1
|
Abbasi M, Gupta V, Chitranshi N, Moustardas P, Ranjbaran R, Graham SL. Molecular Mechanisms of Glaucoma Pathogenesis with Implications to Caveolin Adaptor Protein and Caveolin-Shp2 Axis. Aging Dis 2024; 15:2051-2068. [PMID: 37962455 PMCID: PMC11346403 DOI: 10.14336/ad.2023.1012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/12/2023] [Indexed: 11/15/2023] Open
Abstract
Glaucoma is a common retinal disorder characterized by progressive optic nerve damage, resulting in visual impairment and potential blindness. Elevated intraocular pressure (IOP) is a major risk factor, but some patients still experience disease progression despite IOP-lowering treatments. Genome-wide association studies have linked variations in the Caveolin1/2 (CAV-1/2) gene loci to glaucoma risk. Cav-1, a key protein in caveolae membrane invaginations, is involved in signaling pathways and its absence impairs retinal function. Recent research suggests that Cav-1 is implicated in modulating the BDNF/TrkB signaling pathway in retinal ganglion cells, which plays a critical role in retinal ganglion cell (RGC) health and protection against apoptosis. Understanding the interplay between these proteins could shed light on glaucoma pathogenesis and provide potential therapeutic targets.
Collapse
Affiliation(s)
- Mojdeh Abbasi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia.
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping Sweden.
| | - Vivek Gupta
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia.
| | - Nitin Chitranshi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia.
| | - Petros Moustardas
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping Sweden.
| | - Reza Ranjbaran
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Stuart L. Graham
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia.
| |
Collapse
|
2
|
The tyrosine phosphatase PTPN14 inhibits the activation of STAT3 in PEDV infected Vero cells. Vet Microbiol 2022; 267:109391. [DOI: 10.1016/j.vetmic.2022.109391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 11/23/2022]
|
3
|
Ihl T, Kadas EM, Oberwahrenbrock T, Endres M, Klockgether T, Schroeter J, Brandt AU, Paul F, Minnerop M, Doss S, Schmitz-Hübsch T, Zimmermann HG. Investigation of Visual System Involvement in Spinocerebellar Ataxia Type 14. CEREBELLUM (LONDON, ENGLAND) 2020; 19:469-482. [PMID: 32338350 PMCID: PMC7351844 DOI: 10.1007/s12311-020-01130-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Spinocerebellar ataxia type 14 (SCA-PRKCG, formerly SCA14) is a rare, slowly progressive disorder caused by conventional mutations in protein kinase Cγ (PKCγ). The disease usually manifests with ataxia, but previous reports suggested PRKCG variants in retinal pathology. To systematically investigate for the first time visual function and retinal morphology in patients with SCA-PRKCG. Seventeen patients with PRKCG variants and 17 healthy controls were prospectively recruited, of which 12 genetically confirmed SCA-PRKCG patients and 14 matched controls were analyzed. We enquired a structured history for visual symptoms. Vision-related quality of life was obtained with the National Eye Institute Visual Function Questionnaire (NEI-VFQ) including the Neuro-Ophthalmic Supplement (NOS). Participants underwent testing of visual acuity, contrast sensitivity, visual fields, and retinal morphology with optical coherence tomography (OCT). Measurements of the SCA-PRKCG group were analyzed for their association with clinical parameters (ataxia rating and disease duration). SCA-PRKCG patients rate their vision-related quality of life in NEI-VFQ significantly worse than controls. Furthermore, binocular visual acuity and contrast sensitivity were worse in SCA-PRKCG patients compared with controls. Despite this, none of the OCT measurements differed between groups. NEI-VFQ and NOS composite scores were related to ataxia severity. Additionally, we describe one patient with a genetic variant of uncertain significance in the catalytic domain of PKCγ who, unlike all confirmed SCA-PRKCG, presented with a clinically silent epitheliopathy. SCA-PRKCG patients had reduced binocular vision and vision-related quality of life. Since no structural retinal damage was found, the pathomechanism of these findings remains unclear.
