1
|
Li Q, Liao Q, Qi S, Huang H, He S, Lyu W, Liang J, Qin H, Cheng Z, Yu F, Dong X, Wang Z, Han L, Han Y. Opportunities and perspectives of small molecular phosphodiesterase inhibitors in neurodegenerative diseases. Eur J Med Chem 2024; 271:116386. [PMID: 38614063 DOI: 10.1016/j.ejmech.2024.116386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/19/2024] [Accepted: 04/01/2024] [Indexed: 04/15/2024]
Abstract
Phosphodiesterase (PDE) is a superfamily of enzymes that are responsible for the hydrolysis of two second messengers: cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). PDE inhibition promotes the gene transcription by activating cAMP-response element binding protein (CREB), initiating gene transcription of brain-derived neurotrophic factor (BDNF). The procedure exerts neuroprotective profile, and motor and cognitive improving efficacy. From this point of view, PDE inhibition will provide a promising therapeutic strategy for treating neurodegenerative disorders. Herein, we summarized the PDE inhibitors that have entered the clinical trials or been discovered in recent five years. Well-designed clinical or preclinical investigations have confirmed the effectiveness of PDE inhibitors, such as decreasing Aβ oligomerization and tau phosphorylation, alleviating neuro-inflammation and oxidative stress, modulating neuronal plasticity and improving long-term cognitive impairment.
Collapse
Affiliation(s)
- Qi Li
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China.
| | - Qinghong Liao
- Shandong Kangqiao Biotechnology Co., Ltd, Qingdao, 266033, Shandong, PR China
| | - Shulei Qi
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - He Huang
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Siyu He
- Guizhou Province Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, 550004, Guizhou, PR China
| | - Weiping Lyu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Jinxin Liang
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Huan Qin
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Zimeng Cheng
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Fan Yu
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Xue Dong
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Ziming Wang
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China; School of Pharmacy, Binzhou Medical University, Yantai, 256699, Shandong, PR China
| | - Lingfei Han
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China
| | - Yantao Han
- Department of Medical Pharmacy, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong, PR China.
| |
Collapse
|
2
|
Yang J, Hu X, Wang Y, Liu W, Zhang M, Zhang A, Ni B. Identification of the shared gene signatures and molecular mechanisms between multiple sclerosis and non-small cell lung cancer. Front Immunol 2023; 14:1180449. [PMID: 37251402 PMCID: PMC10213509 DOI: 10.3389/fimmu.2023.1180449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction The association between multiple sclerosis (MS) and non-small cell lung cancer (NSCLC) has been the subject of investigation in clinical cohorts, yet the molecular mechanisms underpinning this relationship remain incompletely understood. To address this, our study aimed to identify shared genetic signatures, shared local immune microenvironment, and molecular mechanisms between MS and NSCLC. Methods We selected multiple Gene Expression Omnibus (GEO) datasets, including GSE19188, GSE214334, GSE199460, and GSE148071, to obtain gene expression levels and clinical information from patients or mice with MS and NSCLC. We employed Weighted Gene Co-expression Network Analysis (WGCNA) to investigate co-expression networks linked to MS and NSCLC and used single-cell RNA sequencing (scRNA-seq) analysis to explore the local immune microenvironment of MS and NSCLC and identify possible shared components. Results Our analysis identified the most significant shared gene in MS and NSCLC, phosphodiesterase 4A (PDE4A), and we analyzed its expression in NSCLC patients and its impact on patient prognosis, as well as its molecular mechanism. Our results demonstrated that high expression of PDE4A was associated with poor prognoses in NSCLC patients, and Gene Set Enrichment Analysis (GSEA) revealed that PDE4A is involved in immune-related pathways and has a significant regulatory effect on human immune responses. We further observed that PDE4A was closely linked to the sensitivity of several chemotherapy drugs. Conclusion Given the limitation of studies investigating the molecular mechanisms underlying the correlation between MS and NSCLC, our findings suggest that there are shared pathogenic processes and molecular mechanisms between these two diseases and that PDE4A represents a potential therapeutic target and immune-related biomarker for patients with both MS and NSCLC.
