1
|
Fang R, Chen X, Zhang S, Shi H, Ye Y, Shi H, Zou Z, Li P, Guo Q, Ma L, He C, Huang S. EGFR/SRC/ERK-stabilized YTHDF2 promotes cholesterol dysregulation and invasive growth of glioblastoma. Nat Commun 2021; 12:177. [PMID: 33420027 PMCID: PMC7794382 DOI: 10.1038/s41467-020-20379-7] [Citation(s) in RCA: 196] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 11/23/2020] [Indexed: 01/27/2023] Open
Abstract
Glioblastoma (GBM) is the most common type of adult malignant brain tumor, but its molecular mechanisms are not well understood. In addition, the knowledge of the disease-associated expression and function of YTHDF2 remains very limited. Here, we show that YTHDF2 overexpression clinically correlates with poor glioma patient prognosis. EGFR that is constitutively activated in the majority of GBM causes YTHDF2 overexpression through the EGFR/SRC/ERK pathway. EGFR/SRC/ERK signaling phosphorylates YTHDF2 serine39 and threonine381, thereby stabilizes YTHDF2 protein. YTHDF2 is required for GBM cell proliferation, invasion, and tumorigenesis. YTHDF2 facilitates m6A-dependent mRNA decay of LXRA and HIVEP2, which impacts the glioma patient survival. YTHDF2 promotes tumorigenesis of GBM cells, largely through the downregulation of LXRα and HIVEP2. Furthermore, YTHDF2 inhibits LXRα-dependent cholesterol homeostasis in GBM cells. Together, our findings extend the landscape of EGFR downstream circuit, uncover the function of YTHDF2 in GBM tumorigenesis, and highlight an essential role of RNA m6A methylation in cholesterol homeostasis.
Collapse
Affiliation(s)
- Runping Fang
- Department of Human and Molecular Genetics, Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, 23298, USA
| | - Xin Chen
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sicong Zhang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Hui Shi
- Department of Human and Molecular Genetics, Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, 23298, USA
| | - Youqiong Ye
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, 77030, USA
| | - Hailing Shi
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
| | - Zhongyu Zou
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA
| | - Peng Li
- Department of Human and Molecular Genetics, Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, 23298, USA
| | - Qing Guo
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Li Ma
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA.
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA.
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA.
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA.
| | - Suyun Huang
- Department of Human and Molecular Genetics, Institute of Molecular Medicine, Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, 23298, USA.
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
2
|
Mohme M, Maire CL, Schliffke S, Joosse SA, Alawi M, Matschke J, Schüller U, Dierlamm J, Martens T, Pantel K, Riethdorf S, Lamszus K, Westphal M. Molecular profiling of an osseous metastasis in glioblastoma during checkpoint inhibition: potential mechanisms of immune escape. Acta Neuropathol Commun 2020; 8:28. [PMID: 32151286 PMCID: PMC7063778 DOI: 10.1186/s40478-020-00906-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 02/29/2020] [Indexed: 12/22/2022] Open
Abstract
Peripheral metastases of glioblastoma (GBM) are very rare despite the ability of GBM cells to pass through the blood-brain barrier and be disseminated through the peripheral blood. Here, we describe a detailed genetic and immunological characterization of a GBM metastasis in the skeleton, which occurred during anti-PD-1 immune checkpoint therapy. We performed whole genome sequencing (WGS) and 850 K methylation profiling of the primary and recurrent intracranial GBM as well as one of the bone metastases. Copy number alterations (CNA) and mutational profiles were compared to known genomic alterations in the TCGA data base. In addition, immunophenotyping of the peripheral blood was performed. The patient who was primarily diagnosed with IDH-wildtype GBM. After the resection of the first recurrence, progressive intracranial re-growth was again detected, and chemotherapy was replaced by PD-1 checkpoint inhibition, which led to a complete intracranial remission. Two months later MR-imaging revealed multiple osseous lesions. Biopsy confirmed the GBM origin of the skeleton metastases. Immunophenotyping reflected the effective activation of a peripheral T-cell response, with, however, increase of regulatory T cells during disease progression. WGS sequencing demonstrated distinct genomic alterations of the GBM metastasis, with gains along chromosomes 3 and 9 and losses along chromosome 4, 10, and 11. Mutational analysis showed mutations in potentially immunologically relevant regions. Additionally, we correlated tumour-infiltrating lymphocyte and microglia presence to the occurrence of circulating tumour cells (CTCs) in a larger cohort and found a decreased infiltration of cytotoxic T cells in patients positive for CTCs. This study exemplifies that the tumour microenvironment may dictate the response to immune checkpoint therapy. In addition, our study highlights the fact that despite an effective control of intracranial GBM, certain tumour clones have the ability to evade the tumour-specific T-cell response and cause progression even outside of the CNS.
