1
|
Xie M, Pallegar PN, Parusel S, Nguyen AT, Wu LJ. Regulation of cortical hyperexcitability in amyotrophic lateral sclerosis: focusing on glial mechanisms. Mol Neurodegener 2023; 18:75. [PMID: 37858176 PMCID: PMC10585818 DOI: 10.1186/s13024-023-00665-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder characterized by the loss of both upper and lower motor neurons, resulting in muscle weakness, atrophy, paralysis, and eventually death. Motor cortical hyperexcitability is a common phenomenon observed at the presymptomatic stage of ALS. Both cell-autonomous (the intrinsic properties of motor neurons) and non-cell-autonomous mechanisms (cells other than motor neurons) are believed to contribute to cortical hyperexcitability. Decoding the pathological relevance of these dynamic changes in motor neurons and glial cells has remained a major challenge. This review summarizes the evidence of cortical hyperexcitability from both clinical and preclinical research, as well as the underlying mechanisms. We discuss the potential role of glial cells, particularly microglia, in regulating abnormal neuronal activity during the disease progression. Identifying early changes such as neuronal hyperexcitability in the motor system may provide new insights for earlier diagnosis of ALS and reveal novel targets to halt the disease progression.
Collapse
Affiliation(s)
- Manling Xie
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Praveen N Pallegar
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Sebastian Parusel
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Aivi T Nguyen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
- Department of Immunology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
2
|
Traiffort E, Morisset-Lopez S, Moussaed M, Zahaf A. Defective Oligodendroglial Lineage and Demyelination in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2021; 22:ijms22073426. [PMID: 33810425 PMCID: PMC8036314 DOI: 10.3390/ijms22073426] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/15/2021] [Accepted: 03/24/2021] [Indexed: 01/23/2023] Open
Abstract
Motor neurons and their axons reaching the skeletal muscle have long been considered as the best characterized targets of the degenerative process observed in amyotrophic lateral sclerosis (ALS). However, the involvement of glial cells was also more recently reported. Although oligodendrocytes have been underestimated for a longer time than other cells, they are presently considered as critically involved in axonal injury and also conversely constitute a target for the toxic effects of the degenerative neurons. In the present review, we highlight the recent advances regarding oligodendroglial cell involvement in the pathogenesis of ALS. First, we present the oligodendroglial cells, the process of myelination, and the tight relationship between axons and myelin. The histological abnormalities observed in ALS and animal models of the disease are described, including myelin defects and oligodendroglial accumulation of pathological protein aggregates. Then, we present data that establish the existence of dysfunctional and degenerating oligodendroglial cells, the chain of events resulting in oligodendrocyte degeneration, and the most recent molecular mechanisms supporting oligodendrocyte death and dysfunction. Finally, we review the arguments in support of the primary versus secondary involvement of oligodendrocytes in the disease and discuss the therapeutic perspectives related to oligodendrocyte implication in ALS pathogenesis.
Collapse
Affiliation(s)
- Elisabeth Traiffort
- Diseases and Hormones of the Nervous System U1195 INSERM, Paris Saclay University, 80 Rue du Général Leclerc, 94276 Le Kremlin-Bicêtre, France;
- Correspondence:
| | - Séverine Morisset-Lopez
- Centre de Biophysique Moléculaire, UPR 4301 CNRS, Orléans University, INSERM, rue Charles Sadron, CEDEX 02, 45071 Orleans, France; (S.M.-L.); (M.M.)
| | - Mireille Moussaed
- Centre de Biophysique Moléculaire, UPR 4301 CNRS, Orléans University, INSERM, rue Charles Sadron, CEDEX 02, 45071 Orleans, France; (S.M.-L.); (M.M.)
