1
|
Liu FW, Zhang XR, Cong YF, Liu YM, Zhang HT, Hou XQ. From postsynaptic neurons to astrocytes: the link between glutamate metabolism, Alzheimer's disease and Parkinson's disease. Rev Neurosci 2025:revneuro-2024-0143. [PMID: 40101161 DOI: 10.1515/revneuro-2024-0143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/28/2025] [Indexed: 03/20/2025]
Abstract
Glutamate is not only the main excitatory neurotransmitter of the human central nervous system, but also a potent neurotoxin. Therefore, maintaining low-dose, non-toxic extracellular glutamate concentrations between synapses to ensure the reliability of synaptic transmission is essential for maintaining normal physiological functions of neurons. More and more studies have confirmed that the specific pathogenesis of central nervous system diseases (such as Alzheimer's disease) caused by neuronal damage or death due to abnormal inter-synaptic glutamate concentration may be related to the abnormal function of excitatory amino acid transporter proteins and glutamine synthetase on astrocytes, and that the abnormal expression and function of the above two proteins may be related to the transcription, translation, and even modification of both by the process of transcription, translation, and even modification of astrocytes. oxidative stress, and inflammatory responses occurring in astrocytes during their transcription, translation and even modification. Therefore, in this review, we mainly discuss the relationship between glutamate metabolism (from postsynaptic neurons to astrocytes), Alzheimer's disease and Parkinson's disease in recent years.
Collapse
Affiliation(s)
- Fu-Wang Liu
- School of Pharmaceutical Sciences & Institute of Materia Medica, 518873 Shandong First Medical University & Shandong Academy of Medical Sciences , Jinan, Shandong, 250117, P.R. China
| | - Xue-Rui Zhang
- School of Pharmaceutical Sciences & Institute of Materia Medica, 518873 Shandong First Medical University & Shandong Academy of Medical Sciences , Jinan, Shandong, 250117, P.R. China
| | - Yi-Fan Cong
- Department of Pharmacy, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430014, P.R. China
| | - Yan-Man Liu
- School of Pharmaceutical Sciences & Institute of Materia Medica, 518873 Shandong First Medical University & Shandong Academy of Medical Sciences , Jinan, Shandong, 250117, P.R. China
| | - Han-Ting Zhang
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, Shandong, 266073, P.R. China
| | - Xue-Qin Hou
- School of Pharmaceutical Sciences & Institute of Materia Medica, 518873 Shandong First Medical University & Shandong Academy of Medical Sciences , Jinan, Shandong, 250117, P.R. China
| |
Collapse
|
2
|
Wu N, Wang S, Zhang Y, Wang S. Research Progress on Anti-Inflammatory Mechanism of Inula cappa. Int J Mol Sci 2025; 26:1911. [PMID: 40076538 PMCID: PMC11900443 DOI: 10.3390/ijms26051911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/14/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
The incidence of various inflammatory diseases has remained high. Inula cappa is a kind of Chinese herbal medicine with a wide range of pharmacological uses and application value. It has anti-inflammatory, antibacterial, antioxidant, hepatoprotective and other pharmacological activities. The monomeric compounds that have been confirmed to have anti-inflammatory effects are luteolin, chrysoerilol, artemetin, chlorogenic acid, neochlorogenic acid, cryptchlorogenic acid, isochlorogenic acid A, isochlorogenic acid B, isochlorogenic acid C and 1,3-O-dicaffeoylquinic acid. This article introduces the relationship between Inula cappa and inflammation, the anti-inflammatory components of I. cappa, the modulation of each component on the inflammatory transduction signal pathway, and the TLR2/MyD88/NF-KB anti-inflammatory signaling pathway, providing a theoretical basis for anti-inflammatory research on and clinical medication using Inula cappa.
