1
|
Nemoto EM, Bragin DE, Yonas H. Evaluating the Status of the Injured Brain: Cerebrovascular Reserve (CVR) Is Not Equivalent to Induced Cerebrovascular Reactivity (iCVRx) and Induced Pressure Reactivity (iPRx) in Defining the Critical Cerebral Perfusion Pressure (CPP). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1463:85-89. [PMID: 39400805 DOI: 10.1007/978-3-031-67458-7_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Methods evaluating the status of the injured brain have evolved over the past 63 years since Lundberg first reported clinical measurement of intracranial pressure (ICP) to evaluate the status of the injured brain (Lundberg, Acta Psychiatr Scand Suppl. 36:1-193, 1960). Subsequent evaluation involved measurement of the autoregulatory capacity of the brain by measuring cerebral blood flow (CBF) with decreasing mean arterial pressure (MAP) to define the critical CPP where the vasodilatory capacity of the cerebral circulation is exceeded and CBF begins to fall (CPP of 50 mmHg). A seminal advance was made by Marmarou (Marmarou et al., J Neurosurg. 48:332-344, 1978) who measured brain compliance by injecting a bolus of saline into the intracranial catheter while measuring the rise in intracranial pressure (ICP) otherwise known as induced pressure reactivity (iPRx). Seeking to utilise continuous measurement of iPRx in traumatic brain injury (TBI) patients with continuous monitoring of ICP, the ICP response to arterial pulsations was developed to evaluate the optimal CPP patients with raised ICP by the arterial pulsations-based iPRx. A similar approach was made with Doppler measurement of CBF with arterial pulsations for iCVRx to guide optimal CPP (CPPopt). Both iPRx and iCVRx are associated with microvascular shunts (MVS) and can accurately measure the critical CPP, whereas the CBF autoregulation curve by decreasing MAP does not. Sophisticated continuous multimodal monitoring established with ICM+ algorithms successfully identifies CPPopt for ICP control and identifies CBF dysregulation as related to outcome, but does not provide insights into the mechanisms involved in the loss of CBF autoregulation as related to increased ICP and potentially effective treatments (Froese et al., Neurocrit Care. 34:325-335, 2021).
Collapse
Affiliation(s)
- Edwin M Nemoto
- Department of Neurology, University of New Mexico, Albuquerque, NM, USA.
| | - Denis E Bragin
- Department of Neurology, University of New Mexico, Albuquerque, NM, USA
- Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - Howard Yonas
- Department of Neurosurgery, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
2
|
Gomez A, Sainbhi AS, Stein KY, Vakitbilir N, Froese L, Zeiler FA. Statistical properties of cerebral near infrared and intracranial pressure-based cerebrovascular reactivity metrics in moderate and severe neural injury: a machine learning and time-series analysis. Intensive Care Med Exp 2023; 11:57. [PMID: 37635181 PMCID: PMC10460757 DOI: 10.1186/s40635-023-00541-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/02/2023] [Indexed: 08/29/2023] Open
Abstract
BACKGROUND Cerebrovascular reactivity has been identified as a key contributor to secondary injury following traumatic brain injury (TBI). Prevalent intracranial pressure (ICP) based indices of cerebrovascular reactivity are limited by their invasive nature and poor spatial resolution. Fortunately, interest has been building around near infrared spectroscopy (NIRS) based measures of cerebrovascular reactivity that utilize regional cerebral oxygen saturation (rSO2) as a surrogate for pulsatile cerebral blood volume (CBV). In this study, the relationship between ICP- and rSO2-based indices of cerebrovascular reactivity, in a cohort of critically ill TBI patients, is explored using classical machine learning clustering techniques and multivariate time-series analysis. METHODS High-resolution physiologic data were collected in a cohort of adult moderate to severe TBI patients at a single quaternary care site. From this data both ICP- and rSO2-based indices of cerebrovascular reactivity were derived. Utilizing agglomerative hierarchical clustering and principal component analysis, the relationship between these indices in higher dimensional physiologic space was examined. Additionally, using vector autoregressive modeling, the response of change in ICP and rSO2 (ΔICP and ΔrSO2, respectively) to an impulse in change in arterial blood pressure (ΔABP) was also examined for similarities. RESULTS A total of 83 patients with 428,775 min of unique and complete physiologic data were obtained. Through agglomerative hierarchical clustering and principal component analysis, there was higher order clustering between rSO2- and ICP-based indices, separate from other physiologic parameters. Additionally, modeled responses of ΔICP and ΔrSO2 to impulses in ΔABP were similar, indicating that ΔrSO2 may be a valid surrogate for pulsatile CBV. CONCLUSIONS rSO2- and ICP-based indices of cerebrovascular reactivity relate to one another in higher dimensional physiologic space. ΔICP and ΔrSO2 behave similar in modeled responses to impulses in ΔABP. This work strengthens the body of evidence supporting the similarities between ICP-based and rSO2-based indices of cerebrovascular reactivity and opens the door to cerebrovascular reactivity monitoring in settings where invasive ICP monitoring is not feasible.
Collapse
Affiliation(s)
- Alwyn Gomez
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.
| | - Amanjyot Singh Sainbhi
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Kevin Y Stein
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Nuray Vakitbilir
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Logan Froese
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Frederick A Zeiler
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
- Centre on Aging, University of Manitoba, Winnipeg, Canada
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, Karolinksa Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Stein KY, Froese L, Gomez A, Sainbhi AS, Vakitbilir N, Ibrahim Y, Zeiler FA. Intracranial Pressure Monitoring and Treatment Thresholds in Acute Neural Injury: A Narrative Review of the Historical Achievements, Current State, and Future Perspectives. Neurotrauma Rep 2023; 4:478-494. [PMID: 37636334 PMCID: PMC10457629 DOI: 10.1089/neur.2023.0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023] Open
Abstract
Since its introduction in the 1960s, intracranial pressure (ICP) monitoring has become an indispensable tool in neurocritical care practice and a key component of the management of moderate/severe traumatic brain injury (TBI). The primary utility of ICP monitoring is to guide therapeutic interventions aimed at maintaining physiological ICP and preventing intracranial hypertension. The rationale for such ICP maintenance is to prevent secondary brain injury arising from brain herniation and inadequate cerebral blood flow. There exists a large body of evidence indicating that elevated ICP is associated with mortality and that aggressive ICP control protocols improve outcomes in severe TBI patients. Therefore, current management guidelines recommend a cerebral perfusion pressure (CPP) target range of 60-70 mm Hg and an ICP threshold of >20 or >22 mm Hg, beyond which therapeutic intervention should be initiated. Though our ability to achieve these thresholds has drastically improved over the past decades, there has been little to no change in the mortality and morbidity associated with moderate-severe TBI. This is a result of the "one treatment fits all" dogma of current guideline-based care that fails to take individual phenotype into account. The way forward in moderate-severe TBI care is through the development of continuously derived individualized ICP thresholds. This narrative review covers the topic of ICP monitoring in TBI care, including historical context/achievements, current monitoring technologies and indications, treatment methods, associations with patient outcome and multi-modal cerebral physiology, present controversies surrounding treatment thresholds, and future perspectives on personalized approaches to ICP-directed therapy.
