1
|
Jankovic M, Spasojevic N, Ferizovic H, Stefanovic B, Virijevic K, Vezmar M, Dronjak S. Sex-Related and Brain Regional Differences of URB597 Effects on Modulation of MAPK/PI3K Signaling in Chronically Stressed Rats. Mol Neurobiol 2024; 61:1495-1506. [PMID: 37725215 DOI: 10.1007/s12035-023-03649-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 09/08/2023] [Indexed: 09/21/2023]
Abstract
Gender differences exist in depression incidence and antidepressant efficacy. In addition to the neurotransmission theory of depression, inflammation and disrupted signaling pathways play crucial roles in the pathophysiology of depression. Endocannabinoids offer a novel approach to treat inflammatory and emotional disorders like depression. URB597, a FAAH inhibitor, reduces endocannabinoids breakdown. In this study, URB597 effects were investigated on the pro-inflammatory cytokine interleukin-1β (IL-1β), nucleotide binding and oligomerization domain-like receptor family pyrin domain-containing 3(NLRP3), and mitogen-activated protein kinase (MAPK)/ phosphatidylinositol 3-hydroxy kinase/ protein kinase B (PI3K) signaling in the hippocampus and the medial prefrontal cortex (mPFC) of male and female rats subjected to chronic unpredictable stress (CUS). The results show that CUS induces depression-like behaviors, and the URB597 exhibited antidepressant-like effects inboth sexes. URB597 reduced the CUS-induced NLRP3 and IL-1β increase in the hippocampus and mPFC of both sexes. URB597 increased the reduced pERK1/2 levels in the mPFC of both sexes and hippocampus of CUS males. URB597 also prevented the increase in p38 phosphorylation after chronic stress in the mPFC of both sexes and in the hippocampus of the females. The CUS suppressed the downstream Akt phosphorylation in the mPFC and hippocampi of both sexes. URB597 produced an up-regulation of the pAkt in the hippocampus of the CUS animals but did not affect the pAkt in the mPFC. These data demonstrated a sexual dimorphism in the neural cell signaling, and in the effects of endocannabinoids, and indicated these dimorphisms are region-specific.
Collapse
Affiliation(s)
- Milica Jankovic
- Department of Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinca", National Institute of thе Republic of Serbia, University of Belgrade, P.O.B. 522 - 090, 11000, Belgrade, Serbia
| | - Natasa Spasojevic
- Department of Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinca", National Institute of thе Republic of Serbia, University of Belgrade, P.O.B. 522 - 090, 11000, Belgrade, Serbia
| | - Harisa Ferizovic
- Department of Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinca", National Institute of thе Republic of Serbia, University of Belgrade, P.O.B. 522 - 090, 11000, Belgrade, Serbia
| | - Bojana Stefanovic
- Department of Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinca", National Institute of thе Republic of Serbia, University of Belgrade, P.O.B. 522 - 090, 11000, Belgrade, Serbia
| | - Kristina Virijevic
- Department of Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinca", National Institute of thе Republic of Serbia, University of Belgrade, P.O.B. 522 - 090, 11000, Belgrade, Serbia
| | - Milica Vezmar
- Institute of Mental Health, University of Belgrade, Belgrade, Serbia
| | - Sladjana Dronjak
- Department of Molecular Biology and Endocrinology, Institute of Nuclear Sciences "Vinca", National Institute of thе Republic of Serbia, University of Belgrade, P.O.B. 522 - 090, 11000, Belgrade, Serbia.