Collapse
Affiliation(s)
| | | | | | - Siming Wang
- School of Basic Medical Sciences, Hebei University, Baoding 071000, China; (N.W.); (S.W.); (Y.Z.)
| |
Collapse
|
3
|
Kong L, Yang H, Yang J, Jiang L, Xu B, Yang T, Liu W. Role of calcium overload-mediated disruption of mitochondrial dynamics in offspring neurotoxicity due to methylmercury exposure during pregnancy and lactation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117835. [PMID: 39893884 DOI: 10.1016/j.ecoenv.2025.117835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 01/30/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
Methylmercury (MeHg) is a potent neurotoxicant with neurodevelopmental toxicity that is widely ingested into the body through drinking water and food. MeHg crosses the placental barrier and accumulates in the brain of the fetus, affecting the growth and development of the central nervous system. Although it has been demonstrated that MeHg induces neuronal calcium overload in the rat cerebral cortex, the role of calcium overload in MeHg-induced neurodevelopmental toxicity remains unclear. Here, we used ICR-pregnant mice and their resulting offspring and administered the BAPTA-AM calcium antagonist to investigate the molecular mechanisms by which MeHg exposure during gestation and lactation affects neurodevelopment. We found that exposure to MeHg during gestation and lactation resulted in developmental arrest and neurobehavioral dysfunction in the offspring, with calcium overload, disturbed mitochondrial dynamics, and apoptosis. However, the calcium overload inhibitor BAPTA-AM rescued MeHg-induced neurodevelopmental damage, attenuated the onset of calcium overload, reduced mitochondrial kinetic disturbances and apoptosis. Meanwhile, the activation of the CaM/CaMKII/DRP1 signaling pathway induced by calcium overload was inhibited, and the interaction between DRP1 and BAX was attenuated, which alleviated apoptosis to a certain extent. In summary, our study suggests that MeHg-induced calcium overload may induce disturbed mitochondrial dynamics through activation of the CaM/CaMKII/DRP1 signaling pathway, resulting in neuronal apoptosis.
Collapse
Affiliation(s)
- Lingxu Kong
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China
| | - Huajie Yang
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China
| | - Jing Yang
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China
| | - Liujiangshan Jiang
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China
| | - Bin Xu
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China
| | - Tianyao Yang
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China.
| | - Wei Liu
- Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China; Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China.
| |
Collapse
|
4
|
Pan J, Li X, Wei Y, Ni L, Xu B, Deng Y, Yang T, Liu W. Advances on the Influence of Methylmercury Exposure during Neurodevelopment. Chem Res Toxicol 2022; 35:43-58. [PMID: 34989572 DOI: 10.1021/acs.chemrestox.1c00255] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Mercury (Hg) is a toxic heavy-metal element, which can be enriched in fauna and flora and transformed into methylmercury (MeHg). MeHg is a widely distributed environmental pollutant that may be harmful to fish-eating populations through enrichment of aquatic food chains. The central nervous system is a primary target of MeHg. Embryos and infants are more sensitive to MeHg, and exposure to MeHg during gestational feeding can significantly impair the homeostasis of offspring, leading to long-term neurodevelopmental defects. At present, MeHg-induced neurodevelopmental toxicity has become a hotspot in the field of neurotoxicology, but its mechanisms are not fully understood. Some evidence point to oxidative damage, excitotoxicity, calcium ion imbalance, mitochondrial dysfunction, epigenetic changes, and other molecular mechanisms that play important roles in MeHg-induced neurodevelopmental toxicity. In this review, advances in the study of neurodevelopmental toxicity of MeHg exposure during pregnancy and the molecular mechanisms of related pathways are summarized, in order to provide more scientific basis for the study of neurodevelopmental toxicity of MeHg.
Collapse
Affiliation(s)
- Jingjing Pan
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang 110122, Liaoning China
| | - Xiaoyang Li
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang 110122, Liaoning China
| | - Yanfeng Wei
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang 110122, Liaoning China
| | - Linlin Ni
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang 110122, Liaoning China
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang 110122, Liaoning China
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang 110122, Liaoning China
| | - Tianyao Yang
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang 110122, Liaoning China
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, No.77 Puhe Road, Shenbei New District, Shenyang 110122, Liaoning China
| |
Collapse
|
5
|
Alam M, Yadav RK, Minj E, Tiwari A, Mehan S. Exploring Molecular Approaches in Amyotrophic Lateral Sclerosis: Drug Targets from Clinical and Pre-Clinical Findings. Curr Mol Pharmacol 2021; 14:263-280. [PMID: 32342825 DOI: 10.2174/1566524020666200427214356] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/24/2019] [Accepted: 12/26/2019] [Indexed: 11/22/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease (MND) characterized by the death of upper and lower motor neurons (corticospinal tract) in the motor cortex, basal ganglia, brain stem, and spinal cord. The patient experiences the sign and symptoms between 55 to 75 years of age, which include impaired motor movement, difficulty in speaking and swallowing, grip loss, muscle atrophy, spasticity, and sometimes associated with memory and cognitive impairments. Median survival is 3 to 5 years after diagnosis and 5 to 10% of the patients live for more than 10 years. The limited intervention of pharmacologically active compounds, that are used clinically, is majorly associated with the narrow therapeutic index. Pre-clinically established experimental models, where neurotoxin methyl mercury mimics the ALS like behavioural and neurochemical alterations in rodents associated with neuronal mitochondrial dysfunctions and downregulation of adenyl cyclase mediated cAMP/CREB, is the main pathological hallmark for the progression of ALS in central as well in the peripheral nervous system. Despite the considerable investigation into neuroprotection, it still constrains treatment choices to strong care and organization of ALS complications. Therefore, this current review specially targeted the investigation of clinical and pre-clinical features available for ALS to understand the pathogenic mechanisms and to explore the pharmacological interventions associated with the up-regulation of intracellular adenyl cyclase/cAMP/ CREB and activation of mitochondrial-ETC coenzyme-Q10 as a future drug target in the amelioration of ALS mediated motor neuronal dysfunctions.