Collapse
Affiliation(s)
- Kevin Y. Stein
- Biomedical Engineering, Price Faculty of Engineering, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Logan Froese
- Biomedical Engineering, Price Faculty of Engineering, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Alwyn Gomez
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Amanjyot Singh Sainbhi
- Biomedical Engineering, Price Faculty of Engineering, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Nuray Vakitbilir
- Biomedical Engineering, Price Faculty of Engineering, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Younis Ibrahim
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Frederick A. Zeiler
- Biomedical Engineering, Price Faculty of Engineering, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
4
|
Froese L, Hammarlund E, Åkerlund CAI, Tjerkaski J, Hong E, Lindblad C, Nelson DW, Thelin EP, Zeiler FA. The impact of sedative and vasopressor agents on cerebrovascular reactivity in severe traumatic brain injury. Intensive Care Med Exp 2023; 11:54. [PMID: 37541993 PMCID: PMC10403459 DOI: 10.1186/s40635-023-00524-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/17/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND The aim of this study is to evaluate the impact of commonly administered sedatives (Propofol, Alfentanil, Fentanyl, and Midazolam) and vasopressor (Dobutamine, Ephedrine, Noradrenaline and Vasopressin) agents on cerebrovascular reactivity in moderate/severe TBI patients. Cerebrovascular reactivity, as a surrogate for cerebral autoregulation was assessed using the long pressure reactivity index (LPRx). We evaluated the data in two phases, first we assessed the minute-by-minute data relationships between different dosing amounts of continuous infusion agents and physiological variables using boxplots, multiple linear regression and ANOVA. Next, we assessed the relationship between continuous/bolus infusion agents and physiological variables, assessing pre-/post- dose of medication change in physiology using a Wilcoxon signed-ranked test. Finally, we evaluated sub-groups of data for each individual dose change per medication, focusing on key physiological thresholds and demographics. RESULTS Of the 475 patients with an average stay of 10 days resulting in over 3000 days of recorded information 367 (77.3%) were male with a median Glasgow coma score of 7 (4-9). The results of this retrospective observational study confirmed that the infusion of most administered agents do not impact cerebrovascular reactivity, which is confirmed by the multiple linear regression components having p value > 0.05. Incremental dose changes or bolus doses in these medications in general do not lead to significant changes in cerebrovascular reactivity (confirm by Wilcoxon signed-ranked p value > 0.05 for nearly all assessed relationships). Within the sub-group analysis that separated the data based on LPRx pre-dose, a significance between pre-/post-drug change in LPRx was seen, however this may be more of a result from patient state than drug impact. CONCLUSIONS Overall, this study indicates that commonly administered agents with incremental dosing changes have no clinically significant influence on cerebrovascular reactivity in TBI (nor do they impair cerebrovascular reactivity). Though further investigation in a larger and more diverse TBI patient population is required.
Collapse
Affiliation(s)
- Logan Froese
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Canada
| | - Emma Hammarlund
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| | - Cecilia A I Åkerlund
- Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
- Section of Perioperative Medicine and Intensive Care, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jonathan Tjerkaski
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Erik Hong
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Caroline Lindblad
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurosurgery, Uppsala University Hospital, Uppsala, Sweden
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - David W Nelson
- Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
- Section of Perioperative Medicine and Intensive Care, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Eric P Thelin
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Frederick A Zeiler
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Canada.
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.
- Centre On Aging, University of Manitoba, Winnipeg, Canada.
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.
| |
Collapse
|
5
|
Froese L, Gomez A, Sainbhi AS, Vakitbilir N, Marquez I, Amenta F, Stein KY, Zeiler FA. Temporal relationship between vasopressor and sedative administration and cerebrovascular response in traumatic brain injury: a time-series analysis. Intensive Care Med Exp 2023; 11:30. [PMID: 37246179 DOI: 10.1186/s40635-023-00515-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/21/2023] [Indexed: 05/30/2023] Open
Abstract
BACKGROUND Although vasopressor and sedative agents are commonly used within the intensive care unit to mediate systemic and cerebral physiology, the full impact such agents have on cerebrovascular reactivity remains unclear. Using a prospectively maintained database of high-resolution critical care and physiology, the time-series relationship between vasopressor/sedative administration, and cerebrovascular reactivity was interrogated. Cerebrovascular reactivity was assessed through intracranial pressure and near infrared spectroscopy measures. Using these derived measures, the relationship between hourly dose of medication and hourly index values could be evaluated. The individual medication dose change and their corresponding physiological response was compared. Given the high number of doses of propofol and norepinephrine, a latent profile analysis was used to identify any underlying demographic or variable relationships. Finally, using time-series methodologies of Granger causality and vector impulse response functions, the relationships between the cerebrovascular reactivity derived variables were compared. RESULTS From this retrospective observational study of 103 TBI patients, the evaluation between the changes in vasopressor or sedative agent dosing and the previously described cerebral physiologies was completed. The assessment of the physiology pre/post infusion agent change resulted in similar overall values (Wilcoxon signed-ranked p value > 0.05). Time series methodologies demonstrated that the basic physiological relationships were identical before and after an infusion agent was changed (Granger causality demonstrated the same directional impact in over 95% of the moments, with response function being graphically identical). CONCLUSIONS This study suggests that overall, there was a limited association between the changes in vasopressor or sedative agent dosing and the previously described cerebral physiologies including that of cerebrovascular reactivity. Thus, current regimens of administered sedative and vasopressor agents appear to have little to no impact on cerebrovascular reactivity in TBI.
Collapse
Affiliation(s)
- Logan Froese
- Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada.
| | - Alwyn Gomez
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.
| | - Amanjyot Singh Sainbhi
- Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Nuray Vakitbilir
- Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Izabella Marquez
- Undergraduate Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Canada
| | - Fiorella Amenta
- Undergraduate Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Canada
| | - Kevin Y Stein
- Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
- Undergraduate Medical Education, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Frederick A Zeiler
- Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
- Division of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
- Centre on Aging, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
6
|
Froese L, Gomez A, Sainbhi AS, Vakitbilir N, Marquez I, Amenta F, Park K, Stein KY, Thelin EP, Zeiler FA. Cerebrovascular Reactivity Is Not Associated With Therapeutic Intensity in Adult Traumatic Brain Injury: A Validation Study. Neurotrauma Rep 2023; 4:307-317. [PMID: 37187506 PMCID: PMC10181802 DOI: 10.1089/neur.2023.0011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
Within traumatic brain injury (TBI) care, there is growing interest in pathophysiological markers as surrogates of disease severity, which may be used to improve and individualize care. Of these, assessment of cerebrovascular reactivity (CVR) has been extensively studied given that it is a consistent, independent factor associated with mortality and functional outcome. However, to date, the literature supports little-to-no impact of current guideline-supported therapeutic interventions on continuously measured CVR. Previous work in this area has suffered from a lack of validation studies, given the rarity of time-matched high-frequency cerebral physiology with serially recorded therapeutic interventions; thus, we undertook a validation study. Utilizing the Winnipeg Acute TBI database, we evaluated the association between daily treatment intensity levels, as measured through the therapeutic intensity level (TIL) scoring system, and continuous multi-modal-derived CVR measures. CVR measures included the intracranial pressure (ICP)-derived pressure reactivity index, pulse amplitude index, and RAC index (a correlation between the pulse amplitude of ICP and cerebral perfusion pressure), as well as the cerebral autoregulation measure of near-infrared spectroscopy-based cerebral oximetry index. These measures were also derived over a key threshold for each day and were compared to the daily total TIL measure. In summary, we could not observe any overall relationship between TIL and these CVR measures. This validates previous findings and represents only the second such analysis to date. This helps to confirm that CVR appears to remain independent of current therapeutic interventions and is a potential unique physiological target for critical care. Further work into the high-frequency relationship between critical care and CVR is required.
Collapse
Affiliation(s)
- Logan Froese
- Biomedical Engineering, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Address correspondence to: Logan Froese, BSc (Eng), Biomedical Engineering, Faculty of Engineering, University of Manitoba, 75 Chancellor's Circle, Winnipeg, Manitoba R3T 5V6, Canada;
| | - Alwyn Gomez
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Amanjyot Singh Sainbhi
- Biomedical Engineering, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Nuray Vakitbilir
- Biomedical Engineering, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Izzy Marquez
- Undergraduate Engineering, Price Faculty of Engineering, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Fiorella Amenta
- Undergraduate Engineering, Price Faculty of Engineering, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kangyun Park
- Undergraduate Medical Education, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kevin Y. Stein
- Biomedical Engineering, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Undergraduate Medical Education, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Eric P. Thelin
- Division of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Frederick A. Zeiler
- Biomedical Engineering, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Division of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
7
|
Batson C, Froese L, Sekhon MS, Griesdale DE, Gomez A, Thelin EP, Raj R, Aries M, Gallagher CN, Bernard F, Kramer AH, Zeiler FA. Impact of Chronological Age and Biological Sex on Cerebrovascular Reactivity in Moderate/Severe Traumatic Brain Injury: A CAnadian High-Resolution TBI (CAHR-TBI) Study. J Neurotrauma 2022. [PMID: 36047825 DOI: 10.1089/neu.2022.0293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Impaired cerebrovascular reactivity has emerged as an important associate with poor long-term outcome after moderate/severe traumatic brain injury (TBI). However, our understanding of what drives or modulates the degree of impaired cerebrovascular function remains poor. Age and biological sex remain important modifiers of cerebrovascular function in health and disease, yet their impact on cerebrovascular reactivity after TBI remains unclear. The aim of this study was to explore subgroup responses based on age and biological sex on cerebral physiology. Data from 283 TBI patients from the CAnadian High Resolution TBI (CAHR-TBI) Research Collaborative were evaluated. Cerebrovascular reactivity was determined using high-frequency cerebral physiology for the derivation of three intracranial pressure (ICP) based indices: (1). PRx - correlation between ICP and mean arterial pressure (MAP), (2). PAx - correlation between pulse amplitude of ICP (AMP) and MAP and (3). RAC - correlation between AMP and cerebral perfusion pressure (CPP). Insult burden (% time above clinically defined thresholds) were calculated for these indices. These cerebral physiology indices were studied for their relationship with age via linear regression, age trichotomization (< 40, 40 - 60, > 60) and decades of age (< 30, 30 - 39, 40 - 49, 50 - 59, 60 - 69, > 69) schemes. Similarly, differences based on biological sex were assessed. A statistically significant positive linear correlation was found between PAx, RAC and age. In corollary, a statistically significant relationship was found between increasing age on trichotomized and decades of age analysis with PAx and RAC measures. PRx failed to demonstrate such relationships to advancing age. There was no clear difference in cerebrovascular reactivity profiles between biological sex categories. These findings suggest that AMP-based cerebrovascular reactivity indices may be better positioned to detect impairment in TBI patients with advancing age. Further investigation into the utility of PAx and RAC is required, as they may prove useful for certain subgroups of patients.