Collapse
Affiliation(s)
- Jingyun Yang
- Department of Oncology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiaofei Hu
- Department of Nuclear Medicine, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yu Wang
- Medical Research Institute, Southwest University, Chongqing, China
| | - Wenying Liu
- Department of Dermatology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Mengjie Zhang
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Anmei Zhang
- Department of Oncology, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Bing Ni
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
3
|
Liu H, Wei T, Huang Q, Liu W, Yang Y, Jin Y, Wu D, Yuan K, Zhang P. The roles, mechanism, and mobilization strategy of endogenous neural stem cells in brain injury. Front Aging Neurosci 2022; 14:924262. [PMID: 36062152 PMCID: PMC9428262 DOI: 10.3389/fnagi.2022.924262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Brain injury poses a heavy disease burden in the world, resulting in chronic deficits. Therapies for brain injuries have been focused on pharmacologic, small molecule, endocrine and cell-based therapies. Endogenous neural stem cells (eNSCs) are a group of stem cells which can be activated in vivo by damage, neurotrophic factors, physical factor stimulation, and physical exercise. The activated eNSCs can proliferate, migrate and differentiate into neuron, oligodendrocyte and astrocyte, and play an important role in brain injury repair and neural plasticity. The roles of eNSCs in the repair of brain injury include but are not limited to ameliorating cognitive function, improving learning and memory function, and promoting functional gait behaviors. The activation and mobilization of eNSCs is important to the repair of injured brain. In this review we describe the current knowledge of the common character of brain injury, the roles and mechanism of eNSCs in brain injury. And then we discuss the current mobilization strategy of eNSCs following brain injury. We hope that a comprehensive awareness of the roles and mobilization strategy of eNSCs in the repair of cerebral ischemia may help to find some new therapeutic targets and strategy for treatment of stroke.
Collapse
Affiliation(s)
- Haijing Liu
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Tao Wei
- Library, Kunming Medical University, Kunming, China
- School of Continuing Education, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Qin Huang
- Department of Teaching Affairs and Administration, Kunming Medical University, Kunming, China
| | - Wei Liu
- School of Public Health, Kunming Medical University, Kunming, China
| | - Yaopeng Yang
- Department of Pulmonary and Critical Care Medicine, The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, China
| | - Yaju Jin
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Danli Wu
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Kai Yuan
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Pengyue Zhang
- Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Traditional Chinese Medicine, Kunming, China
| |
Collapse
|
4
|
Mitochondria, Oxidative Stress, cAMP Signalling and Apoptosis: A Crossroads in Lymphocytes of Multiple Sclerosis, a Possible Role of Nutraceutics. Antioxidants (Basel) 2020; 10:antiox10010021. [PMID: 33379309 PMCID: PMC7823468 DOI: 10.3390/antiox10010021] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/13/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis (MS) is a complex inflammatory and neurodegenerative chronic disease that involves the immune and central nervous systems (CNS). The pathogenesis involves the loss of blood–brain barrier integrity, resulting in the invasion of lymphocytes into the CNS with consequent tissue damage. The MS etiology is probably a combination of immunological, genetic, and environmental factors. It has been proposed that T lymphocytes have a main role in the onset and propagation of MS, leading to the inflammation of white matter and myelin sheath destruction. Cyclic AMP (cAMP), mitochondrial dysfunction, and oxidative stress exert a role in the alteration of T lymphocytes homeostasis and are involved in the apoptosis resistance of immune cells with the consequent development of autoimmune diseases. The defective apoptosis of autoreactive lymphocytes in patients with MS, allows these cells to perpetuate, within the CNS, a continuous cycle of inflammation. In this review, we discuss the involvement in MS of cAMP pathway, mitochondria, reactive oxygen species (ROS), apoptosis, and their interaction in the alteration of T lymphocytes homeostasis. In addition, we discuss a series of nutraceutical compounds that could influence these aspects.