Collapse
Affiliation(s)
- Mamtaj Alam
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab, India
| | - Rajeshwar K Yadav
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab, India
| | - Elizabeth Minj
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab, India
| | - Aarti Tiwari
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab, India
| | - Sidharth Mehan
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab, India
| |
Collapse
|
6
|
Yang T, Xu Z, Liu W, Xu B, Deng Y. Oxidative stress accelerates synaptic glutamate dyshomeostasis and NMDARs disorder during methylmercury-induced neuronal apoptosis in rat cerebral cortex. ENVIRONMENTAL TOXICOLOGY 2020; 35:683-696. [PMID: 32061141 DOI: 10.1002/tox.22904] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 01/10/2020] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
Methylmercury (MeHg) is a potent neurotoxin,which leads to a wide range of intracellular effects. The molecular mechanismsassociated to MeHg-induced neurotoxicity have not been fully understood.Oxidative stress, as well as synaptic glutamate (Glu) dyshomeostasis have beenidentified as two critical mechanisms during MeHg-mediated cytotoxicity. Here,we developed a rat model of MeHg poisoning to evaluate its neurotoxic effectsby focusing on cellular oxidative stress and synaptic Glu disruption. Inaddition, we investigated the neuroprotective role of alpha-lipoic acid (α-LA), a natural antioxidant, todeeply explore the underlying interaction between them. Fifty-six rats wererandomly divided into four groups: saline control, MeHg treatment (4 or 12μmol/kg MeHg), and α-LApre-treatment (35 μmol/kg α-LA+12μmol/kg MeHg). Rats exposed to 12 μmol/kg MeHg induced neuronal oxidativestress, with ROS accumulation and cellular antioxidant system impairment. Nrf2 andxCT pathways were activated with MeHg treatment. The enzymatic or non-enzymaticof cellular GSH synthesis were also disrupted by MeHg. On the other hand, the abnormalactivities of GS and PAG disturbed the "Glu-Gln cycle", leading to NMDARsover-activation, Ca2+ overload, and the calpain activation, which acceleratedNMDARs degradation. Meanwhile, the high expressions of phospho-p44/42 MAPK,phospho-p38 MAPK, phospho-CREB, and the high levels of caspase 3 and Bax/Bcl-2 finallyindicated the neuronal apoptosis after MeHg exposure. Pre-treatment with α-LA significantly preventedMeHg-induced neurotoxicity. In conclusion, the oxidative stress and synapticGlu dyshomeostasis contributed to MeHg-induced neuronal apoptosis. Alpha-LAattenuated these toxic effects through mechanisms of anti-oxidation andindirect Glu dyshomeostasis prevention.
