/0271678x20952264] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Oxygen supply for ischemic brain tissue during stroke is critical to neuroprotection. Remote ischemic conditioning (RIC) treatment is effective for stroke. However, it is not known whether RIC can improve brain tissue oxygen supply. In current study, we employed a mouse model of stroke created by middle cerebral artery occlusion (MCAO) to investigate the effect of RIC on oxygen supply to the ischemic brain tissue using a hypoxyprobe system. Erythrocyte oxygen-carrying capacity and tissue oxygen exchange were assessed by measuring oxygenated hemoglobin and oxygen dissociation curve. We found that RIC significantly mitigated hypoxic signals and decreased neural cell death, thereby preserving neurological functions. The tissue oxygen exchange was markedly enhanced, along with the elevated hemoglobin P50 and right-shifted oxygen dissociation curve. Intriguingly, RIC markedly elevated 2,3-biphosphoglycerate (2,3-BPG) levels in erythrocyte, and the erythrocyte 2,3-BPG levels were highly negatively correlated with the hypoxia in the ischemic brain tissue. Further, adoptive transfusion of 2,3-BPG-rich erythrocytes prepared from RIC-treated mice significantly enhanced the oxygen supply to the ischemic tissue in MCAO mouse model. Collectively, RIC protects against ischemic stroke through improving oxygen supply to the ischemic brain tissue where the enhanced tissue oxygen delivery and exchange by RIC-induced 2,3-BPG-rich erythrocytes may play a role.
Collapse
Affiliation(s)
- Lin Wang
- Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Changhong Ren
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Yang Li
- Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chen Gao
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ning Li
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Haiyan Li
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Di Wu
- Deparment of Neurology, China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaoduo He
- Deparment of Neurology, China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Changqing Xia
- Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xunming Ji
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Municipal Geriatric Medical Research Center, Beijing, China.,Deparment of Neurology, China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorder, Beijing, China
| |
Collapse
|