| | - Amina Zahaf
- Diseases and Hormones of the Nervous System U1195 INSERM, Paris Saclay University, 80 Rue du Général Leclerc, 94276 Le Kremlin-Bicêtre, France;
| |
Collapse
|
3
|
ALS-Linked SOD1 Mutants Enhance Neurite Outgrowth and Branching in Adult Motor Neurons. iScience 2018; 11:294-304. [PMID: 30639851 PMCID: PMC6327879 DOI: 10.1016/j.isci.2018.12.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/30/2018] [Accepted: 12/21/2018] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive, fatal neurodegenerative disease characterized by motor neuron cell death. However, not all motor neurons are equally susceptible. Most of what we know about the surviving motor neurons comes from gene expression profiling; less is known about their functional traits. We found that resistant motor neurons cultured from SOD1 ALS mouse models have enhanced axonal outgrowth and dendritic branching. They also have an increase in the number and size of actin-based structures like growth cones and filopodia. These phenotypes occur in cells cultured from presymptomatic mice and mutant SOD1 models that do not develop ALS but not in embryonic motor neurons. Enhanced outgrowth and upregulation of filopodia can be induced in wild-type adult cells by expressing mutant SOD1. These results demonstrate that mutant SOD1 can enhance the regenerative capability of ALS-resistant motor neurons. Capitalizing on this mechanism could lead to new therapeutic strategies. Motor neurons from end-stage SOD1 ALS mice have enhanced neurite outgrowth/branching Increased outgrowth occurs only in adult neurons and is independent of ALS symptoms SOD1G93A adult motor neurons have larger growth cones and more axonal filopodia Acute SOD1G93A expression upregulates outgrowth in wild-type adult motor neurons
Collapse
|
4
|
Alves CJ, Maximino JR, Chadi G. Dysregulated expression of death, stress and mitochondrion related genes in the sciatic nerve of presymptomatic SOD1(G93A) mouse model of Amyotrophic Lateral Sclerosis. Front Cell Neurosci 2015; 9:332. [PMID: 26339226 PMCID: PMC4555015 DOI: 10.3389/fncel.2015.00332] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 08/10/2015] [Indexed: 12/11/2022] Open
Abstract
Schwann cells are the main source of paracrine support to motor neurons. Oxidative stress and mitochondrial dysfunction have been correlated to motor neuron death in Amyotrophic Lateral Sclerosis (ALS). Despite the involvement of Schwann cells in early neuromuscular disruption in ALS, detailed molecular events of a dying-back triggering are unknown. Sciatic nerves of presymptomatic (60-day-old) SOD1(G93A) mice were submitted to a high-density oligonucleotide microarray analysis. DAVID demonstrated the deregulated genes related to death, stress and mitochondrion, which allowed the identification of Cell cycle, ErbB signaling, Tryptophan metabolism and Rig-I-like receptor signaling as the most representative KEGG pathways. The protein-protein interaction networks based upon deregulated genes have identified the top hubs (TRAF2, H2AFX, E2F1, FOXO3, MSH2, NGFR, TGFBR1) and bottlenecks (TRAF2, E2F1, CDKN1B, TWIST1, FOXO3). Schwann cells were enriched from the sciatic nerve of presymptomatic mice using flow cytometry cell sorting. qPCR showed the up regulated (Ngfr, Cdnkn1b, E2f1, Traf2 and Erbb3, H2afx, Cdkn1a, Hspa1, Prdx, Mapk10) and down-regulated (Foxo3, Mtor) genes in the enriched Schwann cells. In conclusion, molecular analyses in the presymptomatic sciatic nerve demonstrated the involvement of death, oxidative stress, and mitochondrial pathways in the Schwann cell non-autonomous mechanisms in the early stages of ALS.
