1
|
Luo Y, Liu J, Feng W, Lin D, Chen M, Zheng H. Single-cell RNA Sequencing Identifies Natural Kill Cell-Related Transcription Factors Associated With Age-Related Macular Degeneration. Evol Bioinform Online 2024; 20:11769343241272413. [PMID: 39149137 PMCID: PMC11325330 DOI: 10.1177/11769343241272413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/11/2024] [Indexed: 08/17/2024] Open
Abstract
Background Age-related Macular Degeneration (AMD) poses a growing global health concern as the leading cause of central vision loss in elderly people. Objection This study focuses on unraveling the intricate involvement of Natural Killer (NK) cells in AMD, shedding light on their immune responses and cytokine regulatory roles. Methods Transcriptomic data from the Gene Expression Omnibus database were utilized, employing single-cell RNA-seq analysis. High-dimensional weighted gene co-expression network analysis (hdWGCNA) and single-cell regulatory network inference and clustering (SCENIC) analysis were applied to reveal the regulatory mechanisms of NK cells in early-stage AMD patients. Machine learning models, such as random forests and decision trees, were employed to screen hub genes and key transcription factors (TFs) associated with AMD. Results Distinct cell clusters were identified in the present study, especially the T/NK cluster, with a notable increase in NK cell abundance observed in AMD. Cell-cell communication analyses revealed altered interactions, particularly in NK cells, indicating their potential role in AMD pathogenesis. HdWGCNA highlighted the turquoise module, enriched in inflammation-related pathways, as significantly associated with AMD in NK cells. The SCENIC analysis identified key TFs in NK cell regulatory networks. The integration of hub genes and TFs identified CREM, FOXP1, IRF1, NFKB2, and USF2 as potential predictors for AMD through machine learning. Conclusion This comprehensive approach enhances our understanding of NK cell dynamics, signaling alterations, and potential predictive models for AMD. The identified TFs provide new avenues for molecular interventions and highlight the intricate relationship between NK cells and AMD pathogenesis. Overall, this study contributes valuable insights for advancing our understanding and management of AMD.
Collapse
Affiliation(s)
- Yili Luo
- Department of Ophthalmology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianpeng Liu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wangqiang Feng
- Department of Ophthalmology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Da Lin
- Department of Ophthalmology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mengji Chen
- Department of Ophthalmology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haihua Zheng
- Department of Ophthalmology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
2
|
Shi Y, Ye D, Huang R, Xu Y, Lu P, Chen H, Huang J. Down Syndrome Critical Region 1 Reduces Oxidative Stress-Induced Retinal Ganglion Cells Apoptosis via CREB-Bcl-2 Pathway. Invest Ophthalmol Vis Sci 2021; 61:23. [PMID: 33104163 PMCID: PMC7594594 DOI: 10.1167/iovs.61.12.23] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Purpose Irreversible retina ganglion cell (RGC) loss is a key process during glaucoma progression. Down syndrome critical region 1 (DSCR1) has been shown to have protective effects against neuronal death. In this study, we aimed to investigate the neuroprotective mechanisms of DSCR1 on RGCs. Methods DBA/2J mice and optic nerve crush (ONC) rat model were used for vivo assays. Oxidative stress model of primary RGCs was carried out with in vitro transduction. DSCR1 protein localization was assessed by immunofluorescence. Differential protein expression was validated by Western blot, and gene expression was detected by real-time PCR. TUNEL was used to identify cell apoptosis, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide was used to analyze cell viability. Results Significant upregulation of DSCR1 was observed in DBA/2J mice, ONC rat model, and RGCs treated with H2O2, reaching peaks at the age of 6 months in DBA/2J mice, 5 days after ONC in rats, and 24 hours after H2O2 treatment in RGCs, respectively. DSCR1 was shown to be expressed in the ganglion cell layer. In vitro, overexpressed DSCR1 significantly promoted phosphorylation of cyclic AMP response element binding protein (CREB), B-cell lymphoma 2 (Bcl-2) expression, and RGC survival rate while reducing cleaved caspase 3 expression in H2O2-treated RGCs. On the other hand, the opposite effects were shown after knockdown of DSCR1. In addition, silencing of CREB inhibited expression of DSCR1. Conclusions Our results suggested that DSCR1 might protect the RGCs against oxidative stress via the CREB–Bcl-2 pathway, which may provide a theoretical basis for future treatments of glaucoma.