Collapse
|
5
|
Bhat A, Ray B, Mahalakshmi AM, Tuladhar S, Nandakumar DN, Srinivasan M, Essa MM, Chidambaram SB, Guillemin GJ, Sakharkar MK. Phosphodiesterase-4 enzyme as a therapeutic target in neurological disorders. Pharmacol Res 2020; 160:105078. [PMID: 32673703 DOI: 10.1016/j.phrs.2020.105078] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 02/08/2023]
Abstract
Phosphodiesterases (PDE) are a diverse family of enzymes (11 isoforms so far identified) responsible for the degradation of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) which are involved in several cellular and biochemical functions. Phosphodiesterase 4 (PDE4) is the major isoform within this group and is highly expressed in the mammalian brain. An inverse association between PDE4 and cAMP levels is the key mechanism in various pathophysiological conditions like airway inflammatory diseases-chronic obstruction pulmonary disease (COPD), asthma, psoriasis, rheumatoid arthritis, and neurological disorders etc. In 2011, roflumilast, a PDE4 inhibitor (PDE4I) was approved for the treatment of COPD. Subsequently, other PDE4 inhibitors (PDE4Is) like apremilast and crisaborole were approved by the Food and Drug Administration (FDA) for psoriasis, atopic dermatitis etc. Due to the adverse effects like unbearable nausea and vomiting, dose intolerance and diarrhoea, PDE4 inhibitors have very less clinical compliance. Efforts are being made to develop allosteric modulation with high specificity to PDE4 isoforms having better efficacy and lesser adverse effects. Interestingly, repositioning PDE4Is towards neurological disorders including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), multiple sclerosis (MS) and sleep disorders, is gaining attention. This review is an attempt to summarize the data on the effects of PDE4 overexpression in neurological disorders and the use of PDE4Is and newer allosteric modulators as therapeutic options. We have also compiled a list of on-going clinical trials on PDE4 inhibitors in neurological disorders.
Collapse
Affiliation(s)
- Abid Bhat
- Dept. of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Bipul Ray
- Dept. of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | | | - Sunanda Tuladhar
- Dept. of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - D N Nandakumar
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, 560029, India
| | - Malathi Srinivasan
- Department of Lipid Science, CSIR - Central Food Technological Research Institute (CFTRI), CFTRI Campus, Mysuru, 570020, India
| | - Musthafa Mohamed Essa
- Ageing and Dementia Research Group, Sultan Qaboos University, Muscat, Oman; Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat, Oman.
| | - Saravana Babu Chidambaram
- Dept. of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India; Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India.
| | - Gilles J Guillemin
- Neuroinflammation group, Faculty of Medicine and Health Sciences, Macquarie University, NSW, 2109, Australia.
| | - Meena Kishore Sakharkar
- College of Pharmacy and Nutrition, University of Saskatchewan, 107, Wiggins Road, Saskatoon, SK, S7N 5C9, Canada
| |
Collapse
|
6
|
Rao MS, Abd-El-Basset EM. dBcAMP Rescues the Neurons From Degeneration in Kainic Acid-Injured Hippocampus, Enhances Neurogenesis, Learning, and Memory. Front Behav Neurosci 2020; 14:18. [PMID: 32194381 PMCID: PMC7065045 DOI: 10.3389/fnbeh.2020.00018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/24/2020] [Indexed: 01/17/2023] Open
Abstract
Dibutyryl cyclic adenosine monophosphate (dBcAMP) is a cell-permeable synthetic analog of cyclic adenosine monophosphate (cAMP). Although the elevation of cAMP levels was reported to promote the functional recovery in spinal cord injury, its role in neurogenesis or functional recovery after hippocampal injury is unknown. The objective of the study was to investigate the effects of dBcAMP on learning, memory, and hippocampal neurogenesis in the excitotoxically lesioned hippocampus. An excitotoxic lesion was induced in the hippocampi of 4-month-old male BALB/c mice by injecting 0.25 μg/μl into the lateral ventricles of both sides. The lesioned mice (L) were divided into L+dBcAMP and L+phosphate-buffered saline (PBS) groups. Sham surgery (S) was done by the injection of 1 μl of sterile saline into the lateral ventricles. The sham surgery mice were divided into S+dBcAMP and S+PBS groups. Mice in the L+dBcAMP and S+dBcAMP groups were treated with dBcAMP for 1 week (i.p., 50 mg/kg), whereas mice in the L+PBS and S+PBS groups were treated with PBS. The mice in all groups were subjected to water maze and passive avoidance tests at the end of the 4th week. Cresyl violet staining and NeuN and doublecortin immunostaining were done to analyze the morphology and neurogenesis. The water maze learning sessions did not show a significant difference in escape latency between the groups, suggesting an unimpaired learning ability of mice in all groups. The L+dBcAMP mice had significantly short entry latency and higher target quadrant time/distance traveled compared to the L+PBS group, suggesting better memory retention. The L+dBcAMP group had a significantly improved memory retention compared to the L+PBS mice during the passive avoidance test. Morphological studies showed significantly greater adult neurons and increased hippocampal neurogenesis in the hippocampus of mice in the L+dBcAMP group compared to those in the L+PBS group. There was no significant difference between the S+dBcAMP and S+PBS groups in the water maze/passive avoidance tests and the number of neurons. In conclusion, dBcAMP protects the hippocampal neuron from degeneration and enhances hippocampal neurogenesis, learning, and memory.