Collapse
Affiliation(s)
- Chrystian J Alves
- Department of Neurology, Neuroregeneration Center, University of São Paulo School of Medicine São Paulo, Brazil
| | - Jessica R Maximino
- Department of Neurology, Neuroregeneration Center, University of São Paulo School of Medicine São Paulo, Brazil
| | - Gerson Chadi
- Department of Neurology, Neuroregeneration Center, University of São Paulo School of Medicine São Paulo, Brazil
| |
Collapse
|
5
|
Alves CJ, Dariolli R, Jorge FM, Monteiro MR, Maximino JR, Martins RS, Strauss BE, Krieger JE, Callegaro D, Chadi G. Gene expression profiling for human iPS-derived motor neurons from sporadic ALS patients reveals a strong association between mitochondrial functions and neurodegeneration. Front Cell Neurosci 2015; 9:289. [PMID: 26300727 PMCID: PMC4523944 DOI: 10.3389/fncel.2015.00289] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/14/2015] [Indexed: 01/29/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease that leads to widespread motor neuron death, general palsy and respiratory failure. The most prevalent sporadic ALS form is not genetically inherited. Attempts to translate therapeutic strategies have failed because the described mechanisms of disease are based on animal models carrying specific gene mutations and thus do not address sporadic ALS. In order to achieve a better approach to study the human disease, human induced pluripotent stem cell (hiPSC)-differentiated motor neurons were obtained from motor nerve fibroblasts of sporadic ALS and non-ALS subjects using the STEMCCA Cre-Excisable Constitutive Polycistronic Lentivirus system and submitted to microarray analyses using a whole human genome platform. DAVID analyses of differentially expressed genes identified molecular function and biological process-related genes through Gene Ontology. REVIGO highlighted the related functions mRNA and DNA binding, GTP binding, transcription (co)-repressor activity, lipoprotein receptor binding, synapse organization, intracellular transport, mitotic cell cycle and cell death. KEGG showed pathways associated with Parkinson's disease and oxidative phosphorylation, highlighting iron homeostasis, neurotrophic functions, endosomal trafficking and ERK signaling. The analysis of most dysregulated genes and those representative of the majority of categorized genes indicates a strong association between mitochondrial function and cellular processes possibly related to motor neuron degeneration. In conclusion, iPSC-derived motor neurons from motor nerve fibroblasts of sporadic ALS patients may recapitulate key mechanisms of neurodegeneration and may offer an opportunity for translational investigation of sporadic ALS. Large gene profiling of differentiated motor neurons from sporadic ALS patients highlights mitochondrial participation in the establishment of autonomous mechanisms associated with sporadic ALS.
Collapse
Affiliation(s)
- Chrystian J Alves
- Department of Neurology, Neuroregeneration Center, University of São Paulo School of Medicine, University of São Paulo São Paulo, Brazil
| | - Rafael Dariolli
- Laboratory of Genetics and Molecular Cardiology/LIM13, Heart Institute, University of São Paulo School of Medicine São Paulo, Brazil
| | - Frederico M Jorge
- Department of Neurology, Neuroregeneration Center, University of São Paulo School of Medicine, University of São Paulo São Paulo, Brazil
| | - Matheus R Monteiro
- Department of Neurology, Neuroregeneration Center, University of São Paulo School of Medicine, University of São Paulo São Paulo, Brazil
| | - Jessica R Maximino
- Department of Neurology, Neuroregeneration Center, University of São Paulo School of Medicine, University of São Paulo São Paulo, Brazil
| | - Roberto S Martins
- Department of Neurosurgery, Surgical Center of Functional Neurosurgery, Clinics Hospital of University of São Paulo São Paulo, Brazil
| | - Bryan E Strauss
- Viral Vector Laboratory, Center for Translational Investigation in Oncology/LIM24, Cancer Institute of São Paulo, University of São Paulo School of Medicine São Paulo, Brazil
| | - José E Krieger
- Laboratory of Genetics and Molecular Cardiology/LIM13, Heart Institute, University of São Paulo School of Medicine São Paulo, Brazil
| | - Dagoberto Callegaro
- Department of Neurology, Neuroregeneration Center, University of São Paulo School of Medicine, University of São Paulo São Paulo, Brazil
| | - Gerson Chadi
- Department of Neurology, Neuroregeneration Center, University of São Paulo School of Medicine, University of São Paulo São Paulo, Brazil
| |
Collapse
|
6
|