Collapse
Affiliation(s)
- Yuxun Shi
- State Key Laboratory of Ophthalmology, Department of Glaucoma, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Dan Ye
- State Key Laboratory of Ophthalmology, Department of Glaucoma, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Rong Huang
- State Key Laboratory of Ophthalmology, Department of Glaucoma, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yue Xu
- State Key Laboratory of Ophthalmology, Department of Glaucoma, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Peng Lu
- State Key Laboratory of Ophthalmology, Department of Glaucoma, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Hailiu Chen
- State Key Laboratory of Ophthalmology, Department of Glaucoma, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jingjing Huang
- State Key Laboratory of Ophthalmology, Department of Glaucoma, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
3
|
Zhao Y, Shen Y. Light-Induced Retinal Ganglion Cell Damage and the Relevant Mechanisms. Cell Mol Neurobiol 2020; 40:1243-1252. [PMID: 32107750 PMCID: PMC11448955 DOI: 10.1007/s10571-020-00819-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/18/2020] [Indexed: 12/21/2022]
Abstract
While light is the basic element for inducing vision and modulating circadian rhythms, excessive light has been reported to have a negative effect on the survival of various types of retinal cells. Among them photoreceptors and retinal pigment epithelial (RPE) cells degeneration after light exposure is widely observed, but light-induced retinal ganglion cell (RGC) damage achieves relatively little attention. The purpose of this article is to summarize the experimental evidence for the possible negative effects of excessive light on RGCs. By searching the database, twenty-six related articles have been included. Taken together, excessive light may insult RGCs through the three main ways: (i) directly action on RGC mitochondria, as well as DNA, resulting in an upregulation of reactive oxygen species (ROS) and subsequently caspase-dependent or -independent cell death; (ii) mediation in gliotransmitters or relevant receptors of retinal glial cells; and (iii) a secondary event to photoreceptors and RPE cells degeneration and subsequent retinal remodeling. So RGCs can certainly be injured by excessive light, especially when they are already energetically compromised in some diseases. And more attentions should be paid to this topic to take timely measures to protect these frail RGCs from being damaged by excessive light.
Collapse
Affiliation(s)
- Yuan Zhao
- Department of Ophthalmology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ye Shen
- Department of Ophthalmology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
4
|
The expression and role of PIDD in retina after optic nerve crush. J Mol Histol 2020; 51:89-97. [PMID: 32065357 DOI: 10.1007/s10735-020-09860-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 02/12/2020] [Indexed: 10/25/2022]
Abstract
To examine the expression of P53-induced protein with a death domain (PIDD) at retina in animal model of optic nerve crush (ONC) and to investigate the role of PIDD in retinal glial activation and NF-κB activation induced by optic nerve damage, ONC animal model was established in Sprague-Dawley rats. PIDD has three isoforms (Isof); Western blot was performed to examine the expression of PIDD (Isof-1, Isof-2, and Isof-3, respectively) in retina at different time points after ONC. Retinal glial activation is closely associated with retinal neuronal death and is monitored by the expression of GFAP+ glial cells and IBA1+ microglia, then activated microglia leads to inflammatory cytokine production. NF-kB activation in glial cells also can promote neuronal death. In our study, the role of PIDD in retinal glial activation and NF-kB activation was investigated with PIDD inhibition selectively. PIDD expression (Isof-1 and Isof-3) was dramatically increased, and peaked at 3 days after ONC, while Isof-2 did not show any difference. In the ONC animal model, the number of GFAP+ glial cells and IBA1+ microglia in retinal layers was increased significantly, inflammatory cytokine production was upregulated, and NF-κB in glial cell was also activated. Moreover, those responses induced by optic nerve damage were attenuated with PIDD inhibition, which indicated that PIDD could regulate retinal glial activation, neuro-inflammation, and NF-κB activation. These results provided the direct demonstration that the PIDD (Isof-1and Isof-3) was overexpressed in retina after ONC, and PIDD may be involved in retinal neurodegenerative diseases by regulating retinal glial activation and NF-κB activation.