Collapse
|
7
|
Schepers M, Tiane A, Paes D, Sanchez S, Rombaut B, Piccart E, Rutten BPF, Brône B, Hellings N, Prickaerts J, Vanmierlo T. Targeting Phosphodiesterases-Towards a Tailor-Made Approach in Multiple Sclerosis Treatment. Front Immunol 2019; 10:1727. [PMID: 31396231 PMCID: PMC6667646 DOI: 10.3389/fimmu.2019.01727] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/09/2019] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic demyelinating disease of the central nervous system (CNS) characterized by heterogeneous clinical symptoms including gradual muscle weakness, fatigue, and cognitive impairment. The disease course of MS can be classified into a relapsing-remitting (RR) phase defined by periods of neurological disabilities, and a progressive phase where neurological decline is persistent. Pathologically, MS is defined by a destructive immunological and neuro-degenerative interplay. Current treatments largely target the inflammatory processes and slow disease progression at best. Therefore, there is an urgent need to develop next-generation therapeutic strategies that target both neuroinflammatory and degenerative processes. It has been shown that elevating second messengers (cAMP and cGMP) is important for controlling inflammatory damage and inducing CNS repair. Phosphodiesterases (PDEs) have been studied extensively in a wide range of disorders as they breakdown these second messengers, rendering them crucial regulators. In this review, we provide an overview of the role of PDE inhibition in limiting pathological inflammation and stimulating regenerative processes in MS.
Collapse
Affiliation(s)
- Melissa Schepers
- Department of Neuroimmunology, European Graduate School of Neuroscience, Biomedical Research Institute, Hasselt University, Hasselt, Belgium.,Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Assia Tiane
- Department of Neuroimmunology, European Graduate School of Neuroscience, Biomedical Research Institute, Hasselt University, Hasselt, Belgium.,Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Dean Paes
- Department of Neuroimmunology, European Graduate School of Neuroscience, Biomedical Research Institute, Hasselt University, Hasselt, Belgium.,Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Selien Sanchez
- Department of Morphology, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Ben Rombaut
- Department of Physiology, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Elisabeth Piccart
- Department of Neuroimmunology, European Graduate School of Neuroscience, Biomedical Research Institute, Hasselt University, Hasselt, Belgium.,Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Bart P F Rutten
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Bert Brône
- Department of Physiology, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Niels Hellings
- Department of Neuroimmunology, European Graduate School of Neuroscience, Biomedical Research Institute, Hasselt University, Hasselt, Belgium
| | - Jos Prickaerts
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Tim Vanmierlo
- Department of Neuroimmunology, European Graduate School of Neuroscience, Biomedical Research Institute, Hasselt University, Hasselt, Belgium.,Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
8
|
Prediger RD, Schamne MG, Sampaio TB, Moreira ELG, Rial D. Animal models of olfactory dysfunction in neurodegenerative diseases. HANDBOOK OF CLINICAL NEUROLOGY 2019; 164:431-452. [PMID: 31604561 DOI: 10.1016/b978-0-444-63855-7.00024-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Olfactory dysfunction seems to occur earlier than classic motor and cognitive symptoms in many neurodegenerative diseases, including Parkinson's disease (PD) and Alzheimer's disease (AD). Thus, the use of the olfactory system as a clinical marker for neurodegenerative diseases is helpful in the characterization of prodromal stages of these diseases, early diagnostic strategies, differential diagnosis, and, potentially, prediction of treatment success. The use of genetic and neurotoxin animal models has contributed to the understanding of the mechanisms underlying olfactory dysfunction in a number of neurodegenerative diseases. In this chapter, we provide an overview of behavioral and neurochemical alterations observed in animal models of different neurodegenerative diseases (such as genetic and Aβ infusion models for AD and neurotoxins and genetic models of PD), in which olfactory dysfunction has been described.