Collapse
Affiliation(s)
- Thomas Ihl
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Ella M Kadas
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Timm Oberwahrenbrock
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Matthias Endres
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), partner site, Berlin, Germany
| | - Thomas Klockgether
- Department of Neurology, University Hospital of Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Jan Schroeter
- University Tissue Bank, Cornea Bank Berlin, Institute of Transfusion Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Alexander U Brandt
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Department of Neurology, University of California, Irvine, CA, USA
| | - Friedemann Paul
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Martina Minnerop
- Institute of Neuroscience and Medicine (INM-1), Research Centre Juelich, Juelich, Germany
- Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
- Department of Neurology and Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Sarah Doss
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Department of Neurological Sciences, Movement Disorders Section, University of Nebraska Medical Center, Omaha, NE, USA
| | - Tanja Schmitz-Hübsch
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Hanna G Zimmermann
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
4
|
Xing T, Hass DT, Zhang SS, Barnstable CJ. The 3-Phosphoinositide-Dependent Protein Kinase 1 Inhibits Rod Photoreceptor Development. Front Cell Dev Biol 2018; 6:134. [PMID: 30364083 PMCID: PMC6191476 DOI: 10.3389/fcell.2018.00134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 09/24/2018] [Indexed: 01/30/2023] Open
Abstract
The transition of rod precursor cells to post-mitotic rod photoreceptors can be promoted by extrinsic factors such as insulin-like growth factor 1 (IGF-1), which regulates phosphatidylinositide concentration, and consequently the 3-phosphoinositide-dependent protein kinase-1 (PDPK-1). PDPK-1 is a 63 kDa cytoplasmic kinase that controls cell proliferation and differentiation. In the mouse retina, PDPK-1 and its phosphorylated derivative p-PDPK-1 (Ser241), showed peak expression during the first postnatal (PN) day with a substantial decline by PN7 and in the adult retina. Though initially widely distributed among cell types, PDPK-1 expression decreased first in the inner retina and later in the outer retina. When PDPK-1 is inhibited in neonatal retinal explants by BX795, there is a robust increase in rod photoreceptor numbers. The increase in rods depended on the activity of PKC, as BX795 had no effect when PKC is inhibited. Inhibition of PDPK-1-dependent kinases, such as P70-S6K, but not others, such as mTORC-1, stimulated rod development. The P70-S6K-dependent increase in rods appears to be correlated with phosphorylation of Thr252 and not at Thr389, a substrate of mTORC-1. This pathway is also inactive while PKC activity is inhibited. We also found that inhibition of the kinase mTORC-2, also stimulated by insulin activity, similarly increased rod formation, and this effect appears to be independent of PKC activity. This may represent a novel intracellular signaling pathway that also stimulates photoreceptor development. Consistent with previous studies, stimulation of STAT3 activity is sufficient to prevent any PDPK-1, P70-S6K, or mTORC2-dependent increase in rods. Together the data indicate that PDPK-1 and other intrinsic kinases downstream of IGF-1 are key regulators of rod photoreceptor formation.
Collapse
Affiliation(s)
- Tiaosi Xing
- Department of Anatomy and Cell Biology, East Carolina University, Greenville, NC, United States
| | - Daniel T Hass
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, United States
| | - Samuel S Zhang
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, United States
| | - Colin J Barnstable
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, United States
| |
Collapse
|
5
|
Loss of Shp2 Rescues BDNF/TrkB Signaling and Contributes to Improved Retinal Ganglion Cell Neuroprotection. Mol Ther 2018; 27:424-441. [PMID: 30341011 DOI: 10.1016/j.ymthe.2018.09.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 09/18/2018] [Accepted: 09/27/2018] [Indexed: 12/21/2022] Open
Abstract
Glaucoma is characterized by the loss of retinal ganglion cells (RGC), and accordingly the preservation of RGCs and their axons has recently attracted significant attention to improve therapeutic outcomes in the disease. Here, we report that Src homology region 2-containing protein tyrosine phosphatase 2 (Shp2) undergoes activation in the RGCs, in animal model of glaucoma as well as in the human glaucoma tissues and that Shp2 dephosphorylates tropomyosin receptor kinase B (TrkB) receptor, leading to reduced BDNF/TrkB neuroprotective survival signaling. This was elucidated by specifically modulating Shp2 expression in the RGCs in vivo, using adeno-associated virus serotype 2 (AAV2) constructs. Shp2 upregulation promoted endoplasmic reticulum (ER) stress and apoptosis, along with functional and structural deficits in the inner retina. In contrast, loss of Shp2 decelerated the loss of RGCs, preserved their function, and suppressed ER stress and apoptosis in glaucoma. This report constitutes the first identification of Shp2-mediated TrkB regulatory mechanisms in the RGCs that can become a potential therapeutic target in both glaucoma and other neurodegenerative disorders.
