1
|
Wen B, Xu K, Huang R, Jiang T, Wang J, Chen J, Chen J, He B. Preserving mitochondrial function by inhibiting GRP75 ameliorates neuron injury under ischemic stroke. Mol Med Rep 2022; 25:165. [PMID: 35293600 PMCID: PMC8941507 DOI: 10.3892/mmr.2022.12681] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/17/2022] [Indexed: 11/30/2022] Open
Abstract
Ischemic stroke is a life-threatening disease, which is closely related to neuron damage during ischemia. Mitochondrial dysfunction is essentially involved in the pathophysiological process of ischemic stroke. Mitochondrial calcium overload contributes to the development of mitochondrial dysfunction. However, the underlying mechanisms of mitochondrial calcium overload are far from being fully revealed. In the present study, middle cerebral artery obstruction (MCAO) was performed in vivo and oxygen and glucose deprivation (OGD) in vitro. The results indicated that both MCAO and OGD induced significant mitochondrial dysfunction in vivo and in vitro. The mitochondria became fragmented under hypoxia conditions, accompanied with upregulation of the heat shock protein 75 kDa glucose-regulated protein (GRP75). Inhibition of GRP75 was able to effectively ameliorate mitochondrial calcium overload and preserve mitochondrial function, which may provide evidence for further translational studies of ischemic diseases.
Collapse
Affiliation(s)
- Bin Wen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Kai Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Rui Huang
- Department of Cardiovascular Medicine, Lichuan People's Hospital, Lichuan, Hubei 445400, P.R. China
| | - Teng Jiang
- Department of Cardiovascular Medicine, Lichuan People's Hospital, Lichuan, Hubei 445400, P.R. China
| | - Jian Wang
- Department of Cardiovascular Medicine, Lichuan People's Hospital, Lichuan, Hubei 445400, P.R. China
| | - Jiehui Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Juan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Benhong He
- Department of Cardiovascular Medicine, Lichuan People's Hospital, Lichuan, Hubei 445400, P.R. China
| |
Collapse
|
2
|
Shao A, Zhou Y, Yao Y, Zhang W, Zhang J, Deng Y. The role and therapeutic potential of heat shock proteins in haemorrhagic stroke. J Cell Mol Med 2019; 23:5846-5858. [PMID: 31273911 PMCID: PMC6714234 DOI: 10.1111/jcmm.14479] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 12/26/2022] Open
Abstract
Heat shock proteins (HSPs) are induced after haemorrhagic stroke, which includes subarachnoid haemorrhage (SAH) and intracerebral haemorrhage (ICH). Most of these proteins function as neuroprotective molecules to protect cerebral neurons from haemorrhagic stroke and as markers to indicate cellular stress or damage. The most widely studied HSPs in SAH are HSP70, haeme oxygenase-1 (HO-1), HSP20 and HSP27. The subsequent pathophysiological changes following SAH can be divided into two stages: early brain injury and delayed cerebral ischaemia, both of which determine the outcome for patients. Because the mechanisms of HSPs in SAH are being revealed and experimental models in animals are continually maturing, new agents targeting HSPs with limited side effects have been suggested to provide therapeutic potential. For instance, some pharmaceutical agents can block neuronal apoptosis signals or dilate cerebral vessels by modulating HSPs. HO-1 and HSP70 are also critical topics for ICH research, which can be attributed to their involvement in pathophysiological mechanisms and therapeutic potential. However, the process of HO-1 metabolism can be toxic owing to iron overload and the activation of succedent pathways, for example, the Fenton reaction and oxidative damage; the overall effect of HO-1 in SAH and ICH tends to be protective and harmful, respectively, given the different pathophysiological changes in these two types of haemorrhagic stroke. In the present study, we focus on the current understanding of the role and therapeutic potential of HSPs involved in haemorrhagic stroke. Therefore, HSPs may be potential therapeutic targets, and new agents targeting HSPs are warranted.