Collapse
Affiliation(s)
| | - Logan Froese
- University of Manitoba Faculty of Engineering, Biomedical Engineering, SP-422 EITC, 75 Chancellor`s Circle, Winnipeg, Manitoba, Canada, R3T 5V6;
| | - Mypinder Singh Sekhon
- University of British Columbia, Critical Care Medicine, 899 West 12th Avenue, Vancouver, British Columbia, Canada, V5Z 1M9;
| | - Donald E Griesdale
- University of British Columbia, Anesthesiology, Pharmacology and Therapeutics, Vancouver, British Columbia, Canada;
| | - Alwyn Gomez
- University of Manitoba Faculty of Health Sciences, Surgery, GF231, Health Sciences Centre, Winnipeg, Manitoba, Canada, R3A1R9;
| | - Eric Peter Thelin
- Karolinska Institutet, Department of Clinical Neuroscience, Neurosurgical Research Laboratory, Building R2:02, Karolinska University Hospital, Stockholm, Sweden, 171 76;
| | - Rahul Raj
- HUS, Topeliuksenkatu 5, Helsinki, Finland, 00029 HUS;
| | - Marcel Aries
- University of Maastricht Medical Center, Department of Intensive Care, Maastricht, Netherlands;
| | - Clare N Gallagher
- University of Calgary, Department of Clinical Neurosciences, Calgary, Alberta, Canada;
| | - Francis Bernard
- Hôpital du Sacré-Coeur de Montreal, Intensive Care Unit, 5400 Boul Gouin O, Montreal, Quebec, Canada, H4J1C5;
| | - Andreas H Kramer
- University of Calgary, Departments of Critical Care Medicine and Clinical Neurosciences, 3132 Hospital Drive NW, Calgary, Calgary, Alberta, Canada, T2N 2T9;
| | - Frederick Adam Zeiler
- Health Sciences Centre, Section of Neurosurgery, GB-1 820 Sherbrook Street, Winnipeg, Manitoba, Canada, R3A1R9;
| |
Collapse
|
8
|
Zeiler FA, Aries M, Czosnyka M, Smieleweski P. Cerebral Autoregulation Monitoring in Traumatic Brain Injury: An Overview of Recent Advances in Personalized Medicine. J Neurotrauma 2022; 39:1477-1494. [PMID: 35793108 DOI: 10.1089/neu.2022.0217] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Impaired cerebral autoregulation (CA) in moderate/severe traumatic brain injury (TBI) has been identified as a strong associate with poor long-term outcomes, with recent data highlighting its dominance over cerebral physiologic dysfunction seen in the acute phase post injury. With advances in bedside continuous cerebral physiologic signal processing, continuously derived metrics of CA capacity have been described over the past two decades, leading to improvements in cerebral physiologic insult detection and development of novel personalized approaches to TBI care in the intensive care unit (ICU). This narrative review focuses on highlighting the concept of continuous CA monitoring and consequences of impairment in moderate/severe TBI. Further, we provide a comprehensive description and overview of the main personalized cerebral physiologic targets, based on CA monitoring, that are emerging as strong associates with patient outcomes. CA-based personalized targets, such as optimal cerebral perfusion pressure (CPPopt), lower/upper limit of regulation (LLR/ULR), and individualized intra-cranial pressure (iICP) are positioned to change the way we care for TBI patients in the ICU, moving away from the "one treatment fits all" paradigm of current guideline-based therapeutic approaches, towards a true personalized medicine approach tailored to the individual patient. Future perspectives regarding research needs in this field are also discussed.
Collapse
Affiliation(s)
- Frederick Adam Zeiler
- Health Sciences Centre, Section of Neurosurgery, GB-1 820 Sherbrook Street, Winnipeg, Manitoba, Canada, R3A1R9;
| | - Marcel Aries
- University of Maastricht Medical Center, Department of Intensive Care, Maastricht, Netherlands;
| | - Marek Czosnyka
- university of cambridge, neurosurgery, Canbridge Biomedical Campus, box 167, cambridge, United Kingdom of Great Britain and Northern Ireland, cb237ar;
| | - Peter Smieleweski
- Cambridge University, Neurosurgery, Cambridge, United Kingdom of Great Britain and Northern Ireland;
| |
Collapse
|
9
|
Mainali S, Cardim D, Sarwal A, Merck LH, Yeatts SD, Czosnyka M, Shutter L. Prolonged Automated Robotic TCD Monitoring in Acute Severe TBI: Study Design and Rationale. Neurocrit Care 2022; 37:267-275. [PMID: 35381966 DOI: 10.1007/s12028-022-01483-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/01/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Transcranial Doppler ultrasonography (TCD) is a portable, bedside, noninvasive diagnostic tool used for the real-time assessment of cerebral hemodynamics. Despite the evident utility of TCD and the ability of this technique to function as a stethoscope to the brain, its use has been limited to specialized centers because of the dearth of technical and clinical expertise required to acquire and interpret the cerebrovascular parameters. Additionally, the conventional pragmatic episodic TCD monitoring protocols lack dynamic real-time feedback to guide time-critical clinical interventions. Fortunately, with the recent advent of automated robotic TCD technology in conjunction with the automated software for TCD data processing, we now have the technology to automatically acquire TCD data and obtain clinically relevant information in real-time. By obviating the need for highly trained clinical personnel, this technology shows great promise toward a future of widespread noninvasive monitoring to guide clinical care in patients with acute brain injury. METHODS Here, we describe a proposal for a prospective observational multicenter clinical trial to evaluate the safety and feasibility of prolonged automated robotic TCD monitoring in patients with severe acute traumatic brain injury (TBI). We will enroll patients with severe non-penetrating TBI with concomitant invasive multimodal monitoring including, intracranial pressure, brain tissue oxygenation, and brain temperature monitoring as part of standard of care in centers with varying degrees of TCD availability and experience. Additionally, we propose to evaluate the correlation of pertinent TCD-based cerebral autoregulation indices such as the critical closing pressure, and the pressure reactivity index with the brain tissue oxygenation values obtained invasively. CONCLUSIONS The overarching goal of this study is to establish safety and feasibility of prolonged automated TCD monitoring for patients with TBI in the intensive care unit and identify clinically meaningful and pragmatic noninvasive targets for future interventions.