Collapse
|
5
|
Ye D, Shi Y, Xu Y, Huang J. PACAP Attenuates Optic Nerve Crush-Induced Retinal Ganglion Cell Apoptosis Via Activation of the CREB-Bcl-2 Pathway. J Mol Neurosci 2019; 68:475-484. [PMID: 30993644 DOI: 10.1007/s12031-019-01309-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/20/2019] [Indexed: 12/30/2022]
Abstract
Retinal ganglion cell (RGC) apoptosis is considered an important pathological hallmark of glaucoma. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a pleiotropic peptide with potent neuroprotective properties. In our previous study, we found that the expression of PACAP and its high-affinity receptor PACAP receptor type 1 (PAC1R) increased markedly after optic nerve crush (ONC), and occurred mainly in the ganglion cell layer of the retina. This suggests that the upregulation of PACAP may play a vital role in inhibiting RGC death after ONC. Therefore, in the present study, we investigate the specific effects and underlying mechanism of PACAP in RGC death after ONC. Vehicle (physiological saline) or PACAP (1 nM to 200 nM) solution was injected into the vitreous body. Seven days later, the retinas were harvested, and the surviving RGCs were retrogradely labeled with Fluoro-Gold (FG; Fluorochrome) at different concentrations of PACAP. Immunofluorescence double staining and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay were used to observe the effects of PACAP on RGC apoptosis. Our results showed that PACAP treatment inhibited caspase-3-mediated RGC apoptosis, promoted the phosphorylation of cAMP response element binding protein (CREB), up-regulated the expression of B-cell lymphoma 2 (Bcl-2), and ultimately improved RGC survival. These results suggest that PACAP may prevent RGC apoptosis after ONC via activation of CREB-mediated Bcl-2 transcription. The study thus contributes to a basic understanding of the mechanism by which PACAP decreased RGC apoptosis and provides a theoretical basis for future clinical application of PACAP in the treatment of glaucoma.
Collapse
Affiliation(s)
- Dan Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 7 Jinsui Road, Guangzhou, 510623, China
| | - Yuxun Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 7 Jinsui Road, Guangzhou, 510623, China
| | - Yue Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 7 Jinsui Road, Guangzhou, 510623, China
| | - Jingjing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 7 Jinsui Road, Guangzhou, 510623, China.
| |
Collapse
|
6
|
Manohar S, Ramchander PV, Salvi R, Seigel GM. Synaptic Reorganization Response in the Cochlear Nucleus Following Intense Noise Exposure. Neuroscience 2018; 399:184-198. [PMID: 30593923 DOI: 10.1016/j.neuroscience.2018.12.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 12/13/2022]
Abstract
The cochlear nucleus, located in the brainstem, receives its afferent auditory input exclusively from the auditory nerve fibers of the ipsilateral cochlea. Noise-induced neurodegenerative changes occurring in the auditory nerve stimulate a cascade of neuroplastic changes in the cochlear nucleus resulting in major changes in synaptic structure and function. To identify some of the key molecular mechanisms mediating this synaptic reorganization, we unilaterally exposed rats to a high-intensity noise that caused significant hearing loss and then measured the resulting changes in a synaptic plasticity gene array targeting neurogenesis and synaptic reorganization. We compared the gene expression patterns in the dorsal cochlear nucleus (DCN) and ventral cochlear nucleus (VCN) on the noise-exposed side versus the unexposed side using a PCR gene array at 2 d (early) and 28 d (late) post-exposure. We discovered a number of differentially expressed genes, particularly those related to synaptogenesis and regeneration. Significant gene expression changes occurred more frequently in the VCN than the DCN and more changes were seen at 28 d versus 2 d post-exposure. We confirmed the PCR findings by in situ hybridization for Brain-derived neurotrophic factor (Bdnf), Homer-1, as well as the glutamate NMDA receptor Grin1, all involved in neurogenesis and plasticity. These results suggest that Bdnf, Homer-1 and Grin1 play important roles in synaptic remodeling and homeostasis in the cochlear nucleus following severe noise-induced afferent degeneration.