| |
Collapse
|
2
|
Perić I, Lješević M, Beškoski V, Nikolić M, Filipović D. Metabolomic profiling relates tianeptine effectiveness with hippocampal GABA, myo-inositol, cholesterol, and fatty acid metabolism restoration in socially isolated rats. Psychopharmacology (Berl) 2022; 239:2955-2974. [PMID: 35776189 DOI: 10.1007/s00213-022-06180-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 06/16/2022] [Indexed: 12/28/2022]
Abstract
RATIONALE Discovering biomarkers of major depressive disorder (MDD) can give a deeper understanding of this mood disorder and improve the ability to screen for, diagnose, and treat MDD. OBJECTIVES In this study, metabolomics was used in unraveling metabolite fluctuations of MDD and drug outcome by creating specific metabolomic fingerprints. We report metabolomic patterns of change of the hippocampus of adult male Wistar rats following chronic social isolation (CSIS) (6 weeks), an animal model of depression, and/or chronic tianeptine (Tian) treatment (10 mg kg-1 per day) (lasting 3 weeks of 6-week CSIS), monitored by using comprehensive GC × GC-MS. RESULTS The comparative metabolomic analysis highlighted the role of gamma aminobutyric acid (GABA), iso-allocholate, and unsaturated fatty acid metabolism alterations following the CSIS, which was corroborated with moderate to strong negative Pearson's correlation of GABA, docosahexaenoic, 9-hexadecenoic acid, 5,8,11,14-eicosatetraynoic, and arachidonic acids with immobility behavior in the forced swim test. The antidepressant effect of Tian restored GABA levels, which was absent in Tian resilient rats. Tian decreased myo-inositol and increased TCA cycle intermediates, amino acids, and cholesterol and its metabolite. As key molecules of divergence between Tian effectiveness and resilience, metabolomics revealed myo-inositol, GABA, cholesterol, and its metabolite. A significant moderate positive correlation between myo-inositol and immobility was revealed. Tian probably acted by upregulating NMDAR's and α2 adrenergic receptors (AR) or norepinephrine transporter in both control and stressed animals. CONCLUSION Metabolomics revealed several dysregulations underlying CSIS-induced depressive-like behavior and responsiveness to Tian, predominantly converging into NMDAR-mediated glutamate and myo-inositol signalization and GABA inhibitory pathways.
Collapse
Affiliation(s)
- Ivana Perić
- Department of Molecular Biology and Endocrinology, "VINČA" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11351, Vinča, Belgrade, Serbia
| | - Marija Lješević
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000, Belgrade, Serbia
| | - Vladimir Beškoski
- Department of Biochemistry, University of Belgrade - Faculty of Chemistry, Studentski trg 12-16, 11000, Belgrade, Serbia
| | - Milan Nikolić
- Department of Biochemistry, University of Belgrade - Faculty of Chemistry, Studentski trg 12-16, 11000, Belgrade, Serbia
| | - Dragana Filipović
- Department of Molecular Biology and Endocrinology, "VINČA" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11351, Vinča, Belgrade, Serbia.
| |
Collapse
|
3
|
Filipović D, Novak B, Xiao J, Yan Y, Yeoh K, Turck CW. Chronic Fluoxetine Treatment of Socially Isolated Rats Modulates Prefrontal Cortex Proteome. Neuroscience 2022; 501:52-71. [PMID: 35963583 DOI: 10.1016/j.neuroscience.2022.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 11/28/2022]
Abstract
Fluoxetine (Flx) is the most commonly used antidepressant to treat major depressive disorder. However, its molecular mechanisms of action are not defined as yet. A comparative proteomic approach was used to identify proteome changes in the prefrontal cortex (PFC) cytosolic and non-synaptic mitochondria (NSM)-enriched fractions of adult male Wistar rats following chronic social isolation (CSIS), a rat model of depression, and Flx treatment in CSIS and control rats, using liquid chromatography online tandem mass spectrometry. Flx reversed CSIS-induced depressive - like behavior according to preference for sucrose and immobility in the forced swim test, indicating its antidepressant effect. Flx treatment in controls led to an increase of the expression of cytosolic proteins involved in the microtubule cytoskeleton and intracellular calcium homeostasis and of enzymes involved in bioenergetic and transmembrane transport in NSM. CSIS downregulated the cytosolic proteins involved in proteasome pathway, and glutathione antioxidative system, and upregulated the expression of enzymes participating in mitochondrial-energy metabolism and transport. The presence of cytochrome c in the cytosol may suggest compromised mitochondrial membrane integrity. Flx treatment in CSIS rats downregulated protein involved in oxidative phosphorylation, such as complex III and manganese superoxide dismutase, and upregulated vesicle-mediated transport and synaptic signaling proteins in the cytosol, and neuronal calcium-binding protein 1 in NSM. Our study identified PFC modulated proteins and affected biochemical pathways that may represent potential markers/targets underlying CSIS-induced depression and effective Flx treatment, and highlights the role of protein systems involved in NSM and various metabolic pathways potentially involved in neuronal plasticity.