Collapse
Affiliation(s)
- Shraddha Mainali
- Department of Neurology, Virginial Commonwealth University, Richmond, VA, USA.
| | - Danilo Cardim
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Aarti Sarwal
- Department of Neurology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Lisa H Merck
- Departments of Emergency Medicine and Neurology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Sharon D Yeatts
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Marek Czosnyka
- Brain Physics Laboratory, Neurosurgical Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Lori Shutter
- Department of Critical Care Medicine, Neurology, and Neurosurgery, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
10
|
Froese L, Gomez A, Sainbhi AS, Batson C, Stein K, Alizadeh A, Zeiler FA. Dynamic Temporal Relationship Between Autonomic Function and Cerebrovascular Reactivity in Moderate/Severe Traumatic Brain Injury. FRONTIERS IN NETWORK PHYSIOLOGY 2022; 2:837860. [PMID: 36926091 PMCID: PMC10013014 DOI: 10.3389/fnetp.2022.837860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/28/2022] [Indexed: 12/12/2022]
Abstract
There has been little change in morbidity and mortality in traumatic brain injury (TBI) in the last 25 years. However, literature has emerged linking impaired cerebrovascular reactivity (a surrogate of cerebral autoregulation) with poor outcomes post-injury. Thus, cerebrovascular reactivity (derived through the pressure reactivity index; PRx) is emerging as an important continuous measure. Furthermore, recent literature indicates that autonomic dysfunction may drive impaired cerebrovascular reactivity in moderate/severe TBI. Thus, to improve our understanding of this association, we assessed the physiological relationship between PRx and the autonomic variables of heart rate variability (HRV), blood pressure variability (BPV), and baroreflex sensitivity (BRS) using time-series statistical methodologies. These methodologies include vector autoregressive integrative moving average (VARIMA) impulse response function analysis, Granger causality, and hierarchical clustering. Granger causality testing displayed inconclusive results, where PRx and the autonomic variables had varying bidirectional relationships. Evaluating the temporal profile of the impulse response function plots demonstrated that the autonomic variables of BRS, ratio of low/high frequency of HRV and very low frequency HRV all had a strong relation to PRx, indicating that the sympathetic autonomic response may be more closely linked to cerebrovascular reactivity, then other variables. Finally, BRS was consistently associated with PRx, possibly demonstrating a deeper relationship to PRx than other autonomic measures. Taken together, cerebrovascular reactivity and autonomic response are interlinked, with a bidirectional impact between cerebrovascular reactivity and circulatory autonomics. However, this work is exploratory and preliminary, with further study required to extract and confirm any underlying relationships.
Collapse
Affiliation(s)
- Logan Froese
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Alwyn Gomez
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Amanjyot Singh Sainbhi
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Carleen Batson
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Kevin Stein
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Arsalan Alizadeh
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Frederick A. Zeiler
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Centre on Aging, University of Manitoba, Winnipeg, MB, Canada
- Division of Anaesthesia, Department of Medicine, Addenbrooke’s Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
11
|
Batson C, Stein KY, Gomez A, Sainbhi AS, Froese L, Alizadeh A, Mathieu F, Zeiler FA. Intracranial Pressure-Derived Cerebrovascular Reactivity Indices, Chronological Age, and Biological Sex in Traumatic Brain Injury: A Scoping Review. Neurotrauma Rep 2022; 3:44-56. [PMID: 35112107 PMCID: PMC8804238 DOI: 10.1089/neur.2021.0054] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
To date, there has been limited literature exploring the association between age and sex with cerebrovascular reactivity (CVR) in moderate/severe traumatic brain injury (TBI). Given the known link between age, sex, and cerebrovascular function, knowledge of the impacts on continuously assessed CVR is critical for the development of future therapeutics. We conducted a scoping review of the literature for studies that had a direct statistical interrogation of the relationship between age, sex, and continuous intracranial pressure (ICP)-based indices of CVR in moderate/severe TBI. The ICP-based indices researched included: pressure reactivity index (PRx), pulse amplitude index (PAx), and RAC. MEDLINE, BIOSIS, EMBASE, SCOPUS, Global Health, and the Cochrane library were searched from inception to June 2021 for relevant articles. A total of 10 original studies fulfilled our inclusion criteria. Nine of the articles documented a correlation between advanced age and worse CVR, with eight using PRx (2192 total patients), three using PAx (978 total patients), and one using RAC (358 total patients), p < 0.05; R ranging from 0.17 to 0.495 for all indices across all studies. Three articles (1256 total patients) displayed a correlation between biological sex and PRx, with females trending towards higher PRx values (p < 0.05) in the limited available literature. However, no literature exists comparing PAx or RAC with biological sex. Findings showed that aging was associated with impaired CVR. We observed a trend between female sex and worse PRx values, but the literature was limited and statistical significance was borderline. The identified studies were few in number, carried significant population heterogeneity, and utilized grand averaging of large epochs of physiology during statistical comparisons with age and biological sex. Because of the heterogeneous nature of TBI populations and limited focus on the effects of age and sex on outcomes in TBI, it is challenging to highlight the differences between the indices and patient age groups and sex. The largest study showing an association between PRx and age was done by Zeiler and colleagues, where 165 patients were studied noting that patients with a mean PRx value above zero had a mean age above 51.4 years versus a mean age of 41.4 years for those with a mean PRx value below zero (p = 0.0007). The largest study showing an association between PRx and sex was done by Czosnyka and colleagues, where 469 patients were studied noting that for patients <50 years of age, PRx was worse in females (0.11 ± 0.047) compared to males (0.044 ± 0.031), p < 0.05. The findings from these 10 studies provide preliminary data, but are insufficient to definitively characterize the impact of age and sex on CVR in moderate/severe TBI. Future work in the field should focus on the impact of age and sex on multi-modal cerebral physiological monitoring.
Collapse
Affiliation(s)
- Carleen Batson
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kevin Y. Stein
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Alwyn Gomez
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Amanjyot Singh Sainbhi
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Logan Froese
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Arsalan Alizadeh
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Francois Mathieu
- Interdepartmental Division of Critical Care, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Frederick A. Zeiler
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
- Centre on Aging, University of Manitoba, Winnipeg, Manitoba, Canada
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
12
|
Current state of high-fidelity multimodal monitoring in traumatic brain injury. Acta Neurochir (Wien) 2022; 164:3091-3100. [PMID: 36260235 PMCID: PMC9705453 DOI: 10.1007/s00701-022-05383-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/28/2022] [Indexed: 02/01/2023]
Abstract
INTRODUCTION Multimodality monitoring of patients with severe traumatic brain injury (TBI) is primarily performed in neuro-critical care units to prevent secondary harmful brain insults and facilitate patient recovery. Several metrics are commonly monitored using both invasive and non-invasive techniques. The latest Brain Trauma Foundation guidelines from 2016 provide recommendations and thresholds for some of these. Still, high-level evidence for several metrics and thresholds is lacking. METHODS Regarding invasive brain monitoring, intracranial pressure (ICP) forms the cornerstone, and pressures above 22 mmHg should be avoided. From ICP, cerebral perfusion pressure (CPP) (mean arterial pressure (MAP)-ICP) and pressure reactivity index (PRx) (a correlation between slow waves MAP and ICP as a surrogate for cerebrovascular reactivity) may be derived. In terms of regional monitoring, partial brain tissue oxygen pressure (PbtO2) is commonly used, and phase 3 studies are currently ongoing to determine its added effect to outcome together with ICP monitoring. Cerebral microdialysis (CMD) is another regional invasive modality to measure substances in the brain extracellular fluid. International consortiums have suggested thresholds and management strategies, in spite of lacking high-level evidence. Although invasive monitoring is generally safe, iatrogenic hemorrhages are reported in about 10% of cases, but these probably do not significantly affect long-term outcome. Non-invasive monitoring is relatively recent in the field of TBI care, and research is usually from single-center retrospective experiences. Near-infrared spectrometry (NIRS) measuring regional tissue saturation has been shown to be associated with outcome. Transcranial doppler (TCD) has several tentative utilities in TBI like measuring ICP and detecting vasospasm. Furthermore, serial sampling of biomarkers of brain injury in the blood can be used to detect secondary brain injury development. CONCLUSIONS In multimodal monitoring, the most important aspect is data interpretation, which requires knowledge of each metric's strengths and limitations. Combinations of several modalities might make it possible to discern specific pathologic states suitable for treatment. However, the cost-benefit should be considered as the incremental benefit of adding several metrics has a low level of evidence, thus warranting additional research.