Collapse
Affiliation(s)
- S Manohar
- University at Buffalo, Center for Hearing and Deafness, 3435 Main Street, Cary 137, Buffalo, NY 14214, United States
| | - P V Ramchander
- University at Buffalo, Center for Hearing and Deafness, 3435 Main Street, Cary 137, Buffalo, NY 14214, United States
| | - R Salvi
- University at Buffalo, Center for Hearing and Deafness, 3435 Main Street, Cary 137, Buffalo, NY 14214, United States.
| | - G M Seigel
- University at Buffalo, Center for Hearing and Deafness, 3435 Main Street, Cary 137, Buffalo, NY 14214, United States
| |
Collapse
|
7
|
Ye D, Yang Y, Lu X, Xu Y, Shi Y, Chen H, Huang J. Spatiotemporal Expression Changes of PACAP and Its Receptors in Retinal Ganglion Cells After Optic Nerve Crush. J Mol Neurosci 2018; 68:465-474. [PMID: 30415445 DOI: 10.1007/s12031-018-1203-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/30/2018] [Indexed: 12/14/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) has been demonstrated to play a crucial part in protecting retinal ganglion cells (RGCs) from apoptosis in various retinal injury animal models. PACAP has two basic groups of receptors: PACAP receptor type 1 (PAC1R) and vasoactive intestinal polypeptide/PACAP receptors (VPAC1R and VPAC2R). However, few studies illustrated the spatial and temporal expression changes of endogenous PACAP and its receptors in a rodent optic nerve crush (ONC) model. In this study, a significant upregulation of PACAP and PAC1R in the retina after ONC was observed in both protein and RNA levels. The peak level of PACAP and PAC1R expression could be found on the fifth day following ONC. In addition, immunofluorescent labeling indicated that PACAP and PAC1R were localized mainly in RGCs. On the contrary, VPAC1R and VPAC2R were hardly detected in the retina. Collectively, the spatiotemporal expression of PACAP and its high-affinity receptor PAC1R were remarkably changed after ONC, and mainly expressed in the ganglion cell layer of the retina. This suggested that the upregulation of PACAP and PAC1R may play a vital role in RGC death after ONC.
Collapse
Affiliation(s)
- Dan Ye
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 Xianlienan Road, Guangzhou, 510060, China
| | - Yao Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 Xianlienan Road, Guangzhou, 510060, China
| | - Xi Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 Xianlienan Road, Guangzhou, 510060, China
| | - Yue Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 Xianlienan Road, Guangzhou, 510060, China
| | - Yuxun Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 Xianlienan Road, Guangzhou, 510060, China
| | - Hailiu Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 Xianlienan Road, Guangzhou, 510060, China
| | - Jingjing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 Xianlienan Road, Guangzhou, 510060, China.
| |
Collapse
|
8
|
Xu Y, Yang B, Hu Y, Lu L, Lu X, Wang J, Xu F, Yu S, Huang J, Liang X. Wogonin prevents TLR4-NF-κB-medicated neuro-inflammation and improves retinal ganglion cells survival in retina after optic nerve crush. Oncotarget 2018; 7:72503-72517. [PMID: 27756890 PMCID: PMC5341925 DOI: 10.18632/oncotarget.12700] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 10/05/2016] [Indexed: 01/11/2023] Open
Abstract
Chronic neuro-inflammation is involved in the death of retinal ganglion cells (RGCs) in glaucoma. The aim of this study is to determine whether wogonin can suppress inflammatory responses and rescue RGCs death after optic nerve crush (ONC), an ideal animal model of glaucoma. Wogonin was administered intraperitoneally 10 min after establishment of ONC model. In this study, wogonin treatment reduced RGCs loss and inhibited RGCs apoptosis demonstrated by the increased Brn3a labeling RGCs at day 14 and the decreased cleaved caspase-3 expression at day 7 after ONC, respectively. In ONC model, number of GFAP-positive glial cells and iba1-positive microglial cells were increased, combined of the elevated level of pro-inflammatory cytokines released in retina at day 7. However, most of these responses were inhibited after wogonin treatment. The level of TLR4 expression, NF-κB-P65 nucleus location and NF-κB-P65 phosphorylation were increased in retina at day 1 after ONC, which was significantly reduced after wogonin treatment. These results demonstrated that wogonin protected RGCs survival and suppressed neuro-inflammation in retina after ONC by inhibiting TLR4-NF-κB pathways. We conclude that wogonin could be a possible strategy for the treatment of glaucoma.