Collapse
Affiliation(s)
- Dragana Filipović
- Department of Molecular Biology and Endocrinology, "VINČA", Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| | - Božidar Novak
- Proteomics and Biomarkers, Max Planck Institute of Psychiatry, Munich, Germany
| | - Jinqiu Xiao
- Proteomics and Biomarkers, Max Planck Institute of Psychiatry, Munich, Germany
| | - Yu Yan
- Proteomics and Biomarkers, Max Planck Institute of Psychiatry, Munich, Germany
| | - Karin Yeoh
- Proteomics and Biomarkers, Max Planck Institute of Psychiatry, Munich, Germany
| | - Christoph W Turck
- Proteomics and Biomarkers, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
4
|
Potential Correlation Between Depression-like Behavior and the Mitogen-Activated Protein Kinase Pathway in the Rat Hippocampus Following Spinal Cord Injury. World Neurosurg 2021; 154:e29-e38. [PMID: 34271150 DOI: 10.1016/j.wneu.2021.06.093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Depression induced by spinal cord injury (SCI) has been demonstrated in clinical and experimental studies; it significantly impacts patients' lives and may be associated with changes in the hippocampus. However, the biological mechanisms underlying depression after SCI are unknown. The mitogen-activated protein kinase (MAPK) signaling pathway participates in potential mechanisms of depression; it is unknown whether this pathway plays a role in SCI-induced depression. METHODS We applied an animal model of depression induced by SCI, established using an aneurysm clip, to determine whether MAPK activation in the hippocampus is associated with depression-like behavior. RESULTS SCI led to depression-like behavior, such as anhedonia in the sucrose preference test, decreased number of crossings in the open field test, decreased body weight, and decreased immobility time in the forced swim test. Western blot analysis further showed that SCI significantly increased the levels of phosphorylated p38 MAPK and cleaved caspase-3 in the hippocampus and inhibited the phosphorylation of extracellular signal-related kinase 1/2 and c-Jun N-terminal kinase 1/2. In addition, there were significant negative correlations between depression-like behavior and phosphorylated extracellular signal-related kinase 1/2 and positive correlations between depression-like behavior and phosphorylated p38 MAPK and cleaved caspase-3. CONCLUSIONS These findings suggest that the MAPK pathway in the rat hippocampus may be involved in the pathophysiology of depression induced by SCI.
Collapse
|
5
|
Lukić I, Getselter D, Ziv O, Oron O, Reuveni E, Koren O, Elliott E. Antidepressants affect gut microbiota and Ruminococcus flavefaciens is able to abolish their effects on depressive-like behavior. Transl Psychiatry 2019; 9:133. [PMID: 30967529 PMCID: PMC6456569 DOI: 10.1038/s41398-019-0466-x] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 02/28/2019] [Accepted: 03/23/2019] [Indexed: 12/22/2022] Open
Abstract
Accumulating evidence demonstrates that the gut microbiota affects brain function and behavior, including depressive behavior. Antidepressants are the main drugs used for treatment of depression. We hypothesized that antidepressant treatment could modify gut microbiota which can partially mediate their antidepressant effects. Mice were chronically treated with one of five antidepressants (fluoxetine, escitalopram, venlafaxine, duloxetine or desipramine), and gut microbiota was analyzed, using 16s rRNA gene sequencing. After characterization of differences in the microbiota, chosen bacterial species were supplemented to vehicle and antidepressant-treated mice, and depressive-like behavior was assessed to determine bacterial effects. RNA-seq analysis was performed to determine effects of bacterial treatment in the brain. Antidepressants reduced richness and increased beta diversity of gut bacteria, compared to controls. At the genus level, antidepressants reduced abundances of Ruminococcus, Adlercreutzia, and an unclassified Alphaproteobacteria. To examine implications of the dysregulated bacteria, we chose one of antidepressants (duloxetine) and investigated if its antidepressive effects can be attenuated by simultaneous treatment with Ruminococcus flavefaciens or Adlercreutzia equolifaciens. Supplementation with R. flavefaciens diminished duloxetine-induced decrease in depressive-like behavior, while A. equolifaciens had no such effect. R. flavefaciens treatment induced changes in cortical gene expression, up-regulating genes involved in mitochondrial oxidative phosphorylation, while down-regulating genes involved in neuronal plasticity. Our results demonstrate that various types of antidepressants alter gut microbiota composition, and further implicate a role for R. flavefaciens in alleviating depressive-like behavior. Moreover, R. flavefaciens affects gene networks in the brain, suggesting a mechanism for microbial regulation of antidepressant treatment efficiency.