Collapse
|
13
|
Batson C, Gomez A, Sainbhi AS, Froese L, Zeiler FA. Association of Age and Sex With Multi-Modal Cerebral Physiology in Adult Moderate/Severe Traumatic Brain Injury: A Narrative Overview and Future Avenues for Personalized Approaches. Front Pharmacol 2021; 12:676154. [PMID: 34899283 PMCID: PMC8652202 DOI: 10.3389/fphar.2021.676154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 10/22/2021] [Indexed: 12/30/2022] Open
Abstract
The impact of age and biological sex on outcome in moderate/severe traumatic brain injury (TBI) has been documented in large cohort studies, with advanced age and male sex linked to worse long-term outcomes. However, the association between age/biological sex and high-frequency continuous multi-modal monitoring (MMM) cerebral physiology is unclear, with only sparing reference made in guidelines and major literature in moderate/severe TBI. In this narrative review, we summarize some of the largest studies associating various high-frequency MMM parameters with age and biological sex in moderate/severe TBI. To start, we present this by highlighting the representative available literature on high-frequency data from Intracranial Pressure (ICP), Cerebral Perfusion Pressure (CPP), Extracellular Brain Tissue Oxygenation (PbtO2), Regional Cerebral Oxygen Saturations (rSO2), Cerebral Blood Flow (CBF), Cerebral Blood Flow Velocity (CBFV), Cerebrovascular Reactivity (CVR), Cerebral Compensatory Reserve, common Cerebral Microdialysis (CMD) Analytes and their correlation to age and sex in moderate/severe TBI cohorts. Then we present current knowledge gaps in the literature, discuss biological implications of age and sex on cerebrovascular monitoring in TBI and some future avenues for bedside research into the cerebrovascular physiome after TBI.
Collapse
Affiliation(s)
- C Batson
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - A Gomez
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - A S Sainbhi
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - L Froese
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - F A Zeiler
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada.,Centre on Aging, University of Manitoba, Winnipeg, MB, Canada.,Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
14
|
Batson C, Froese L, Gomez A, Sainbhi AS, Stein KY, Alizadeh A, Zeiler FA. Impact of Age and Biological Sex on Cerebrovascular Reactivity in Adult Moderate/Severe Traumatic Brain Injury: An Exploratory Analysis. Neurotrauma Rep 2021; 2:488-501. [PMID: 34901944 PMCID: PMC8655816 DOI: 10.1089/neur.2021.0039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Age and biological sex are two potential important modifiers of cerebrovascular reactivity post-traumatic brain injury (TBI) requiring close evaluation for potential subgroup responses. The goal of this study was to provide a preliminary exploratory analysis of the impact of age and biological sex on measures of cerebrovascular function in moderate/severe TBI. Forty-nine patients from the prospectively maintained TBI database at the University of Manitoba with archived high-frequency digital cerebral physiology were evaluated. Cerebrovascular reactivity indices were derived as follows: PRx (correlation between intracranial pressure [ICP] and mean arterial pressure [MAP]), PAx (correlation between pulse amplitude of ICP [AMP] and MAP), and RAC (correlation between AMP and cerebral perfusion pressure [CPP]). Time above clinically significant thresholds for each index was calculated over different periods of the acute intensive care unit stay. The association between PRx, PAx, and RAC measures with age was assessed using linear regression, and an age trichotomization scheme (<40, 40-60, >60) using Kruskal-Wallis testing. Similarly, association with biological sex was tested using Mann-Whitney U testing. Biological sex did not demonstrate an impact on any measures of cerebrovascular reactivity. Linear regression between age and PAx and RAC demonstrated a statistically significant positive linear relationship. Median PAx and RAC measures between trichotomized age categories demonstrated statistically significant increases with advancing age. The PRx failed to demonstrate any statistically significant relationship with age in this cohort, suggesting that in elderly patients with controlled ICP, PAx and RAC may be better metrics for detecting impaired cerebrovascular reactivity. Biological sex appears to not be associated with differences in cerebrovascular reactivity in this cohort. The PRx performed the worst in detecting impaired cerebrovascular reactivity in those with advanced age, where PAx and RAC appear to have excelled. Future work is required to validate these findings and explore the utility of different cerebrovascular reactivity indices.
Collapse
Affiliation(s)
- Carleen Batson
- Department of Human Anatomy and Cell Science, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Logan Froese
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Alwyn Gomez
- Department of Human Anatomy and Cell Science, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Amanjyot Singh Sainbhi
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kevin Y. Stein
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Arsalan Alizadeh
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Frederick A. Zeiler
- Department of Human Anatomy and Cell Science, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Centre on Aging, University of Manitoba, Winnipeg, Manitoba, Canada
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
15
|
Froese L, Dian J, Gomez A, Batson C, Sainbhi AS, Zeiler FA. Association Between Processed Electroencephalogram-Based Objectively Measured Depth of Sedation and Cerebrovascular Response: A Systematic Scoping Overview of the Human and Animal Literature. Front Neurol 2021; 12:692207. [PMID: 34484100 PMCID: PMC8415224 DOI: 10.3389/fneur.2021.692207] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/21/2021] [Indexed: 11/24/2022] Open
Abstract
Background: Current understanding of the impact that sedative agents have on neurovascular coupling, cerebral blood flow (CBF) and cerebrovascular response remains uncertain. One confounding factor regarding the impact of sedative agents is the depth of sedation, which is often determined at the bedside using clinical examination scoring systems. Such systems do not objectively account for sedation depth at the neurovascular level. As the depth of sedation can impact CBF and cerebral metabolism, the need for objective assessments of sedation depth is key. This is particularly the case in traumatic brain injury (TBI), where emerging literature suggests that cerebrovascular dysfunction dominates the burden of physiological dysfunction. Processed electroencephalogram (EEG) entropy measures are one possible solution to objectively quantify depth of sedation. Such measures are widely employed within anesthesia and are easy to employ at the bedside. However, the association between such EEG measures and cerebrovascular response remains unclear. Thus, to improve our understanding of the relationship between objectively measured depth of sedation and cerebrovascular response, we performed a scoping review of the literature. Methods: A systematically conduced scoping review of the existing literature on objectively measured sedation depth and CBF/cerebrovascular response was performed, search multiple databases from inception to November 2020. All available literature was reviewed to assess the association between objective sedation depth [as measured through processed electroencephalogram (EEG)] and CBF/cerebral autoregulation. Results: A total of 13 articles, 12 on adult humans and 1 on animal models, were identified. Initiation of sedation was found to decrease processed EEG entropy and CBF/cerebrovascular response measures. However, after this initial drop in values there is a wide range of responses in CBF seen. There were limited statistically reproduceable associations between processed EEG and CBF/cerebrovascular response. The literature body remains heterogeneous in both pathological states studied and sedative agent utilized, limiting the strength of conclusions that can be made. Conclusions: Conclusions about sedation depth, neurovascular coupling, CBF, and cerebrovascular response are limited. Much further work is required to outline the impact of sedation on neurovascular coupling.
Collapse
Affiliation(s)
- Logan Froese
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Joshua Dian
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Alwyn Gomez
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Carleen Batson
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Amanjyot Singh Sainbhi
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Frederick A Zeiler
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada.,Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Centre on Aging, University of Manitoba, Winnipeg, MB, Canada.,Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
16
|
Zeiler FA, Iturria-Medina Y, Thelin EP, Gomez A, Shankar JJ, Ko JH, Figley CR, Wright GEB, Anderson CM. Integrative Neuroinformatics for Precision Prognostication and Personalized Therapeutics in Moderate and Severe Traumatic Brain Injury. Front Neurol 2021; 12:729184. [PMID: 34557154 PMCID: PMC8452858 DOI: 10.3389/fneur.2021.729184] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/09/2021] [Indexed: 01/13/2023] Open
Abstract
Despite changes in guideline-based management of moderate/severe traumatic brain injury (TBI) over the preceding decades, little impact on mortality and morbidity have been seen. This argues against the "one-treatment fits all" approach to such management strategies. With this, some preliminary advances in the area of personalized medicine in TBI care have displayed promising results. However, to continue transitioning toward individually-tailored care, we require integration of complex "-omics" data sets. The past few decades have seen dramatic increases in the volume of complex multi-modal data in moderate and severe TBI care. Such data includes serial high-fidelity multi-modal characterization of the cerebral physiome, serum/cerebrospinal fluid proteomics, admission genetic profiles, and serial advanced neuroimaging modalities. Integrating these complex and serially obtained data sets, with patient baseline demographics, treatment information and clinical outcomes over time, can be a daunting task for the treating clinician. Within this review, we highlight the current status of such multi-modal omics data sets in moderate/severe TBI, current limitations to the utilization of such data, and a potential path forward through employing integrative neuroinformatic approaches, which are applied in other neuropathologies. Such advances are positioned to facilitate the transition to precision prognostication and inform a top-down approach to the development of personalized therapeutics in moderate/severe TBI.