Collapse
Affiliation(s)
- Tianyao Yang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning Province, People's Republic of China
| | - Zhaofa Xu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning Province, People's Republic of China
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning Province, People's Republic of China
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning Province, People's Republic of China
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning Province, People's Republic of China
| |
Collapse
|
7
|
Dao CV, Shiraishi M, Miyamoto A. The MARCKS protein amount is differently regulated by calpain during toxic effects of methylmercury between SH-SY5Y and EA.hy926 cells. J Vet Med Sci 2017; 79:1931-1938. [PMID: 29046508 PMCID: PMC5745167 DOI: 10.1292/jvms.17-0473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Methylmercury (MeHg) is an environmental pollutant that shows severe toxicity to humans and animals. However, the molecular mechanisms mediating MeHg toxicity are not completely understood. We have previously reported that the MARCKS protein is involved in the MeHg toxicity to SH-SY5Y neuroblastoma and EA.hy926 vascular endothelial cell lines. In addition, calpain, a Ca2+-dependent protease, is suggested to be associated with the MeHg toxicity. Because MARCKS is known as a substrate of calpain, we studied the relation between calpain activation and cleavage of MARCKS and its role in MeHg toxicity. In SH-SY5Y cells, MeHg decreased cell viability along with increased calcium mobilization, calpain activation and a decrease in MARCKS amounts. However, pretreatment with calpain inhibitors attenuated the decrease in cell viability and MARCKS amount induced only by 1 µM but not by 3 µM MeHg. In cells with a MARCKS knockdown, calpain inhibitors failed to attenuate the decrease in cell viability caused by MeHg. In EA.hy926 cells, although MeHg caused calcium mobilization and a decrease in MARCKS levels, calpain activation was not observed. These results indicate that the participation of calpain in the regulation of MARCKS amounts is dependent on the cell type and concentration of MeHg. In SH-SY5Y cells, calpain-mediated proteolysis of MARCKS is involved in cytotoxicity induced by a low concentration of MeHg.
Collapse
Affiliation(s)
- Cuong Van Dao
- Department of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan.,Department of Veterinary Pharmacology, Faculty of Animal Husbandry and Veterinary Medicine, Thai Nguyen University of Agriculture and Forestry, Group 10, Quyet Thang Commune, Thai Nguyen City, Thai Nguyen, Vietnam
| | - Mitsuya Shiraishi
- Department of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Atsushi Miyamoto
- Department of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| |
Collapse
|
8
|
Memantine, a Low-Affinity NMDA Receptor Antagonist, Protects against Methylmercury-Induced Cytotoxicity of Rat Primary Cultured Cortical Neurons, Involvement of Ca2+ Dyshomeostasis Antagonism, and Indirect Antioxidation Effects. Mol Neurobiol 2016; 54:5034-5050. [DOI: 10.1007/s12035-016-0020-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 08/01/2016] [Indexed: 01/20/2023]
|
9
|
Yang T, Xu Z, Liu W, Xu B, Deng Y. Protective effects of Alpha-lipoic acid on MeHg-induced oxidative damage and intracellular Ca2+dyshomeostasis in primary cultured neurons. Free Radic Res 2016; 50:542-56. [DOI: 10.3109/10715762.2016.1152362] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
10
|
Li X, Sun H, Zhu Z, Li H. The reduction of nNOS and ROS associated with decreased Ca2+ in hippocampus of prenatally stressed female offspring. NEUROCHEM J+ 2014. [DOI: 10.1134/s1819712414040060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Ostertag SK, Shaw AC, Basu N, Chan HM. Molecular and neurochemical biomarkers in Arctic beluga whales (Delphinapterus leucas) were correlated to brain mercury and selenium concentrations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:11551-11559. [PMID: 25171565 DOI: 10.1021/es501369b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Mercury (Hg) concentrations have increased in western Arctic beluga whales (Delphinapterus leucas) since the industrial revolution. Methylmercruy (MeHg) is a known neurotoxicant, yet little is known about the risk of exposure for beluga whales. Selenium (Se) has been linked to demethylation of MeHg in cetaceans, but its role in attenuating Hg toxicity in beluga whales is poorly understood. The objective of this study is to explore relationships between Hg and Se concentrations and neurochemical biomarkers in different brain regions of beluga whales in order to assess potential neurotoxicological risk of Hg exposure in this population. Brain tissue was sampled from hunter-harvested beluga whales from the western Canadian Arctic in 2008 and 2010. Neurochemical and molecular biomarkers were measured with radioligand binding assays and quantitative PCR, respectively. Total Hg (HgT) concentration ranged from 2.6-113 mg kg(-1) dw in temporal cortex. Gamma-amminobutyric acid type A receptor (GABAA-R) binding in the cerebellum was negatively associated with HgT, MeHg and total Se (SeT) concentrations (p ≤ 0.05). The expression of mRNA for GABAA-R subunit α2 was negatively associated with HgT and MeHg (p ≤ 0.05). Furthermore, GABAA-R binding was positively correlated to mRNA expression for GABAA-R α2 subunit, and negatively correlated to the expression of mRNA for GABAA-R α4 subunit (p ≤ 0.05). The expression of N-methyl-d-aspartate receptor (NMDA-R) subunit 2b mRNA expression was negatively associated with iHglabile concentration in the cerebellum (p ≤ 0.05). Variation of molecular and/or biochemical components of the GABAergic and glutamatergic signaling pathways were associated with MeHg exposure in beluga whales. Our results show that MeHg exposure is associated with neurochemical variation in the cerebellum of beluga whales and Se may partially protect from MeHg-associated neurotoxicity.