Schmouth JF, Arenillas D, Corso-Díaz X, Xie YY, Bohacec S, Banks KG, Bonaguro RJ, Wong SH, Jones SJM, Marra MA, Simpson EM, Wasserman WW. Combined serial analysis of gene expression and transcription factor binding site prediction identifies novel-candidate-target genes of Nr2e1 in neocortex development. BMC Genomics 2015. [PMID: 26204903 PMCID: PMC4512088 DOI: 10.1186/s12864-015-1770-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background Nr2e1 (nuclear receptor subfamily 2, group e, member 1) encodes a transcription factor important in neocortex development. Previous work has shown that nuclear receptors can have hundreds of target genes, and bind more than 300 co-interacting proteins. However, recognition of the critical role of Nr2e1 in neural stem cells and neocortex development is relatively recent, thus the molecular mechanisms involved for this nuclear receptor are only beginning to be understood. Serial analysis of gene expression (SAGE), has given researchers both qualitative and quantitative information pertaining to biological processes. Thus, in this work, six LongSAGE mouse libraries were generated from laser microdissected tissue samples of dorsal VZ/SVZ (ventricular zone and subventricular zone) from the telencephalon of wild-type (Wt) and Nr2e1-null embryos at the critical development ages E13.5, E15.5, and E17.5. We then used a novel approach, implementing multiple computational methods followed by biological validation to further our understanding of Nr2e1 in neocortex development. Results In this work, we have generated a list of 1279 genes that are differentially expressed in response to altered Nr2e1 expression during in vivo neocortex development. We have refined this list to 64 candidate direct-targets of NR2E1. Our data suggested distinct roles for Nr2e1 during different neocortex developmental stages. Most importantly, our results suggest a possible novel pathway by which Nr2e1 regulates neurogenesis, which includes Lhx2 as one of the candidate direct-target genes, and SOX9 as a co-interactor. Conclusions In conclusion, we have provided new candidate interacting partners and numerous well-developed testable hypotheses for understanding the pathways by which Nr2e1 functions to regulate neocortex development. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1770-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jean-François Schmouth
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada. .,Genetics Graduate Program, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada. .,Current address: Montreal Neurological Institute and Hospital, McGill University, Montréal, QC, H3A 2B4, Canada.
| | - David Arenillas
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada.
| | - Ximena Corso-Díaz
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada. .,Genetics Graduate Program, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada.
| | - Yuan-Yun Xie
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada.
| | - Slavita Bohacec
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada.
| | - Kathleen G Banks
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada.
| | - Russell J Bonaguro
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada.
| | - Siaw H Wong
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada.
| | - Steven J M Jones
- Genetics Graduate Program, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada. .,Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, V5Z 4S6, Canada. .,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada. .,Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, BC, V5Z 4S6, Canada. .,Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| | - Elizabeth M Simpson
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada. .,Genetics Graduate Program, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada. .,Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada. .,Department of Psychiatry, University of British Columbia, Vancouver, BC, V6T 2A1, Canada.
| | - Wyeth W Wasserman
- Centre for Molecular Medicine and Therapeutics at the Child and Family Research Institute, University of British Columbia, 950 West 28th Avenue, Vancouver, BC, V5Z 4H4, Canada. .,Genetics Graduate Program, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada. .,Department of Medical Genetics, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
7
|
Gershoni-Emek N, Chein M, Gluska S, Perlson E. Amyotrophic lateral sclerosis as a spatiotemporal mislocalization disease: location, location, location. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 315:23-71. [PMID: 25708461 DOI: 10.1016/bs.ircmb.2014.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Spatiotemporal localization of signals is a fundamental feature impacting cell survival and proper function. The cell needs to respond in an accurate manner in both space and time to both intra- and intercellular environment cues. The regulation of this comprehensive process involves the cytoskeleton and the trafficking machinery, as well as local protein synthesis and ligand-receptor mechanisms. Alterations in such mechanisms can lead to cell dysfunction and disease. Motor neurons that can extend over tens of centimeters are a classic example for the importance of such events. Changes in spatiotemporal localization mechanisms are thought to play a role in motor neuron degeneration that occurs in amyotrophic lateral sclerosis (ALS). In this review we will discuss these mechanisms and argue that possible misregulated factors can lead to motor neuron degeneration in ALS.