Collapse
Affiliation(s)
- Yue Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Boyu Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Yaguang Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Lin Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Xi Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Jiawei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Fan Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Shanshan Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Jingjing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Xiaoling Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
9
|
Vallée A, Lecarpentier Y, Guillevin R, Vallée JN. PPARγ agonists: Potential treatments for exudative age-related macular degeneration. Life Sci 2017; 188:123-130. [PMID: 28887057 DOI: 10.1016/j.lfs.2017.09.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/29/2017] [Accepted: 09/05/2017] [Indexed: 12/22/2022]
Abstract
Choroidal neovascularization (CNV) characterizes the progression of exudative age-related macular degeneration (AMD) with the deterioration in the central vision. Vascular inflammation, and overproduction of inflammatory cytokines, growth factors and aberrant endothelial cell migration, initiate defective blood vessel proliferation in exudative AMD. CNV formation is initiated by the interplay between inflammation, the hallmark of exudative AMD, and the activation of WNT/β-catenin pathway. Upregulation of WNT/β-catenin pathway involves activation of PI3K/Akt pathway and then the Warburg effect to produce lactate. Lactate production generates VEGF expression and then participates to the initiation of CNV in exudative AMD. WNT/β-catenin pathway and PPARγ act in an opposite manner in several diseases. We focus this review on the interplay between PPARγ and canonical WNT/β-catenin pathway and the anti-inflammatory role of PPARγ in exudative AMD. In exudative AMD, PPARγ agonists downregulate inflammation and the WNT/β-catenin pathway. PPARγ agonists can appear as promising treatment against the initiation and the progression of CNV in exudative AMD.
Collapse
Affiliation(s)
- Alexandre Vallée
- Experimental and Clinical Neurosciences Laboratory, INSERM U1084, University of Poitiers, Poitiers, France; Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, Université de Poitiers, France.
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), Meaux, France
| | - Rémy Guillevin
- Université de Poitiers et CHU de Poitiers, DACTIM, Laboratoire de Mathématiques et Applications, UMR CNRS 7348, SP2MI, Futuroscope, France
| | - Jean-Noël Vallée
- Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, Université de Poitiers, France; CHU Amiens Picardie, Université Picardie Jules Verne (UPJV), Amiens, France
| |
Collapse
|
10
|
Vallée A, Lecarpentier Y, Guillevin R, Vallée JN. Aerobic Glycolysis Hypothesis Through WNT/Beta-Catenin Pathway in Exudative Age-Related Macular Degeneration. J Mol Neurosci 2017; 62:368-379. [PMID: 28689265 DOI: 10.1007/s12031-017-0947-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 06/28/2017] [Indexed: 12/18/2022]
Abstract
Exudative age-related macular degeneration (AMD) is characterized by molecular mechanisms responsible for the initiation of choroidal neovascularization (CNV). Inflammatory processes are associated with upregulation of the canonical WNT/beta-catenin pathway in exudative AMD. We focus this review on the link between WNT/beta-catenin pathway activation and neovascular progression in exudative AMD through activation of aerobic glycolysis for production of angiogenic factors. Increased WNT/beta-catenin pathway involves hexokinase 2 (HK2) and pyruvate kinase M2 (PKM2). WNT/beta-catenin pathway stimulates PI3K/Akt pathway and then HIF-1alpha which activates glycolytic enzymes: glucose transporter (Glut), pyruvate dehydrogenase kinase 1 (PDK1), lactate dehydrogenase A (LDH-A), and monocarboxylate lactate transporter (MCT-1). This phenomenon is called aerobic glycolysis or the Warburg effect. Consequently, phosphorylation of PDK-1 inhibits the pyruvate dehydrogenase complex (PDH). Thus, a large part of pyruvate cannot be converted into acetyl-CoA in mitochondria and only a part of acetyl-CoA can enter the tricarboxylic acid cycle. Cytosolic pyruvate is converted into lactate through the action of LDH-A. In exudative AMD, high level of cytosolic lactate is correlated with increase of VEGF expression, the angiogenic factor of CNV. Photoreceptors in retina cells can metabolize glucose through aerobic glycolysis to protect them against oxidative damage, as cancer cells do.