Collapse
Affiliation(s)
- Rui D Prediger
- Department of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Brazil.
| | - Marissa G Schamne
- Department of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Tuane B Sampaio
- Department of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Eduardo L G Moreira
- Department of Physiological Sciences, Center of Biological Sciences¸ Federal University of Santa Catarina, Florianópolis, Brazil
| | - Daniel Rial
- Department of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
9
|
Stem Cells as Potential Targets of Polyphenols in Multiple Sclerosis and Alzheimer's Disease. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1483791. [PMID: 30112360 PMCID: PMC6077677 DOI: 10.1155/2018/1483791] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/19/2018] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) and multiple sclerosis are major neurodegenerative diseases, which are characterized by the accumulation of abnormal pathogenic proteins due to oxidative stress, mitochondrial dysfunction, impaired autophagy, and pathogens, leading to neurodegeneration and behavioral deficits. Herein, we reviewed the utility of plant polyphenols in regulating proliferation and differentiation of stem cells for inducing brain self-repair in AD and multiple sclerosis. Firstly, we discussed the genetic, physiological, and environmental factors involved in the pathophysiology of both the disorders. Next, we reviewed various stem cell therapies available and how they have proved useful in animal models of AD and multiple sclerosis. Lastly, we discussed how polyphenols utilize the potential of stem cells, either complementing their therapeutic effects or stimulating endogenous and exogenous neurogenesis, against these diseases. We suggest that polyphenols could be a potential candidate for stem cell therapy against neurodegenerative disorders.
Collapse
|
10
|
Pachenari N, Kiani S, Javan M. Inhibition of glycogen synthase kinase 3 increased subventricular zone stem cells proliferation. Biomed Pharmacother 2017; 93:1074-1082. [PMID: 28738501 DOI: 10.1016/j.biopha.2017.07.043] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/30/2017] [Accepted: 07/09/2017] [Indexed: 11/26/2022] Open
Abstract
The effects of Wnt signaling modifiers on cell proliferation, seem to be cell specific. Enhancing the proliferation of subventricular zone (SVZ) progenitors has been in the focus of research in recent years. Here we investigate the effect of CHIR99021, a Glycogen Synthase Kinase 3 (GSk-3) inhibitor, on SVZ progenitor's proliferation both in vivo and in vitro. Neural stem cells were extracted from the adult C57bl/6 by mincing and trypsin treatment followed by culturing in specific medium. Sphere cells formed within about 7-10days and were characterized by immunostaining. Number of spheres and their size was assessed following exposure to different concentration of CHIR99021 or vehicle. For in vivo studies, animals received intracerebroventricular (i.c.v.) injection of CHIR99021 or vehicle for four days. A subgroup of animals, after 4days treatment with CHIR99021 received intranasal kainic acid to induce local neurodegeneration in CA3 area of hippocampus. Inhibition of GSk-3 by CHIR99021 increased neural progenitor proliferation and the effect of CHIR99021 was long lasting so that the treated cells showed higher proliferation even after CHIR99021 removal. In vivo administration of CHIR99021 increased the number of neural progenitors at the rims of lateral ventricles especially when the treatment was followed by kainic acid administration which induces neural insult. Results showed that direct administration of CHIR99021 into the culture medium or animal brain increased the number of SVZ progenitors, especially when a neural insult was induced in the hippocampus.