Collapse
Affiliation(s)
- Frederick A. Zeiler
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, MB, Canada
- Centre on Aging, University of Manitoba, Winnipeg, MB, Canada
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Yasser Iturria-Medina
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Montreal, QC, Canada
| | - Eric P. Thelin
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Alwyn Gomez
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Jai J. Shankar
- Department of Radiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Ji Hyun Ko
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg, MB, Canada
| | - Chase R. Figley
- Department of Radiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg, MB, Canada
| | - Galen E. B. Wright
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg, MB, Canada
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Chris M. Anderson
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg, MB, Canada
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
17
|
Klinzing S, Stretti F, Pagnamenta A, Bèchir M, Brandi G. Transcranial color-coded duplex sonography assessment of cerebrovascular reactivity to carbon dioxide: an interventional study. BMC Neurol 2021; 21:305. [PMID: 34364365 PMCID: PMC8349098 DOI: 10.1186/s12883-021-02310-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/06/2021] [Indexed: 01/15/2023] Open
Abstract
Background The investigation of CO2 reactivity (CO2-CVR) is used in the setting of, e.g., traumatic brain injury (TBI). Transcranial color-coded duplex sonography (TCCD) is a promising bedside tool for monitoring cerebral hemodynamics. This study used TCCD to investigate CO2-CVR in volunteers, in sedated and mechanically ventilated patients without TBI and in sedated and mechanically ventilated patients in the acute phase after TBI. Methods This interventional investigation was performed between March 2013 and February 2016 at the surgical ICU of the University Hospital of Zurich. Ten volunteers (group 1), ten sedated and mechanically ventilated patients (group 2), and ten patients in the acute phase (12–36 h) after severe TBI (group 3) were included. CO2-CVR to moderate hyperventilation (∆ CO2 -5.5 mmHg) was assessed by TCCD. Results CO2-CVR was 2.14 (1.20–2.70) %/mmHg in group 1, 2.03 (0.15–3.98) %/mmHg in group 2, and 3.32 (1.18–4.48)%/mmHg in group 3, without significant differences among groups. Conclusion Our data did not yield evidence for altered CO2-CVR in the early phase after TBI examined by TCCD. Trial registration Part of this trial was performed as preparation for the interventional trial in TBI patients (clinicaltrials.gov NCT03822026, 30.01.2019, retrospectively registered).
Collapse
Affiliation(s)
- Stephanie Klinzing
- Institute for Intensive Medicine, University Hospital of Zurich, Raemistrasse 100, CH-8091, Zurich, Switzerland.
| | - Federica Stretti
- Intensive Care Unit, Westmead Hospital, Westmead, NSW, Australia
| | - Alberto Pagnamenta
- Intensive Care Unit, Regional Hospital of Mendrisio, Mendrisio, Switzerland.,Unit of Clinical Epidemiology, Ente Ospedaliero Cantonale, Bellinzona, Switzerland.,Division of Pneumology, University of Geneva, Geneva, Switzerland
| | - Markus Bèchir
- Institute for Intensive Medicine, University Hospital of Zurich, Raemistrasse 100, CH-8091, Zurich, Switzerland
| | - Giovanna Brandi
- Institute for Intensive Medicine, University Hospital of Zurich, Raemistrasse 100, CH-8091, Zurich, Switzerland
| |
Collapse
|
18
|
Toro C, Temkin N, Barber J, Manley G, Jain S, Ohnuma T, Komisarow J, Foreman B, Korley FK, Vavilala MS, Laskowitz DT, Mathew JP, Hernandez A, Sampson J, James ML, Goldstein BA, Markowitz AJ, Krishnamoorthy V. Association of Vasopressor Choice with Clinical and Functional Outcomes Following Moderate to Severe Traumatic Brain Injury: A TRACK-TBI Study. Neurocrit Care 2021; 36:180-191. [PMID: 34341913 DOI: 10.1007/s12028-021-01280-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/17/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Early hypotension following moderate to severe traumatic brain injury (TBI) is associated with increased mortality and poor long-term outcomes. Current guidelines suggest the use of intravenous vasopressors to support blood pressure following TBI; however, guidelines do not specify vasopressor type, resulting in variation in clinical practice. Minimal data are available to guide clinicians on optimal early vasopressor choice to support blood pressure following TBI. Therefore, we conducted a multicenter study to examine initial vasopressor choice for the support of blood pressure following TBI and its association with clinical and functional outcomes after injury. METHODS We conducted a retrospective cohort study of patients enrolled in the transforming research and clinical knowledge in traumatic brain injury (TRACK-TBI) study, an 18-center prospective cohort study of patients with TBI evaluated in participating level I trauma centers. We examined adults with moderate to severe TBI (defined as Glasgow Coma Scale score < 13) who were admitted to the intensive care unit and received an intravenous vasopressor within 48 h of admission. The primary exposure was initial vasopressor choice (phenylephrine versus norepinephrine), and the primary outcome was 6-month Glasgow Outcomes Scale Extended (GOSE), with the following secondary outcomes: length of hospital stay, length of intensive care unit stay, in-hospital mortality, new requirement for dialysis, and 6-month Disability Rating Scale. Regression analysis was used to assess differences in outcomes between patients exposed to norepinephrine versus phenylephrine, with propensity weighting to address selection bias due to the nonrandom allocation of the treatment groups and patient dropout. RESULTS The final study sample included 156 patients, of whom 79 (51%) received norepinephrine, 69 (44%) received phenylephrine, and 8 (5%) received an alternate drug as their initial vasopressor. 121 (77%) of patients were men, with a mean age of 43.1 years. Of patients receiving norepinephrine as their initial vasopressor, 32% had a favorable outcome (GOSE 5-8), whereas 40% of patients receiving phenylephrine as their initial vasopressor had a favorable outcome. Compared with phenylephrine, exposure to norepinephrine was not significantly associated with improved 6-month GOSE (weighted odds ratio 1.40, 95% confidence interval 0.66-2.96, p = 0.37) or any secondary outcome. CONCLUSIONS The majority of patients with moderate to severe TBI received either phenylephrine or norepinephrine as first-line agents for blood pressure support following brain injury. Initial choice of norepinephrine, compared with phenylephrine, was not associated with improved clinical or functional outcomes.
Collapse
Affiliation(s)
- Camilo Toro
- Critical Care and Perioperative Population Health Research Unit, Department of Anesthesiology, Duke University, Durham, NC, USA
- Duke University School of Medicine, Durham, NC, USA
| | - Nancy Temkin
- Department of Biostatistics, University of Washington, Seattle, WA, USA
- Department of Neurosurgery, University of Washington, Seattle, WA, USA
| | - Jason Barber
- Department of Neurosurgery, University of Washington, Seattle, WA, USA
| | - Geoffrey Manley
- Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, CA, USA
| | - Sonia Jain
- Biostatistics Research Center, Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, CA, USA
| | - Tetsu Ohnuma
- Critical Care and Perioperative Population Health Research Unit, Department of Anesthesiology, Duke University, Durham, NC, USA
- Department of Anesthesiology, Duke University, Durham, NC, USA
| | | | - Brandon Foreman
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Frederick K Korley
- Department of Emergency Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Monica S Vavilala
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA
| | - Daniel T Laskowitz
- Department of Anesthesiology, Duke University, Durham, NC, USA
- Department of Neurosurgery, Duke University, Durham, NC, USA
- Department of Neurology, Duke University, Durham, NC, USA
| | - Joseph P Mathew
- Department of Anesthesiology, Duke University, Durham, NC, USA
| | | | - John Sampson
- Department of Neurosurgery, Duke University, Durham, NC, USA
| | - Michael L James
- Critical Care and Perioperative Population Health Research Unit, Department of Anesthesiology, Duke University, Durham, NC, USA
- Department of Anesthesiology, Duke University, Durham, NC, USA
- Department of Neurology, Duke University, Durham, NC, USA
| | - Benjamin A Goldstein
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - Amy J Markowitz
- Brain and Spinal Injury Center, University of California, San Francisco, San Francisco, CA, USA
| | - Vijay Krishnamoorthy
- Critical Care and Perioperative Population Health Research Unit, Department of Anesthesiology, Duke University, Durham, NC, USA.
- Department of Anesthesiology, Duke University, Durham, NC, USA.