Collapse
Affiliation(s)
- Alexandre Vallée
- Experimental and Clinical Neurosciences Laboratory, INSERM U1084, University of Poitiers, Poitiers, France.
- Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, Université de Poitiers, 11 Boulevard Marie et Pierre Curie, Poitiers, France.
| | | | - Rémy Guillevin
- DACTIM, Laboratoire de Mathématiques et Applications, Université de Poitiers et CHU de Poitiers, UMR CNRS 7348, SP2MI Futuroscope, Chasseneuil-du-Poitou, France
| | - Jean-Noël Vallée
- Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, Université de Poitiers, 11 Boulevard Marie et Pierre Curie, Poitiers, France
- CHU Amiens Picardie, Université Picardie Jules Verne (UPJV), Amiens, France
| |
Collapse
|
11
|
Thomas CN, Berry M, Logan A, Blanch RJ, Ahmed Z. Caspases in retinal ganglion cell death and axon regeneration. Cell Death Discov 2017; 3:17032. [PMID: 29675270 PMCID: PMC5903394 DOI: 10.1038/cddiscovery.2017.32] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 03/31/2017] [Accepted: 04/23/2017] [Indexed: 02/07/2023] Open
Abstract
Retinal ganglion cells (RGC) are terminally differentiated CNS neurons that possess limited endogenous regenerative capacity after injury and thus RGC death causes permanent visual loss. RGC die by caspase-dependent mechanisms, including apoptosis, during development, after ocular injury and in progressive degenerative diseases of the eye and optic nerve, such as glaucoma, anterior ischemic optic neuropathy, diabetic retinopathy and multiple sclerosis. Inhibition of caspases through genetic or pharmacological approaches can arrest the apoptotic cascade and protect a proportion of RGC. Novel findings have also highlighted a pyroptotic role of inflammatory caspases in RGC death. In this review, we discuss the molecular signalling mechanisms of apoptotic and inflammatory caspase responses in RGC specifically, their involvement in RGC degeneration and explore their potential as therapeutic targets.
Collapse
Affiliation(s)
- Chloe N Thomas
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Martin Berry
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Ann Logan
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Richard J Blanch
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.,Academic Department of Military Surgery and Trauma, Royal Centre for Defence Medicine, Birmingham, UK
| | - Zubair Ahmed
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| |
Collapse
|
12
|
Blazejczyk M, Macias M, Korostynski M, Firkowska M, Piechota M, Skalecka A, Tempes A, Koscielny A, Urbanska M, Przewlocki R, Jaworski J. Kainic Acid Induces mTORC1-Dependent Expression of Elmo1 in Hippocampal Neurons. Mol Neurobiol 2017; 54:2562-2578. [PMID: 26993296 PMCID: PMC5390005 DOI: 10.1007/s12035-016-9821-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/29/2016] [Indexed: 12/24/2022]
Abstract
Epileptogenesis is a process triggered by initial environmental or genetic factors that result in epilepsy and may continue during disease progression. Important parts of this process include changes in transcriptome and the pathological rewiring of neuronal circuits that involves changes in neuronal morphology. Mammalian/mechanistic target of rapamycin (mTOR) is upregulated by proconvulsive drugs, e.g., kainic acid, and is needed for progression of epileptogenesis, but molecular aspects of its contribution are not fully understood. Since mTOR can modulate transcription, we tested if rapamycin, an mTOR complex 1 inhibitor, affects kainic acid-evoked transcriptome changes. Using microarray technology, we showed that rapamycin inhibits the kainic acid-induced expression of multiple functionally heterogeneous genes. We further focused on engulfment and cell motility 1 (Elmo1), which is a modulator of actin dynamics and therefore could contribute to pathological rewiring of neuronal circuits during epileptogenesis. We showed that prolonged overexpression of Elmo1 in cultured hippocampal neurons increased axonal growth, decreased dendritic spine density, and affected their shape. In conclusion, data presented herein show that increased mTORC1 activity in response to kainic acid has no global effect on gene expression. Instead, our findings suggest that mTORC1 inhibition may affect development of epilepsy, by modulating expression of specific subset of genes, including Elmo1, and point to a potential role for Elmo1 in morphological changes that accompany epileptogenesis.