Collapse
Affiliation(s)
- Noga Gershoni-Emek
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Michael Chein
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Shani Gluska
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Eran Perlson
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; The Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
8
|
Maximino JR, de Oliveira GP, Alves CJ, Chadi G. Deregulated expression of cytoskeleton related genes in the spinal cord and sciatic nerve of presymptomatic SOD1(G93A) Amyotrophic Lateral Sclerosis mouse model. Front Cell Neurosci 2014; 8:148. [PMID: 24904291 PMCID: PMC4033281 DOI: 10.3389/fncel.2014.00148] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 05/08/2014] [Indexed: 12/11/2022] Open
Abstract
Early molecular events related to cytoskeleton are poorly described in Amyotrophic Lateral Sclerosis (ALS), especially in the Schwann cell (SC), which offers strong trophic support to motor neurons. Database for Annotation, Visualization and Integrated Discovery (DAVID) tool identified cytoskeleton-related genes by employing the Cellular Component Ontology (CCO) in a large gene profiling of lumbar spinal cord and sciatic nerve of presymptomatic SOD1(G93A) mice. One and five CCO terms related to cytoskeleton were described from the spinal cord deregulated genes of 40 days (actin cytoskeleton) and 80 days (microtubule cytoskeleton, cytoskeleton part, actin cytoskeleton, neurofilament cytoskeleton, and cytoskeleton) old transgene mice, respectively. Also, four terms were depicted from the deregulated genes of sciatic nerve of 60 days old transgenes (actin cytoskeleton, cytoskeleton part, microtubule cytoskeleton and cytoskeleton). Kif1b was the unique deregulated gene in more than one studied region or presymptomatic age. The expression of Kif1b [quantitative polymerase chain reaction (qPCR)] elevated in the lumbar spinal cord (40 days old) and decreased in the sciatic nerve (60 days old) of presymptomatic ALS mice, results that were in line to microarray findings. Upregulation (24.8 fold) of Kif1b was seen in laser microdissected enriched immunolabeled motor neurons from the spinal cord of 40 days old presymptomatic SOD1(G93A) mice. Furthermore, Kif1b was dowregulated in the sciatic nerve Schwann cells of presymptomatic ALS mice (60 days old) that were enriched by means of cell microdissection (6.35 fold), cell sorting (3.53 fold), and primary culture (2.70 fold) technologies. The gene regulation of cytoskeleton molecules is an important occurrence in motor neurons and Schwann cells in presymptomatic stages of ALS and may be relevant in the dying back mechanisms of neuronal death. Furthermore, a differential regulation of Kif1b in the spinal cord and sciatic nerve cells emerged as key event in ALS.