Collapse
Affiliation(s)
- Iva Lukić
- 0000 0004 1937 0503grid.22098.31Molecular and Behavioral Neuroscience, The Azrieli Faculty of Medicine, Bar-Ilan University, Henrietta Szold St. 8, Safed, Israel
| | - Dmitriy Getselter
- 0000 0004 1937 0503grid.22098.31Molecular and Behavioral Neuroscience, The Azrieli Faculty of Medicine, Bar-Ilan University, Henrietta Szold St. 8, Safed, Israel
| | - Oren Ziv
- 0000 0004 1937 0503grid.22098.31Microbiome Research, The Azrieli Faculty of Medicine, Bar-Ilan University, Henrietta Szold St. 8, Safed, Israel
| | - Oded Oron
- 0000 0004 1937 0503grid.22098.31Molecular and Behavioral Neuroscience, The Azrieli Faculty of Medicine, Bar-Ilan University, Henrietta Szold St. 8, Safed, Israel
| | - Eli Reuveni
- 0000 0004 1937 0503grid.22098.31Drug discovery Laboratories, The Azrieli Faculty of Medicine, Bar-Ilan University, Henrietta Szold St. 8, Safed, Israel
| | - Omry Koren
- 0000 0004 1937 0503grid.22098.31Microbiome Research, The Azrieli Faculty of Medicine, Bar-Ilan University, Henrietta Szold St. 8, Safed, Israel
| | - Evan Elliott
- Molecular and Behavioral Neuroscience, The Azrieli Faculty of Medicine, Bar-Ilan University, Henrietta Szold St. 8, Safed, Israel.
| |
Collapse
|
6
|
Mitic M, Brkic Z, Lukic I, Adzic M. Convergence of glycogen synthase kinase 3β and GR signaling in response to fluoxetine treatment in chronically stressed female and male rats. Behav Brain Res 2017; 333:295-303. [PMID: 28729116 DOI: 10.1016/j.bbr.2017.07.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 07/07/2017] [Accepted: 07/14/2017] [Indexed: 10/19/2022]
Abstract
Accumulating evidence strongly suggest that impaired glucocorticoid receptor (GR) signaling is involved in stress-related mood disorders, and nominate GR as a potential target for antidepressants (ADs). It is known that different classes of ADs affects the GR action via modifying its phosphorylation, while the mechanism through which ADs alter GR phosphorylation targeted by GSK3β, a kinase modulated via serotonin neurotransmission, are unclear. On this basis, we investigated whether GSK3β-GR signaling could be a convergence point of fluoxetine action on brain function and behavior, by examining its effect on GSK3β targeted-GR phosphorylation on threonine 171 (pGR171), and expression of GR-regulated genes in the hippocampus of female and male rats exposed to chronic isolation stress. Stress induced sex-specific GSK3β-targeted phosphorylation of pGR171 in the nucleus of the hippocampus of stressed animals. Namely, while in females stress triggered coupled action of GSK3β-pGR171 signaling, in males changes in pGR171 levels did not correspond to GSK3β activity. On the other hand, fluoxetine managed to up-regulate this pathway in sex-unbiased manner. Furthermore, fluoxetine reverted stress-induced changes in most of the analyzed genes in males, CRH, 5-HT1a and p11, while in females its effect was limited to CRH. These data further suggest that pGR171 signaling affects cellular localization of GR in response to chronic stress and fluoxetine in both sexes. Collectively, our results describe a novel convergence point between GR signaling and GSK3β pathway in rat hippocampus in response to stress and fluoxetine in both sexes and its involvement in fluoxetine-regulated brain function in males.