Collapse
Affiliation(s)
- Sonja K Ostertag
- Natural Resources and Environmental Studies, University of Northern British Columbia , Prince George, British Columbia Canada , V2N 4Z9
| | | | | | | |
Collapse
|
12
|
Liu XW, Ji EF, He P, Xing RX, Tian BX, Li XD. Protective effects of the p38 MAPK inhibitor SB203580 on NMDA‑induced injury in primary cerebral cortical neurons. Mol Med Rep 2014; 10:1942-8. [PMID: 25051190 DOI: 10.3892/mmr.2014.2402] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 11/05/2013] [Indexed: 11/06/2022] Open
Abstract
The p38 pathway, which is important in mitogen-activated protein kinase (MAPK) family protein signaling, leads to mitochondrial dysfunction and activation of caspase-3. B-cell lymphoma 2 (Bcl‑2) family members are involved in the regulation of activities associated with the survival and death of neurons through apoptosis and have important functions in most types of apoptosis. In the present study, the effects of the p38 MAPK inhibitor SB203580 on N-methyl-d-aspartate (NMDA)-induced cerebral cortical neuron apoptosis were observed to further analyze the possible mechanisms of NMDA-induced neuronal death. Cultured primary cortical neurons were randomly divided into five groups: A control group, NMDA group and three SB203580 interventional groups. The lactate dehydrogenase (LDH) and MTT assays were employed to investigate the effects of the drugs on apoptosis. The morphology of apoptotic cells was observed using acridine orange/ethidium bromide (AO/EB) fluorescence staining. The expression levels of phospho‑(p)‑p38MAPK, Bcl‑2 and Bcl-2-associated X (Bax) were assessed by immunohistochemical methods and western blot analysis to investigate the possible underlying protective mechanisms. The cell viability markedly decreased following incubation with NMDA. The protein levels of cell death repressor Bcl-2 and the levels of Bcl-2/Bax were downregulated. The protein levels of p‑p38MAPK and cell death promoter Bax increased significantly in cells with NMDA treatment. However, these changes were inhibited by SB203580 treatment, particularly in the high‑dose group. Neuronal death induced by NMDA in primary cortical neurons was caused in part by apoptosis, which was mediated through the activation of the p38 signaling pathway by NMDA. SB203580 has neuroprotective effects against NMDA‑induced apoptosis.
Collapse
Affiliation(s)
- Xue-Wen Liu
- Department of Neurology and the Key Laboratory of Brain and Spine Injury, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - En-Fei Ji
- Department of Neurology and the Key Laboratory of Brain and Spine Injury, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Peng He
- Department of Neurology, Fuxin Central Hospital, Fuxin, Liaoning 123000, P.R. China
| | - Rui-Xian Xing
- Department of Neurology and the Key Laboratory of Brain and Spine Injury, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Bu-Xian Tian
- Department of Neurology and the Key Laboratory of Brain and Spine Injury, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Xi-Dong Li
- Department of Neurology and the Key Laboratory of Brain and Spine Injury, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning 121001, P.R. China
| |
Collapse
|
13
|
Barbosa DJ, Capela JP, Silva R, Vilas-Boas V, Ferreira LM, Branco PS, Fernandes E, Bastos MDL, Carvalho F. The mixture of "ecstasy" and its metabolites is toxic to human SH-SY5Y differentiated cells at in vivo relevant concentrations. Arch Toxicol 2014; 88:455-473. [PMID: 24101030 DOI: 10.1007/s00204-013-1120-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 08/22/2013] [Indexed: 12/21/2022]
Abstract