Collapse
|
6
|
Woods SM, Mountjoy E, Muir D, Ross SE, Atan D. A comparative analysis of rod bipolar cell transcriptomes identifies novel genes implicated in night vision. Sci Rep 2018; 8:5506. [PMID: 29615777 PMCID: PMC5883057 DOI: 10.1038/s41598-018-23901-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 03/20/2018] [Indexed: 11/09/2022] Open
Abstract
In the mammalian retina, rods and a specialised rod-driven signalling pathway mediate visual responses under scotopic (dim light) conditions. As rods primarily signal to rod bipolar cells (RBCs) under scoptic conditions, disorders that affect rod or RBC function are often associated with impaired night vision. To identify novel genes expressed by RBCs and, therefore, likely to be involved in night vision, we took advantage of the adult Bhlhe23−/− mouse retina (that lacks RBCs) to derive the RBC transcriptome. We found that genes expressed by adult RBCs are mainly involved in synaptic structure and signalling, whereas genes that influence RBC development are also involved in the cell cycle and transcription/translation. By comparing our data with other published retinal and bipolar cell transcriptomes (where we identify RBCs by the presence of Prkca and/or Pcp2 transcripts), we have derived a consensus for the adult RBC transcriptome. These findings ought to facilitate further research into physiological mechanisms underlying mammalian night vision as well as proposing candidate genes for patients with inherited causes of night blindness.
Collapse
Affiliation(s)
- Sasha M Woods
- Bristol Medical School, University of Bristol, Bristol, BS8 1TD, UK.
| | - Edward Mountjoy
- Bristol Medical School, University of Bristol, Bristol, BS8 1TD, UK.,MRC Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK
| | - Duncan Muir
- Bristol Medical School, University of Bristol, Bristol, BS8 1TD, UK
| | - Sarah E Ross
- Departments of Neurobiology and Anesthesiology and the Center for Pain Research, University of Pittsburgh, Pittsburgh, 15213-2536, USA
| | - Denize Atan
- Bristol Medical School, University of Bristol, Bristol, BS8 1TD, UK
| |
Collapse
|
7
|
Retinal organotypic culture – A candidate for research on retinas. Tissue Cell 2018; 51:1-7. [DOI: 10.1016/j.tice.2018.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/26/2018] [Accepted: 01/29/2018] [Indexed: 01/09/2023]
|
8
|
Abbasi M, Gupta V, Chitranshi N, You Y, Dheer Y, Mirzaei M, Graham SL. Regulation of Brain-Derived Neurotrophic Factor and Growth Factor Signaling Pathways by Tyrosine Phosphatase Shp2 in the Retina: A Brief Review. Front Cell Neurosci 2018; 12:85. [PMID: 29636665 PMCID: PMC5880906 DOI: 10.3389/fncel.2018.00085] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/09/2018] [Indexed: 01/31/2023] Open
Abstract
SH2 domain-containing tyrosine phosphatase-2 (PTPN11 or Shp2) is a ubiquitously expressed protein that plays a key regulatory role in cell proliferation, differentiation and growth factor (GF) signaling. This enzyme is well expressed in various retinal neurons and has emerged as an important player in regulating survival signaling networks in the neuronal tissues. The non-receptor phosphatase can translocate to lipid rafts in the membrane and has been implicated to regulate several signaling modules including PI3K/Akt, JAK-STAT and Mitogen Activated Protein Kinase (MAPK) pathways in a wide range of biochemical processes in healthy and diseased states. This review focuses on the roles of Shp2 phosphatase in regulating brain-derived neurotrophic factor (BDNF) neurotrophin signaling pathways and discusses its cross-talk with various GF and downstream signaling pathways in the retina.