Collapse
Affiliation(s)
- Milos Mitic
- Department of Molecular Biology and Endocrinology, University of Belgrade, Vinca Institute of Nuclear Sciences, P.O. Box-522-MBE090, 11001 Belgrade, Serbia.
| | - Zeljka Brkic
- Department of Molecular Biology and Endocrinology, University of Belgrade, Vinca Institute of Nuclear Sciences, P.O. Box-522-MBE090, 11001 Belgrade, Serbia
| | - Iva Lukic
- Department of Molecular Biology and Endocrinology, University of Belgrade, Vinca Institute of Nuclear Sciences, P.O. Box-522-MBE090, 11001 Belgrade, Serbia; Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Miroslav Adzic
- Department of Molecular Biology and Endocrinology, University of Belgrade, Vinca Institute of Nuclear Sciences, P.O. Box-522-MBE090, 11001 Belgrade, Serbia
| |
Collapse
|
7
|
Block A, Ahmed MM, Dhanasekaran AR, Tong S, Gardiner KJ. Sex differences in protein expression in the mouse brain and their perturbations in a model of Down syndrome. Biol Sex Differ 2015; 6:24. [PMID: 26557979 PMCID: PMC4640233 DOI: 10.1186/s13293-015-0043-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 11/01/2015] [Indexed: 01/08/2023] Open
Abstract
Background While many sex differences in structure and function of the mammalian brain have been described, the molecular correlates of these differences are not broadly known. Also unknown is how sex differences at the protein level are perturbed by mutations that lead to intellectual disability (ID). Down syndrome (DS) is the most common genetic cause of ID and is due to trisomy of human chromosome 21 (Hsa21) and the resulting increased expression of Hsa21-encoded genes. The Dp(10)1Yey mouse model (Dp10) of DS is trisomic for orthologs of 39 Hsa21 protein-coding genes that map to mouse chromosome 10 (Mmu10), including four genes with known sex differences in functional properties. How these genes contribute to the DS cognitive phenotype is not known. Methods Using reverse phase protein arrays, levels of ~100 proteins/protein modifications were measured in the hippocampus, cerebellum, and cortex of female and male controls and their trisomic Dp10 littermates. Proteins were chosen for their known roles in learning/memory and synaptic plasticity and include components of the MAPK, MTOR, and apoptosis pathways, immediate early genes, and subunits of ionotropic glutamate receptors. Protein levels were compared between genotypes, sexes, and brain regions using a three-level mixed effects model and the Benjamini-Hochberg correction for multiple testing. Results In control mice, levels of approximately one half of the proteins differ significantly between females and males in at least one brain region; in the hippocampus alone, levels of 40 % of the proteins are significantly higher in females. Trisomy of the Mmu10 segment differentially affects female and male profiles, perturbing protein levels most in the cerebellum of female Dp10 and most in the hippocampus of male Dp10. Cortex is minimally affected by sex and genotype. Diverse pathways and processes are implicated in both sex and genotype differences. Conclusions The extensive sex differences in control mice in levels of proteins involved in learning/memory illustrate the molecular complexity underlying sex differences in normal neurological processes. The sex-specific abnormalities in the Dp10 suggest the possibility of sex-specific phenotypic features in DS and reinforce the need to use female as well as male mice, in particular in preclinical evaluations of drug responses. Electronic supplementary material The online version of this article (doi:10.1186/s13293-015-0043-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aaron Block
- Department of Pediatrics, Linda Crnic Institute for Down Syndrome, Aurora, USA
| | - Md Mahiuddin Ahmed
- Department of Pediatrics, Linda Crnic Institute for Down Syndrome, Aurora, USA
| | | | - Suhong Tong
- Colorado School of Public Health, Aurora, USA
| | - Katheleen J Gardiner
- Department of Pediatrics, Linda Crnic Institute for Down Syndrome, Aurora, USA ; Human Medical Genetics and Genomics, and Neuroscience Programs, University of Colorado Denver School of Medicine, 12700 E 19th Avenue, Mail Stop 8608, Aurora, CO 80045 USA
| |
Collapse
|
8
|
Jovicic MJ, Lukic I, Radojcic M, Adzic M, Maric NP. Modulation of c-Jun N-terminal kinase signaling and specific glucocorticoid receptor phosphorylation in the treatment of major depression. Med Hypotheses 2015; 85:291-4. [PMID: 26052031 DOI: 10.1016/j.mehy.2015.05.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 05/15/2015] [Accepted: 05/27/2015] [Indexed: 12/28/2022]
Abstract
Glucocorticoid resistance is a common finding in major depressive disorder. Increased glucocorticoid receptor (GR) phosphorylation at serine 226 is associated with increased glucocorticoid resistance. Previously we have demonstrated that depressed patients exhibit higher levels of GR phosphorylated at serine 226 compared to healthy controls. The enzyme that is involved in this specific GR phosphorylation is c-Jun N-terminal kinase (JNK). We propose that modulation of glucocorticoid phosphorylation at serine 226, by targeting JNK signaling pathway, could be a potential strategy for antidepressant treatment. We base this assumption on the results of previous research that examined GR phosphorylation and JNK signaling in animal models and human studies. We also discuss the potential challenges in targeting JNK signaling pathway in depression.