Collapse
|
3
|
Rahrmann EP, Wolf NK, Otto GM, Heltemes-Harris L, Ramsey LB, Shu J, LaRue RS, Linden MA, Rathe SK, Starr TK, Farrar MA, Moriarity BS, Largaespada DA. Sleeping Beauty Screen Identifies RREB1 and Other Genetic Drivers in Human B-cell Lymphoma. Mol Cancer Res 2019; 17:567-582. [PMID: 30355676 DOI: 10.1158/1541-7786.mcr-18-0582] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/13/2018] [Accepted: 10/15/2018] [Indexed: 11/16/2022]
Abstract
Follicular lymphoma and diffuse large B-cell lymphoma (DLBCL) are the most common non-Hodgkin lymphomas distinguishable by unique mutations, chromosomal rearrangements, and gene expression patterns. Here, it is demonstrated that early B-cell progenitors express 2',3'-cyclic-nucleotide 3' phosphodiesterase (CNP) and that when targeted with Sleeping Beauty (SB) mutagenesis, Trp53R270H mutation or Pten loss gave rise to highly penetrant lymphoid diseases, predominantly follicular lymphoma and DLBCL. In efforts to identify the genetic drivers and signaling pathways that are functionally important in lymphomagenesis, SB transposon insertions were analyzed from splenomegaly specimens of SB-mutagenized mice (n = 23) and SB-mutagenized mice on a Trp53R270H background (n = 7) and identified 48 and 12 sites with statistically recurrent transposon insertion events, respectively. Comparison with human data sets revealed novel and known driver genes for B-cell development, disease, and signaling pathways: PI3K-AKT-mTOR, MAPK, NFκB, and B-cell receptor (BCR). Finally, functional data indicate that modulating Ras-responsive element-binding protein 1 (RREB1) expression in human DLBCL cell lines in vitro alters KRAS expression, signaling, and proliferation; thus, suggesting that this proto-oncogene is a common mechanism of RAS/MAPK hyperactivation in human DLBCL. IMPLICATIONS: A forward genetic screen identified new genetic drivers of human B-cell lymphoma and uncovered a RAS/MAPK-activating mechanism not previously appreciated in human lymphoid disease. Overall, these data support targeting the RAS/MAPK pathway as a viable therapeutic target in a subset of human patients with DLBCL.
Collapse
Affiliation(s)
- Eric P Rahrmann
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota.
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Natalie K Wolf
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota
| | - George M Otto
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Lynn Heltemes-Harris
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Lab Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
- Department of Laboratory Medicine and Pathology, Division of Hematopathology, University of Minnesota, Minneapolis, Minnesota
| | - Laura B Ramsey
- Department of Laboratory Medicine and Pathology, Division of Hematopathology, University of Minnesota, Minneapolis, Minnesota
| | - Jingmin Shu
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Rebecca S LaRue
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Michael A Linden
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Center for Immunology, University of Minnesota, Minneapolis, Minnesota
| | - Susan K Rathe
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Timothy K Starr
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Department of Ob-Gyn and Women's Health, University of Minnesota, Minneapolis, Minnesota
| | - Michael A Farrar
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Lab Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
- Department of Laboratory Medicine and Pathology, Division of Hematopathology, University of Minnesota, Minneapolis, Minnesota
| | - Branden S Moriarity
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota
| | - David A Largaespada
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|