Collapse
Affiliation(s)
- Mojdeh Abbasi
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Vivek Gupta
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Nitin Chitranshi
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Yuyi You
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.,Save Sight Institute, University of Sydney, Sydney, NSW, Australia
| | - Yogita Dheer
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Mehdi Mirzaei
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW, Australia.,Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Stuart L Graham
- Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.,Save Sight Institute, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
9
|
Chitranshi N, Dheer Y, Abbasi M, You Y, Graham SL, Gupta V. Glaucoma Pathogenesis and Neurotrophins: Focus on the Molecular and Genetic Basis for Therapeutic Prospects. Curr Neuropharmacol 2018; 16:1018-1035. [PMID: 29676228 PMCID: PMC6120108 DOI: 10.2174/1570159x16666180419121247] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 04/10/2018] [Accepted: 04/18/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Retinal ganglion cell (RGC) degeneration is a major feature of glaucoma pathology. Neuroprotective approaches that delay or halt the progression of RGC loss are needed to prevent vision loss which can occur even after conventional medical or surgical treatments to lower intraocular pressure. OBJECTIVE The aim of this review was to examine the progress in genetics and cellular mechanisms associated with endoplasmic reticulum (ER) stress, RGC dysfunction and cell death pathways in glaucoma. MATERIALS AND METHODS Here, we review the involvement of neurotrophins like brain derived neurotrophic factor (BDNF) and its high affinity receptor tropomyosin receptor kinase (TrkB) in glaucoma. The role of ER stress markers in human and animal retinas in health and disease conditions is also discussed. Further, we analysed the literature highlighting genetic linkage in the context of primary open angle glaucoma and suggested mechanistic insights into potential therapeutic options relevant to glaucoma management. RESULTS The literature review of the neurobiology underlying neurotrophin pathways, ER stress and gene associations provide critical insights into association of RGCs death in glaucoma. Alteration in signalling pathway is associated with increased risk of misfolded protein aggregation in ER promoting RGC apoptosis. Several genes that are linked with neurotrophin signalling pathways have been reported to be associated with glaucoma pathology. CONCLUSION Understanding genetic heterogeneity and involvement of neurotrophin biology in glaucoma could help to understand the complex pathophysiology of glaucoma. Identification of novel molecular targets will be critical for drug development and provide neuroprotection to the RGCs and optic nerve.
Collapse
Affiliation(s)
- Nitin Chitranshi
- Address correspondence to this author at the Faculty of Medicine and Health Sciences, 75, Talavera Road, Macquarie University, Sydney, NSW 2109, Australia; Tel: +61-298502760; E-mail:
| | | | | | | | | | | |
Collapse
|
10
|
Chitranshi N, Dheer Y, Gupta V, Abbasi M, Mirzaei M, You Y, Chung R, Graham SL, Gupta V. PTPN11 induces endoplasmic stress and apoptosis in SH-SY5Y cells. Neuroscience 2017; 364:175-189. [PMID: 28947394 DOI: 10.1016/j.neuroscience.2017.09.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/13/2017] [Accepted: 09/14/2017] [Indexed: 12/25/2022]
Abstract
PTPN11 is associated with regulation of growth factor signaling pathways in neuronal cells. Using SH-SY5Y neuroblastoma cells, we showed that adeno-associated virus (AAV)-mediated PTPN11 upregulation was associated with TrkB antagonism, reduced neuritogenesis and enhanced endoplasmic reticulum (ER) stress response leading to apoptotic changes. Genetic knock-down of PTPN11 on the other hand leads to increased TrkB phosphorylation in SH-SY5Y cells. ER stress response induced by PTPN11 upregulation was alleviated pharmacologically by a TrkB agonist. Conversely the enhanced ER stress response induced by TrkB receptor antagonism was ameliorated by PTPN11 suppression, providing evidence of cross-talk of PTPN11 effects with TrkB actions. BDNF treatment of neuronal cells with PTPN11 upregulation also resulted in reduced expression of ER stress protein markers. This study provides evidence of molecular interactions between PTPN11 and the TrkB receptor in SH-SY5Y cells. The results reinforce the role played by PTPN11 in regulating neurotrophin protective signaling in neuronal cells and highlight that PTPN11 dysregulation promotes apoptotic activation. Based on these findings we suggest that blocking PTPN11 could have potential beneficial effects to limit the progression of neuronal loss in neurodegenerative disorders.
Collapse
Affiliation(s)
- Nitin Chitranshi
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia.
| | - Yogita Dheer
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia
| | - Veer Gupta
- School of Medical Sciences, Edith Cowan University, Perth, Australia
| | - Mojdeh Abbasi
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia
| | - Mehdi Mirzaei
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia; Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, NSW 2109, Australia; Australian Proteome Analysis Facility, Macquarie University, North Ryde, NSW 2109, Australia
| | - Yuyi You
- Save Sight Institute, Sydney University, Sydney, NSW 2000, Australia
| | - Roger Chung
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia
| | - Stuart L Graham
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia; Save Sight Institute, Sydney University, Sydney, NSW 2000, Australia
| | - Vivek Gupta
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia
| |
Collapse
|