Collapse
Affiliation(s)
- Jessica R Maximino
- Department of Neurology, Neuroregeneration Research Center, University of São Paulo School of Medicine São Paulo, Brazil
| | - Gabriela P de Oliveira
- Department of Neurology, Neuroregeneration Research Center, University of São Paulo School of Medicine São Paulo, Brazil
| | - Chrystian J Alves
- Department of Neurology, Neuroregeneration Research Center, University of São Paulo School of Medicine São Paulo, Brazil
| | - Gerson Chadi
- Department of Neurology, Neuroregeneration Research Center, University of São Paulo School of Medicine São Paulo, Brazil
| |
Collapse
|
9
|
de Oliveira GP, Alves CJ, Chadi G. Early gene expression changes in spinal cord from SOD1(G93A) Amyotrophic Lateral Sclerosis animal model. Front Cell Neurosci 2013; 7:216. [PMID: 24302897 PMCID: PMC3831149 DOI: 10.3389/fncel.2013.00216] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 10/29/2013] [Indexed: 11/13/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is an adult-onset and fast progression neurodegenerative disease that leads to the loss of motor neurons. Mechanisms of selective motor neuron loss in ALS are unknown. The early events occurring in the spinal cord that may contribute to motor neuron death are not described, neither astrocytes participation in the pre-symptomatic phases of the disease. In order to identify ALS early events, we performed a microarray analysis employing a whole mouse genome platform to evaluate the gene expression pattern of lumbar spinal cords of transgenic SOD1G93A mice and their littermate controls at pre-symptomatic ages of 40 and 80 days. Differentially expressed genes were identified by means of the Bioconductor packages Agi4×44Preprocess and limma. FunNet web based tool was used for analysis of over-represented pathways. Furthermore, immunolabeled astrocytes from 40 and 80 days old mice were submitted to laser microdissection and RNA was extracted for evaluation of a selected gene by qPCR. Statistical analysis has pointed to 492 differentially expressed genes (155 up and 337 down regulated) in 40 days and 1105 (433 up and 672 down) in 80 days old ALS mice. KEGG analysis demonstrated the over-represented pathways tight junction, antigen processing and presentation, oxidative phosphorylation, endocytosis, chemokine signaling pathway, ubiquitin mediated proteolysis and glutamatergic synapse at both pre-symptomatic ages. Ube2i gene expression was evaluated in astrocytes from both transgenic ages, being up regulated in 40 and 80 days astrocytes enriched samples. Our data points to important early molecular events occurring in pre-symptomatic phases of ALS in mouse model. Early SUMOylation process linked to astrocytes might account to non-autonomous cell toxicity in ALS. Further studies on the signaling pathways presented here may provide new insights to better understand the events triggering motor neuron death in this devastating disorder.
Collapse
Affiliation(s)
- Gabriela P de Oliveira
- Department of Neurology, Neuroregeneration Center, University of São Paulo School of Medicine São Paulo, Brazil
| | | | | |
Collapse
|
10
|
Oliver PL, Finelli MJ, Edwards B, Bitoun E, Butts DL, Becker EBE, Cheeseman MT, Davies B, Davies KE. Oxr1 is essential for protection against oxidative stress-induced neurodegeneration. PLoS Genet 2011; 7:e1002338. [PMID: 22028674 PMCID: PMC3197693 DOI: 10.1371/journal.pgen.1002338] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 08/24/2011] [Indexed: 01/19/2023] Open
Abstract
Oxidative stress is a common etiological feature of neurological disorders, although the pathways that govern defence against reactive oxygen species (ROS) in neurodegeneration remain unclear. We have identified the role of oxidation resistance 1 (Oxr1) as a vital protein that controls the sensitivity of neuronal cells to oxidative stress; mice lacking Oxr1 display cerebellar neurodegeneration, and neurons are less susceptible to exogenous stress when the gene is over-expressed. A conserved short isoform of Oxr1 is also sufficient to confer this neuroprotective property both in vitro and in vivo. In addition, biochemical assays indicate that Oxr1 itself is susceptible to cysteine-mediated oxidation. Finally we show up-regulation of Oxr1 in both human and pre-symptomatic mouse models of amyotrophic lateral sclerosis, indicating that Oxr1 is potentially a novel neuroprotective factor in neurodegenerative disease.