The neurotoxicity of "ecstasy" (3,4-methylenedioxymethamphetamine, MDMA) is thought to involve hepatic metabolism, though its real contribution is not completely understood. Most in vitro neurotoxicity studies concern isolated exposures of MDMA or its metabolites, at high concentrations, not considering their mixture, as expected in vivo. Therefore, our postulate is that combined deleterious effects of MDMA and its metabolites, at low micromolar concentrations that may be attained into the brain, may elicit neurotoxicity. Using human SH-SY5Y differentiated cells as dopaminergic neuronal model, we studied the neurotoxicity of MDMA and its MDMA metabolites α-methyldopamine and N-methyl-α-methyldopamine and their correspondent glutathione and N-acetylcysteine monoconjugates, under isolated exposure and as a mixture, at normothermic or hyperthermic conditions. The results showed that the mixture of MDMA and its metabolites was toxic to SH-SY5Y differentiated cells, an effect potentiated by hyperthermia and prevented by N-acetylcysteine. As a mixture, MDMA and its metabolites presented a different toxicity profile, compared to each compound alone, even at equimolar concentrations. Caspase 3 activation, increased reactive oxygen species production, and intracellular Ca(2+) raises were implicated in the toxic effect. The mixture increased intracellular glutathione levels by increasing its de novo synthesis. In conclusion, this study demonstrated, for the first time, that the mixture of MDMA and its metabolites, at low micromolar concentrations, which represents a more realistic approach of the in vivo scenario, elicited toxicity to human SH-SY5Y differentiated cells, thus constituting a new insight into the context of MDMA-related neurotoxicity.
Collapse
Affiliation(s)
- Daniel José Barbosa
- REQUIMTE (Rede de Química e Tecnologia), Toxicology Laboratory, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal,
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Endoplasmic reticulum stress signaling involvement in manganese-induced nerve cell damage in organotypic brain slice cultures. Toxicol Lett 2013; 222:239-46. [DOI: 10.1016/j.toxlet.2013.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 07/31/2013] [Accepted: 08/03/2013] [Indexed: 12/17/2022]
|
15
|
Xu B, Wang F, Wu SW, Deng Y, Liu W, Feng S, Yang TY, Xu ZF. α-Synuclein is involved in manganese-induced ER stress via PERK signal pathway in organotypic brain slice cultures. Mol Neurobiol 2013; 49:399-412. [PMID: 23934647 DOI: 10.1007/s12035-013-8527-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 07/31/2013] [Indexed: 12/30/2022]
Abstract
Overexposure to manganese (Mn) has been known to induce neuronal damage involving endoplasmic reticulum (ER) stress. However, the exact mechanism of Mn-induced ER stress is unclear. Increasing evidence suggested that the overexpression of alpha-synuclein played a critical role in Mn-induced neurotoxicity. To explore whether the occurrence of ER stress was associated with alpha-synuclein overexpression, we made the rat brain slices model of silencing alpha-synuclein using short-interference RNA. After non-silencing alpha-synuclein slices were treated with Mn (0-400 μM) for 24 h, there was a dose-dependent increase in apoptotic rates of cells and levels of lactate dehydrogenase in the culture medium. Moreover, there was a dose-dependent increase in the protein expression of 78, 94-kDa glucose-regulated protein (GRP78/94), C/EBP homologous protein (CHOP), and caspase-12. Moreover, PKR-like ER kinase (PERK) phosphorylation, PERK-mediated phosphorylation of eIF2a, and ATF4 expression also increased. Inositol-requiring enzyme 1 (IRE1) activation and X-box-binding protein-1 (Xbp1) mRNA splicing increased. Activating transcription factor 6 p90 levels did not change. However, after silencing alpha-synuclein slices were treated with 400 μM Mn for 24 h, there was a significant decrease in the expression of GRP78/94, CHOP, and caspase-12 compared with 400 μM Mn-treated non-silencing alpha-synuclein slices. Furthermore, PERK phosphorylation, PERK-mediated phosphorylation of eIF2a, and ATF4 mRNA expression also decreased. However, IRE1 phosphorylation and Xbp1 mRNA splicing did not change. The findings revealed that Mn induced ER stress via activation of PERK and IRE1 signaling pathways and subsequent apoptosis in cultured slices. Moreover, alpha-synuclein protein was associated with Mn-induced activation of PERK signaling pathway.
Collapse
Affiliation(s)
- Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, Liaoning, 110001, People's Republic of China,
| | | | | | | | | | | | | | | |
Collapse
|