Collapse
Affiliation(s)
- Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yihan Yao
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wenhua Zhang
- Department of Neurology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongchuan Deng
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Xu Y, Yang B, Hu Y, Lu L, Lu X, Wang J, Xu F, Yu S, Huang J, Liang X. Wogonin prevents TLR4-NF-κB-medicated neuro-inflammation and improves retinal ganglion cells survival in retina after optic nerve crush. Oncotarget 2018; 7:72503-72517. [PMID: 27756890 PMCID: PMC5341925 DOI: 10.18632/oncotarget.12700] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 10/05/2016] [Indexed: 01/11/2023] Open
Abstract
Chronic neuro-inflammation is involved in the death of retinal ganglion cells (RGCs) in glaucoma. The aim of this study is to determine whether wogonin can suppress inflammatory responses and rescue RGCs death after optic nerve crush (ONC), an ideal animal model of glaucoma. Wogonin was administered intraperitoneally 10 min after establishment of ONC model. In this study, wogonin treatment reduced RGCs loss and inhibited RGCs apoptosis demonstrated by the increased Brn3a labeling RGCs at day 14 and the decreased cleaved caspase-3 expression at day 7 after ONC, respectively. In ONC model, number of GFAP-positive glial cells and iba1-positive microglial cells were increased, combined of the elevated level of pro-inflammatory cytokines released in retina at day 7. However, most of these responses were inhibited after wogonin treatment. The level of TLR4 expression, NF-κB-P65 nucleus location and NF-κB-P65 phosphorylation were increased in retina at day 1 after ONC, which was significantly reduced after wogonin treatment. These results demonstrated that wogonin protected RGCs survival and suppressed neuro-inflammation in retina after ONC by inhibiting TLR4-NF-κB pathways. We conclude that wogonin could be a possible strategy for the treatment of glaucoma.
Collapse
Affiliation(s)
- Yue Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Boyu Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Yaguang Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Lin Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Xi Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Jiawei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Fan Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Shanshan Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Jingjing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Xiaoling Liang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
4
|
Lv LJ, Li J, Qiao HB, Nie BJ, Lu P, Xue F, Zhang ZM. Overexpression of GRP75 inhibits inflammation in a rat model of intracerebral hemorrhage. Mol Med Rep 2017; 15:1368-1372. [PMID: 28098881 DOI: 10.3892/mmr.2017.6126] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 11/15/2016] [Indexed: 11/06/2022] Open
Abstract
Glucose‑regulated protein 75 (GRP75) is a member of the heat shock protein 70 family and previous studies have demonstrated that GRP75 is involved in diseases of the central nervous system. However, the biological function of GRP75 in intracerebral hemorrhage (ICH) remains to be clarified. Thus, the aim of the present study was to evaluate the effects of GRP75 in a rat model of ICH. Western blotting was used to detect the protein expression of GRP75, active caspase‑3, Bax, Bcl‑2, p‑Akt and Akt in brain tissues following ICH. The levels of tumor necrosis factor‑α (TNF‑α) and interleukin (IL)‑1β were evaluated using ELISA assay. Expression of GRP75 mRNA and protein was demonstrated to be reduced in the brain tissues of rats with ICH compared with sham‑operated rats. In addition, overexpression of GRP75 in brain tissues with ICH significantly inhibited the production of the inflammatory cytokines TNF‑α and IL-1β and increased Bcl‑2/decreased Bax levels compared with ICH alone. Furthermore, overexpression of GRP75 in brain tissues with ICH resulted in significantly increased phosphorylation of Akt compared with ICH alone. Therefore, the present study demonstrated, for the first time to the best of our knowledge, significantly reduced GRP75 expression in brain tissues following ICH, and that overexpression of GRP75 inhibits inflammation and potentially inhibits neuronal apoptosis in a rat model of ICH. GRP75 may, therefore, represent a promising target in the treatment of ICH.
Collapse
Affiliation(s)
- Lian-Jie Lv
- Department of Neurosurgery, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| | - Jia Li
- Department of Neurosurgery, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| | - Hai-Bo Qiao
- Department of Neurosurgery, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| | - Ben-Jin Nie
- Department of Neurosurgery, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| | - Peng Lu
- Department of Neurosurgery, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| | - Feng Xue
- Department of Neurosurgery, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| | - Zhi-Ming Zhang
- Department of Neurosurgery, Tianjin Nankai Hospital, Tianjin 300100, P.R. China
| |
Collapse
|
5
|
Raf-1 Kinase Inhibitory Protein (RKIP) Promotes Retinal Ganglion Cell Survival and Axonal Regeneration Following Optic Nerve Crush. J Mol Neurosci 2015; 57:243-8. [DOI: 10.1007/s12031-015-0612-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/29/2015] [Indexed: 01/23/2023]
|