Collapse
Affiliation(s)
- Peter L. Oliver
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Mattéa J. Finelli
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Benjamin Edwards
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Emmanuelle Bitoun
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Darcy L. Butts
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | - Esther B. E. Becker
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| | | | - Ben Davies
- Wellcome Trust Centre for Human Genetics, Oxford, United Kingdom
| | - Kay E. Davies
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
11
|
Wang J, Zhang Y, Tang L, Zhang N, Fan D. Protective effects of resveratrol through the up-regulation of SIRT1 expression in the mutant hSOD1-G93A-bearing motor neuron-like cell culture model of amyotrophic lateral sclerosis. Neurosci Lett 2011; 503:250-5. [DOI: 10.1016/j.neulet.2011.08.047] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 08/17/2011] [Accepted: 08/22/2011] [Indexed: 12/18/2022]
|
12
|
Zhu YB, Sheng ZH. Increased axonal mitochondrial mobility does not slow amyotrophic lateral sclerosis (ALS)-like disease in mutant SOD1 mice. J Biol Chem 2011; 286:23432-40. [PMID: 21518771 DOI: 10.1074/jbc.m111.237818] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Reduced axonal mitochondrial transport has been observed in major neurodegenerative diseases, including fALS patients and SOD1(G93A) mice. However, it is unclear whether this defect plays a critical role in axonal degeneration or simply reflects sequelae of general transport alteration. Using genetic mouse models combined with time-lapse imaging of live neurons, we previously discovered that axon-targeted syntaphilin (SNPH) acts as a docking receptor specific for axonal mitochondria. Deletion of the snph gene in mice results in a substantially higher proportion of axonal mitochondria in the mobile state without any effect on the transport of other axonal organelles. Here we address whether increased (rescued) axonal mitochondrial mobility changes the disease course by crossing fALS-linked transgenic SOD1(G93A) and snph(-/-) knock-out mice. We found that a 2-fold increase in axonal mitochondrial mobility in SOD1(G93A)/snph(-/-) mice did not affect the onset of ALS-like symptoms. Both SOD1(G93A) and SOD1(G93A)/snph(-/-) mice exhibit similar weight loss, deterioration in motor function and motor neuron loss, significant gliosis, and a lifespan of 152-154 days. Thus, for the first time, our study provides genetic and pathological evidence that the impairment of mitochondrial transport seen in SOD1(G93A) mice plays a minimal role in the rapid-onset of fALS-linked pathology.
Collapse
Affiliation(s)
- Yi-Bing Zhu
- Synaptic Function Section, The Porter Neuroscience Research Center, NINDS, National Institutes of Health, Bethesda, Maryland 20892-3706, USA
| | | |
Collapse
|
13
|
Konopka G. Functional genomics of the brain: uncovering networks in the CNS using a systems approach. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2010; 3:628-48. [PMID: 21197665 DOI: 10.1002/wsbm.139] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The central nervous system (CNS) is undoubtedly the most complex human organ system in terms of its diverse functions, cellular composition, and connections. Attempts to capture this diversity experimentally were the foundation on which the field of neurobiology was built. Until now though, techniques were either painstakingly slow or insufficient in capturing this heterogeneity. In addition, the combination of multiple layers of information needed for a complete picture of neuronal diversity from the epigenome to the proteome requires an even more complex compilation of data. In this era of high-throughput genomics though, the ability to isolate and profile neurons and brain tissue has increased tremendously and now requires less effort. Both microarrays and next-generation sequencing have identified neuronal transcriptomes and signaling networks involved in normal brain development, as well as in disease. However, the expertise needed to organize and prioritize the resultant data remains substantial. A combination of supervised organization and unsupervised analyses are needed to fully appreciate the underlying structure in these datasets. When utilized effectively, these analyses have yielded striking insights into a number of fundamental questions in neuroscience on topics ranging from the evolution of the human brain to neuropsychiatric and neurodegenerative disorders. Future studies will incorporate these analyses with behavioral and physiological data from patients to more efficiently move toward personalized therapeutics.
Collapse
Affiliation(s)
- Genevieve Konopka
- Department of Neurology, University of California, Los Angeles, CA, USA.
| |
Collapse
|