Collapse
Affiliation(s)
- Narges Pachenari
- Department of Physiology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sahar Kiani
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohammad Javan
- Department of Physiology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran; Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
11
|
Tarbali S, Khezri S, Rahmani F. Analysis of molecular events associated with adult rat dorsal hippocampus demyelination following treatment with vitamin D3. NEUROCHEM J+ 2017. [DOI: 10.1134/s1819712416040139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Proliferation and Glia-Directed Differentiation of Neural Stem Cells in the Subventricular Zone of the Lateral Ventricle and the Migratory Pathway to the Lesions after Cortical Devascularization of Adult Rats. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3625959. [PMID: 27294116 PMCID: PMC4879261 DOI: 10.1155/2016/3625959] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 04/02/2016] [Accepted: 04/14/2016] [Indexed: 12/25/2022]
Abstract
We investigated the effects of cortical devascularization on the proliferation, differentiation, and migration of neural stem cells (NSCs) in the subventricular zone (SVZ) of the lateral ventricle of adult rats. 60 adult male Wistar rats were randomly divided into control group and devascularized group. At 15 and 30 days after cerebral cortices were devascularized, rats were euthanized and immunohistochemical analysis was performed. The number of PCNA-, Vimentin-, and GFAP-positive cells in the bilateral SVZ of the lateral wall and the superior wall of the lateral ventricles of 15- and 30-day devascularized groups increased significantly compared with the control group (P < 0.05 and P < 0.01). The area density of PCNA-, Vimentin-, and GFAP-positive cells in cortical lesions of 15- and 30-day devascularized groups increased significantly compared with the control group (P < 0.05 and P < 0.01). PCNA-, GFAP-, and Vimentin-positive cells in the SVZ migrated through the rostral migratory stream (RMS), and PCNA-, GFAP-, and Vimentin-positive cells from both the ipsilateral and contralateral dorsolateral SVZ (dl-SVZ) migrated into the corpus callosum (CC) and accumulated, forming a migratory pathway within the CC to the lesioned site. Our study suggested that cortical devascularization induced proliferation, glia-directed differentiation, and migration of NSCs from the SVZ through the RMS or directly to the corpus callosum and finally migrating radially to cortical lesions. This may play a significant role in neural repair.
Collapse
|
13
|
Protective Effect of a cAMP Analogue on Behavioral Deficits and Neuropathological Changes in Cuprizone Model of Demyelination. Mol Neurobiol 2014; 52:130-41. [PMID: 25128030 DOI: 10.1007/s12035-014-8857-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 08/06/2014] [Indexed: 01/06/2023]
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease that leads to neuronal cell loss. Cyclic AMP and its analogs are well known to decrease inflammation and apoptosis. In the present study, we examined the effects of bucladesine, a cell-permeable analogue of cyclic adenosine monophosphate (cAMP), on myelin proteins (PLP, PMP-22), inflammation, and apoptotic, as well as anti-apoptotic factors in cuprizone model of demyelination. C57BL/6J mice were fed with chow containing 0.2% copper chelator cuprizone or vehicle by daily oral gavage for 5 weeks to induce reversible demyelination predominantly of the corpus callosum. Bucladesine was administered intraperitoneally at different doses (0.24, 0.48, or 0.7 μg/kg body weight) during the last 7 days of 5-week cuprizone treatment. Bucladesine exhibited a protective effect on myelination. Furthermore, bucladesine significantly decreased the production of interleukin-6 pro-inflammatory mediator as well as nuclear factor-κB activation and reduced the mean number of apoptotic cells compared to cuprizone-treated mice. Bucladesine also decreased production of caspase-3 as well as Bax and increased Bcl-2 levels. Our data revealed that enhancement of intracellular cAMP prevents demyelination and plays anti-inflammatory and anti-apoptotic properties in mice cuprizone model of demyelination. This suggests the modulation of intracellular cAMP as a potential target for treatment of MS.
Collapse
|