- Department of Population Health Sciences, Duke University, Durham, NC, USA.
| |
Collapse
|
19
|
Senay B, Chaaban T, Cardim D, Mainali S. Ultrasound-Guided Therapies in the Neuro ICU. Curr Treat Options Neurol 2021. [DOI: 10.1007/s11940-021-00679-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Wolf S. The State of Autoregulation. Neurocrit Care 2021; 34:5-7. [PMID: 32548809 PMCID: PMC7940286 DOI: 10.1007/s12028-020-01021-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Stefan Wolf
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
21
|
Zeiler FA. Advanced Bio-signal Analytics for Continuous Bedside Monitoring of Aneurysmal Subarachnoid Hemorrhage: The Future. Neurocrit Care 2021; 34:375-378. [PMID: 33403580 DOI: 10.1007/s12028-020-01170-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Affiliation(s)
- Frederick A Zeiler
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada. .,Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada. .,Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Canada. .,Centre on Aging, University of Manitoba, Winnipeg, Canada. .,Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.
| |
Collapse
|
22
|
Rossong H, Hasen M, Ahmed B, Zeiler FA, Dhaliwal P. Hypertonic Saline for Moderate Traumatic Brain Injury: A Scoping Review of Impact on Neurological Deterioration. Neurotrauma Rep 2020; 1:253-260. [PMID: 33381773 PMCID: PMC7769038 DOI: 10.1089/neur.2020.0056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hypertonic saline (HTS) is a commonly administered agent for intracranial pressure (ICP) control in traumatic brain injury (TBI). The literature on its use is mainly in moderate/severe TBI where invasive ICP monitoring is present. The role of HTS in patients with moderate TBI (mTBI) outside of the intensive care unit (ICU) setting remains unclear. The goal of this scoping review was to provide an overview of the available literature on HTS administration in patients with mTBI without ICP monitoring, assessing its impact on outcome and transitions in care. We performed a scoping systematic review of the literature of MEDLINE, Embase, Scopus, BIOSIS, and the Cochrane Databases from inception to July 31, 2020. We searched for those published articles documenting the administration of HTS in patients with mTBI with recorded functional outcome or transitions in hospital care. A two-step review process was conducted in accordance with methodology outlined in the Cochrane Handbook for Systematic Reviews of Interventions. There were many studies with combined moderate/severe TBI populations. However, most failed to document subgroup analysis for patients with mTBI. Our search strategy identified only one study that documented the administration of HTS in mTBI in which subgroup analysis for mTBI and outcomes were provided. This retrospective cohort study assessed patients with mTBI who did/did not receive prophylactic HTS, finding that those not receiving HTS demonstrated a deterioration in Glasgow Coma Scale (GCS) score in the first 48 h. However, the HTS group did demonstrate a trend to longer hospital stay and pneumonia. Our scoping review identified a significant gap in knowledge surrounding the use of HTS for patients with mTBI without invasive ICP monitoring. The limited identified literature suggests prophylactic administration prevents clinical deterioration, although this is based on a single study with data available for mTBI sub-analysis. Further studies on HTS in non-monitored patients with mTBI are required.
Collapse
Affiliation(s)
- Heather Rossong
- Undergraduate Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Section of Neurosurgery, Department of Surgery, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Mohammed Hasen
- Section of Neurosurgery, Department of Surgery, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Bilal Ahmed
- Undergraduate Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Frederick A. Zeiler
- Section of Neurosurgery, Department of Surgery, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
- Centre on Aging, University of Manitoba, Winnipeg, Manitoba, Canada
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | - Perry Dhaliwal
- Section of Neurosurgery, Department of Surgery, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
23
|
Froese L, Dian J, Batson C, Gomez A, Alarifi N, Unger B, Zeiler FA. The Impact of Vasopressor and Sedative Agents on Cerebrovascular Reactivity and Compensatory Reserve in Traumatic Brain Injury: An Exploratory Analysis. Neurotrauma Rep 2020; 1:157-168. [PMID: 33274344 PMCID: PMC7703494 DOI: 10.1089/neur.2020.0028] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The impact of vasopressor and sedative drugs on cerebrovascular reactivity in traumatic brain injury (TBI) remains unclear. The aim of this study was to evaluate the impact of changes of doses of commonly administered sedation (i.e., propofol, fentanyl, and ketamine) and vasopressor agents (i.e., norepinephrine [NE], phenylephrine [PE], and vasopressin[VSP]) on cerebrovascular reactivity and compensatory reserve in patients with moderate/severe TBI. Using the Winnipeg Acute TBI Database, we identified 38 patients with more than 1000 distinct changes of infusion rates and more than 500 h of paired drug infusion/physiology data. Cerebrovascular reactivity was assessed using pressure reactivity index (PRx) and cerebral compensatory reserve was assessed using RAP (the correlation [R] between pulse amplitude of intracranial pressure [ICP; A] and ICP [P]). We evaluated the data in two phases. First, we assessed the relationship between mean hourly dose of medication and its relation to both mean hourly index values, and time spent above a given index threshold. Second, we evaluated time-series data for each individual dose change per medication, assessing for a statistically significant change in PRx and RAP metrics. The results of the analysis confirmed that, overall, the mean hourly dose of sedative (propofol, fentanyl, and ketamine) and vasopressor (NE, PE, and VSP) agents does not impact hourly cerebrovascular reactivity or compensatory reserve measures. Similarly, incremental dose changes in these medications in general do not lead to significant changes in cerebrovascular reactivity or compensatory reserve. For propofol with incremental dose increases, in situations where PRx is intact (i.e., PRx <0 prior), a statistically significant increase in PRx was seen. However, this may not indicate deteriorating cerebrovascular reactivity as the final PRx (∼0.05) may still be considered to be intact cerebrovascular reactivity. As such, this finding with regards to propofol remains “weak.” This study indicates that commonly administered sedative and vasopressor agents with incremental dosing changes have no clinically significant influence on cerebrovascular reactivity or compensatory reserve in TBI. These results should be considered preliminary, requiring further investigation.
Collapse
Affiliation(s)
- Logan Froese
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Joshua Dian
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Carleen Batson
- Department of Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Alwyn Gomez
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Norah Alarifi
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Bertram Unger
- Section of Critical Care, Department of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Frederick A Zeiler
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Manitoba, Canada.,Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.,Centre on Aging, University of Manitoba, Winnipeg, Manitoba, Canada.,Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
24
|
Froese L, Dian J, Batson C, Gomez A, Unger B, Zeiler FA. The impact of hypertonic saline on cerebrovascular reactivity and compensatory reserve in traumatic brain injury: an exploratory analysis. Acta Neurochir (Wien) 2020; 162:2683-2693. [PMID: 32959342 PMCID: PMC7505542 DOI: 10.1007/s00701-020-04579-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/07/2020] [Indexed: 01/17/2023]
Abstract
Background Intravenous hypertonic saline is utilized commonly in critical care for treatment of acute or refractory elevations of intracranial pressure (ICP) in traumatic brain injury (TBI) patients. Though there is a clear understanding of the general physiological effects of a hypertonic saline solution over long periods of time, smaller epoch effects of hypertonic saline (HTS) have not been thoroughly analyzed. The aim of this study was to perform a direct evaluation of the high-frequency response of HTS on the cerebrovascular physiological responses in TBI. Methods We retrospectively reviewed our prospectively maintained adult TBI database for those with archived high-frequency cerebral physiology and available HTS treatment information. We evaluated different epochs of physiology around HTS bolus dosing, comparing pre- with post-HTS. We assessed for changes in slow fluctuations in ICP, pulse amplitude of ICP (AMP), cerebral perfusion pressure (CPP), mean arterial pressure (MAP), cerebrovascular reactivity (as measured through pressure reactivity index (PRx)), and cerebral compensatory reserve (correlation (R) between AMP (A) and ICP (P)). Comparisons of mean measures and percentage time above clinically relevant thresholds for the physiological parameters were compared pre- and post-HTS using descriptive statistics and Mann-Whitney U testing. We assessed for subgroups of physiological responses using latent profile analysis (LPA). Results Fifteen patients underwent 69 distinct bolus infusions of hypertonic saline. Apart from the well-documented decrease in ICP, there was also a reduction in AMP. The analysis of cerebrovascular reactivity response to HTS solution had two main effects. For patients with grossly impaired cerebrovascular reactivity pre-HTS (PRx > + 0.30), HTS bolus led to improved reactivity. However, for those with intact cerebrovascular reactivity pre-HTS (PRx < 0), HTS bolus demonstrated a trend towards more impaired reactivity. This indicates that HTS has different impacts, dependent on pre-bolus cerebrovascular status. There was no significant change in metrics of cerebral compensatory reserve. LPA failed to demonstrate any subgroups of physiological responses to HTS administration. Conclusions The direct decrease in ICP and AMP confirms that a bolus dose of a HTS solution is an effective therapeutic agent for intracranial hypertension. However, in patients with intact autoregulation, hypertonic saline may impair cerebral hemodynamics. These findings regarding cerebrovascular reactivity remain preliminary and require further investigation. Electronic supplementary material The online version of this article (10.1007/s00701-020-04579-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Logan Froese