Collapse
Affiliation(s)
- Magdalena Blazejczyk
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena St., 02-109, Warsaw, Poland.
| | - Matylda Macias
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena St., 02-109, Warsaw, Poland
| | - Michal Korostynski
- Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St, 31-343, Krakow, Poland
| | - Marcelina Firkowska
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena St., 02-109, Warsaw, Poland
| | - Marcin Piechota
- Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St, 31-343, Krakow, Poland
| | - Agnieszka Skalecka
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena St., 02-109, Warsaw, Poland
| | - Aleksandra Tempes
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena St., 02-109, Warsaw, Poland
| | - Alicja Koscielny
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena St., 02-109, Warsaw, Poland
| | - Malgorzata Urbanska
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena St., 02-109, Warsaw, Poland
| | - Ryszard Przewlocki
- Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St, 31-343, Krakow, Poland
| | - Jacek Jaworski
- International Institute of Molecular and Cell Biology, 4 Ks. Trojdena St., 02-109, Warsaw, Poland.
| |
Collapse
|
13
|
Isoquercetin ameliorates tunicamycin-induced apoptosis in rat dorsal root ganglion neurons via suppressing ROS-dependent endoplasmic reticulum stress. Biomed Pharmacother 2016; 80:343-351. [DOI: 10.1016/j.biopha.2016.03.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 03/28/2016] [Accepted: 03/28/2016] [Indexed: 11/18/2022] Open
|
14
|
Yang X, Chen H, Zhu M, Zhu R, Qin B, Fang H, Dai M, Sang A, Liu X. Up-Regulation of PKM2 Relates to Retinal Ganglion Cell Apoptosis After Light-Induced Retinal Damage in Adult Rats. Cell Mol Neurobiol 2015; 35:1175-86. [PMID: 25990228 PMCID: PMC11486339 DOI: 10.1007/s10571-015-0211-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 05/13/2015] [Indexed: 01/09/2023]
Abstract
Pyruvate kinase isozyme type M2 (PKM2), a key glycolytic enzyme, which is involved in ATP generation and pyruvate production, participates in tumor metabolism, growth, and other multiple cellular processes. However, one attractive biological function of PKM2 is that it translocates to the nucleus and induces cell apoptosis. Recently, increased PKM2 has been found in age-related macular degeneration (AMD), but little is known regarding its function in the AMD pathophysiology. To investigate whether PKM2 participated in retinal degeneration, we performed a light-induced retinal damage model in adult rats. Western blot and immunohistochemistry analysis showed a significant up-regulation of PKM2 in retinal ganglion cells (RGCs) layer (GCL) after light exposure. Immunofluorescent labeling indicated that PKM2 located mainly in RGCs. Co-localization of PKM2 and active caspase-3 as well as TUNEL in RGCs suggested that PKM2 might participate in RGC apoptosis. In addition, the expression patterns of cyclin D1 and phosphorylated extracellular signal-regulated kinase (p-ERK) were parallel with that of PKM2. Furthermore, PKM2, cyclin D1, and active caspase-3 protein expression decreased by intravitreal injection of U0126, a highly selective inhibitor of MAPK/ERK kinase. Collectively, we hypothesized that PKM2 might participate in RGC apoptosis after light-induced retinal damage medicated by p-ERK through cycle re-entry mechanism.