Collapse
Affiliation(s)
| | - Iva Lukic
- Department of Molecular Biology and Endocrinology, VINCA Institute of Nuclear Sciences, University of Belgrade, Serbia
| | - Marija Radojcic
- Department of Molecular Biology and Endocrinology, VINCA Institute of Nuclear Sciences, University of Belgrade, Serbia
| | - Miroslav Adzic
- Department of Molecular Biology and Endocrinology, VINCA Institute of Nuclear Sciences, University of Belgrade, Serbia
| | - Nadja P Maric
- School of Medicine, University of Belgrade, Serbia; Clinic for Psychiatry, Clinical Center of Serbia, Belgrade, Serbia.
| |
Collapse
|
9
|
Skilleter AJ, Weickert CS, Vercammen A, Lenroot R, Weickert TW. Peripheral BDNF: a candidate biomarker of healthy neural activity during learning is disrupted in schizophrenia. Psychol Med 2015; 45:841-854. [PMID: 25162472 PMCID: PMC4413857 DOI: 10.1017/s0033291714001925] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 07/16/2014] [Accepted: 07/16/2014] [Indexed: 12/26/2022]
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) is an important regulator of synaptogenesis and synaptic plasticity underlying learning. However, a relationship between circulating BDNF levels and brain activity during learning has not been demonstrated in humans. Reduced brain BDNF levels are found in schizophrenia and functional neuroimaging studies of probabilistic association learning in schizophrenia have demonstrated reduced activity in a neural network that includes the prefrontal and parietal cortices and the caudate nucleus. We predicted that brain activity would correlate positively with peripheral BDNF levels during probabilistic association learning in healthy adults and that this relationship would be altered in schizophrenia. METHOD Twenty-five healthy adults and 17 people with schizophrenia or schizo-affective disorder performed a probabilistic association learning test during functional magnetic resonance imaging (fMRI). Plasma BDNF levels were measured by enzyme-linked immunosorbent assay (ELISA). RESULTS We found a positive correlation between circulating plasma BDNF levels and brain activity in the parietal cortex in healthy adults. There was no relationship between plasma BDNF levels and task-related activity in the prefrontal, parietal or caudate regions in schizophrenia. A direct comparison of these relationships between groups revealed a significant diagnostic difference. CONCLUSIONS This is the first study to show a relationship between peripheral BDNF levels and cortical activity during learning, suggesting that plasma BDNF levels may reflect learning-related brain activity in healthy humans. The lack of relationship between plasma BDNF and task-related brain activity in patients suggests that circulating blood BDNF may not be indicative of learning-dependent brain activity in schizophrenia.
Collapse
Affiliation(s)
- A. J. Skilleter
- School of Psychiatry,
University of New South Wales, Kensington,
NSW, Australia
- Neuroscience Research Australia,
Randwick, NSW, Australia
- Schizophrenia Research Institute,
Darlinghurst, NSW, Australia
| | - C. S. Weickert
- School of Psychiatry,
University of New South Wales, Kensington,
NSW, Australia
- Neuroscience Research Australia,
Randwick, NSW, Australia
- Schizophrenia Research Institute,
Darlinghurst, NSW, Australia
| | - A. Vercammen
- School of Psychiatry,
University of New South Wales, Kensington,
NSW, Australia
- Neuroscience Research Australia,
Randwick, NSW, Australia
- Schizophrenia Research Institute,
Darlinghurst, NSW, Australia
| | - R. Lenroot
- School of Psychiatry,
University of New South Wales, Kensington,
NSW, Australia
- Neuroscience Research Australia,
Randwick, NSW, Australia
- Schizophrenia Research Institute,
Darlinghurst, NSW, Australia
| | - T. W. Weickert
- School of Psychiatry,
University of New South Wales, Kensington,
NSW, Australia
- Neuroscience Research Australia,
Randwick, NSW, Australia
- Schizophrenia Research Institute,
Darlinghurst, NSW, Australia
| |
Collapse
|