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Canada
| | - Joshua Dian
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB Canada
| | - Carleen Batson
- Department of Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Alwyn Gomez
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB Canada
- Department of Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Bertram Unger
- Section of Critical Care, Department of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Frederick A. Zeiler
- Biomedical Engineering, Faculty of Engineering, University of Manitoba, Winnipeg, Canada
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB Canada
- Department of Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
- Centre on Aging, University of Manitoba, Winnipeg, Canada
- Division of Anaesthesia, Department of Medicine, Addenbrooke’s Hospital, University of Cambridge, Cambridge, UK
| |
Collapse
|
25
|
Froese L, Dian J, Gomez A, Unger B, Zeiler FA. The cerebrovascular response to norepinephrine: A scoping systematic review of the animal and human literature. Pharmacol Res Perspect 2020; 8:e00655. [PMID: 32965778 PMCID: PMC7510331 DOI: 10.1002/prp2.655] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/14/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022] Open
Abstract
Intravenous norepinephrine (NE) is utilized commonly in critical care for cardiovascular support. NE's impact on cerebrovasculature is unclear and may carry important implications during states of critical neurological illness. The aim of the study was to perform a scoping review of the literature on the cerebrovascular/cerebral blood flow (CBF) effects of NE. A search of MEDLINE, BIOSIS, EMBASE, Global Health, SCOPUS, and Cochrane Library from inception to December 2019 was performed. All manuscripts pertaining to the administration of NE, in which the impact on CBF/cerebral vasculature was recorded, were included. We identified 62 animal studies and 26 human studies. Overall, there was a trend to a direct vasoconstriction effect of NE on the cerebral vasculature, with conflicting studies having demonstrated both increases and decreases in regional CBF (rCBF) or global CBF. Healthy animals and those undergoing cardiopulmonary resuscitation demonstrated a dose-dependent increase in CBF with NE administration. However, animal models and human patients with acquired brain injury had varied responses in CBF to NE administration. The animal models indicate an increase in cerebral vasoconstriction with NE administration through the alpha receptors in vessels. Global and rCBF during the injection of NE displays a wide variation depending on treatment and model/patient.
Collapse
Affiliation(s)
- Logan Froese
- Biomedical EngineeringFaculty of EngineeringUniversity of ManitobaWinnipegCanada
| | - Joshua Dian
- Section of NeurosurgeryDepartment of SurgeryRady Faculty of Health SciencesUniversity of ManitobaWinnipegCanada
| | - Alwyn Gomez
- Section of NeurosurgeryDepartment of SurgeryRady Faculty of Health SciencesUniversity of ManitobaWinnipegCanada
- Department of Anatomy and Cell ScienceRady Faculty of Health SciencesUniversity of ManitobaWinnipegCanada
| | - Bertram Unger
- Section of Critical CareDepartment of MedicineRady Faculty of Health SciencesUniversity of ManitobaWinnipegCanada
| | - Frederick A. Zeiler
- Biomedical EngineeringFaculty of EngineeringUniversity of ManitobaWinnipegCanada
- Department of Anatomy and Cell ScienceRady Faculty of Health SciencesUniversity of ManitobaWinnipegCanada
- Centre on AgingUniversity of ManitobaWinnipegCanada
- Division of AnaesthesiaDepartment of MedicineAddenbrooke’s HospitalUniversity of CambridgeCambridgeUK
| |
Collapse
|
26
|
Low Molecular Weight Dextran Sulfate (ILB ®) Administration Restores Brain Energy Metabolism Following Severe Traumatic Brain Injury in the Rat. Antioxidants (Basel) 2020; 9:antiox9090850. [PMID: 32927770 PMCID: PMC7555574 DOI: 10.3390/antiox9090850] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
Traumatic brain injury (TBI) is the leading cause of death and disability in people less than 40 years of age in Western countries. Currently, there are no satisfying pharmacological treatments for TBI patients. In this study, we subjected rats to severe TBI (sTBI), testing the effects of a single subcutaneous administration, 30 min post-impact, of a new low molecular weight dextran sulfate, named ILB®, at three different dose levels (1, 5, and 15 mg/kg body weight). A group of control sham-operated animals and one of untreated sTBI rats were used for comparison (each group n = 12). On day 2 or 7 post-sTBI animals were sacrificed and the simultaneous HPLC analysis of energy metabolites, N-acetylaspartate (NAA), oxidized and reduced nicotinic coenzymes, water-soluble antioxidants, and biomarkers of oxidative/nitrosative stress was carried out on deproteinized cerebral homogenates. Compared to untreated sTBI rats, ILB® improved energy metabolism by increasing ATP, ATP/ adenosine diphosphate ratio (ATP/ADP ratio), and triphosphate nucleosides, dose-dependently increased NAA concentrations, protected nicotinic coenzyme levels and their oxidized over reduced ratios, prevented depletion of ascorbate and reduced glutathione (GSH), and decreased oxidative (malondialdehyde formation) and nitrosative stress (nitrite + nitrate production). Although needing further experiments, these data provide the first evidence that a single post-injury injection of a new low molecular weight dextran sulfate (ILB®) has beneficial effects on sTBI metabolic damages. Due to the absence of adverse effects in humans, ILB® represents a promising therapeutic agent for the treatment of sTBI patients.
Collapse
|
27
|
Ai HB, Jiang EL, Yu JH, Xiong LB, Yang Q, Jin QZ, Gong WY, Chen S, Zhang H. Mean arterial pressure is associated with the neurological function in patients who survived after cardiopulmonary resuscitation: A retrospective cohort study. Clin Cardiol 2020; 43:1286-1293. [PMID: 32737997 PMCID: PMC7661647 DOI: 10.1002/clc.23441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 01/13/2023] Open
Abstract
Background About 18% to 40% of the survivors have moderate to severe neurological dysfunction. At present, studies on mean arterial pressure (MAP) and neurological function of patients survived after cardiopulmonary resuscitation (CPR) are limited and conflicted. Hypothesis The higher the MAP of the patient who survived after CPR, the better the neurological function. Method A retrospective cohort study was conducted to detect the relationship between MAP and the neurological function of patients who survived after CPR by univariate analysis, multivariate regression analysis, and subgroup analysis. Results From January 2007 to December 2015, a total of 290 cases met the inclusion criteria and were enrolled in this study. The univariate analysis showed that MAP was associated with the neurological function of patients who survived after CPR; its OR value was 1.03 (1.01, 1.04). The multi‐factor regression analysis also showed that MAP was associated with the neurological function of patients survived after CPR in the four models, the adjusted OR value of the four models were 1.021 (1.008, 1.035); 1.028 (1.013, 1.043); 1.027 (1.012, 1.043); and 1.029 (1.014, 1.044), respectively. The subgroups analyses showed that when 65 mm Hg ≤ MAP<100 mm Hg and when patients with targeted temperature management or without extracorporeal membrane oxygenation, with the increase of MAP, the better neurological function of patients survived after CPR. Conclusion This study found that the higher MAP, the better the neurological function of patients who survived after CPR. At the same time, the maintenance of MAP at 65 to 100 mm Hg would improve the neurological function of patients who survived after CPR.
Collapse
Affiliation(s)
- Hai-Bo Ai
- Rehabilitation Medicine Department, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - En-Li Jiang
- Rehabilitation Medicine Department, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Ji-Hua Yu
- Rehabilitation Medicine Department, The First Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lin-Bo Xiong
- Rehabilitation Medicine Department, Mianyang Central Hospital, Mianyang, China
| | - Qi Yang
- Rehabilitation Medicine Department, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Qi-Zu Jin
- Rehabilitation Medicine Department, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Wen-Yan Gong
- Rehabilitation Medicine Department, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Shuai Chen
- Rehabilitation Medicine Department, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Hong Zhang
- Rehabilitation Medicine Department, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| |
Collapse
|