Collapse
Affiliation(s)
- Xiaowei Yang
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Hui Chen
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Manhui Zhu
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Rongrong Zhu
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Bai Qin
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Hongda Fang
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Ming Dai
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Aimin Sang
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
| | - Xiaojuan Liu
- Department of Pathogen Biology, Medical College, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China.
| |
Collapse
|
15
|
RETRACTED ARTICLE: TN-2 Ameliorates Tunicamycin-Induced Mitochondria and Endoplasmic Reticulum Stress-Associated Apoptosis in Rat Dorsal Root Ganglion Neurons. J Mol Neurosci 2015; 57:314. [DOI: 10.1007/s12031-015-0599-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 06/03/2015] [Indexed: 11/27/2022]
|
16
|
Dai M, Liu Y, Nie X, Zhang J, Wang Y, Ben J, Zhang S, Yang X, Sang A. Expression of RBMX in the light-induced damage of rat retina in vivo. Cell Mol Neurobiol 2015; 35:463-71. [PMID: 25407628 PMCID: PMC11486204 DOI: 10.1007/s10571-014-0140-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 11/13/2014] [Indexed: 12/23/2022]
Abstract
RNA-binding motif protein, X-linked (RBMX) is a 43 kDa nuclear protein in the RBM family and functions on alternative splicing of RNA. The gene encoding RBMX is located on chromosome Xq26. To investigate whether RBMX is involved in retinal neuron apoptosis, we performed a light-induced retinal damage model in adult rats. Western blotting analysis showed RBMX gradually increased, reached a peak at 12 h and then declined during the following days. The association of RBMX in retinal ganglion cells (RGCs) with light exposure was found by immunofluorescence staining. The injury-induced expression of RBMX was detected in active caspase-3 and TUNEL positive cells. We also examined the expression profiles of active caspase-3, bcl-2 and Bax, whose changes were correlated with the expression profiles of RBMX. To summarize, we uncovered the dynamic changes of RBMX in the light-induced retinal damage model for the first time. RBMX might play a significant role in the degenerative process of RGCs after light-induced damage in the retina.
Collapse
Affiliation(s)
- Ming Dai
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
| | - Yonghua Liu
- Department of Pathogen Biology, Medical College, Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
| | - Xiaoke Nie
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
| | - Jinlong Zhang
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
| | - Yong Wang
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
| | - Jindong Ben
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
| | - Su Zhang
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
| | - Xiaowei Yang
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
| | - Aimin Sang
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu People’s Republic of China
| |
Collapse
|
17
|
Huang Y, Xu Y, Cheng Q, Yu S, Gao Y, Shu Q, Yang C, Sun Y, Wang J, Xu F, Liang X. The expression changes of myelin and lymphocyte protein (MAL) following optic nerve crush in adult rats retinal ganglion cells. J Mol Neurosci 2014; 54:614-21. [PMID: 24878628 DOI: 10.1007/s12031-014-0332-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/13/2014] [Indexed: 01/09/2023]
Abstract
Myelin and lymphocyte protein (MAL), a component of compact myelin, is highly expressed in oligodendrocytes and Schwann cells. It has been reported that MAL may play a vital role in the process of neuronal apoptosis following acute spinal cord injury. However, acquaintance regarding its distribution and possible function in the retina is limited. Therefore, in a rodent model of optic nerve crush (ONC), the dynamic changes of MAL in retina was detected. The expression of MAL was mainly located in the retinal ganglion cells (RGCs) and was increased strongly after ONC. The peak of MAL expression appeared on the third day. In addition, there was a concomitant upregulation of active-caspase-3, which also co-localized with MAL in RGCs. Moreover, co-localization of MAL with terminal deoxynucleotidyl transferase-mediated biotinylated-dUTP nick-end labeling (TUNEL) was detected in RGCs after ONC. Collectively, all these results suggested that the upregulation of MAL might play an important role in the pathophysiology of RGCs after ONC.
Collapse
Affiliation(s)
- Yongsheng Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong Province, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|