1
|
Kontari P, Fife-Schaw C, Smith K. Independent and combined effects of depressive symptoms and cardiometabolic risk factors on dementia incidence: a cross-country comparison in England, the United States and China. Arch Gerontol Geriatr 2025; 136:105889. [PMID: 40403595 DOI: 10.1016/j.archger.2025.105889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 04/17/2025] [Accepted: 05/04/2025] [Indexed: 05/24/2025]
Abstract
BACKGROUND Depression and cardiometabolic conditions are suggested as modifiable risk factors for dementia, yet their combined impact remains unclear. This study assessed the independent and combined effects of depressive symptoms and cardiometabolic conditions on dementia incidence in England, the US and China. METHODS The sample comprised 4472 participants aged 50 and older from the English Longitudinal Study of Ageing (ELSA), 5021 from Health and Retirement Study (HRS), and 8925 from China Health and Retirement Longitudinal Study (CHARLS). Depressive symptoms were assessed using the Center for Epidemiological Studies-Depression scale. Cardiometabolic factors included central obesity, low high-density-lipoprotein (HDL) cholesterol, systolic and diastolic blood pressure (BP), hyperglycemia, diabetes, and inflammation. Dementia incidence was estimated using confounder-adjusted Cox proportional hazards regressions, and pooled estimates were obtained using random-effects meta-analysis. RESULTS A total of 1218 individuals developed dementia over a median of 6.8-12.2 years. Depressive symptoms (ELSA: HR = 1.47 [95 % CI = 1.09-2.00]; HRS: HR = 1.68 [95 % CI = 1.33-2.13]; CHARLS: HR = 1.35 [95 % CI = 1.12-1.64]) and elevated systolic BP (ELSA: HR = 1.51 [95 % CI = 1.17-1.95]; HRS: HR = 1.48 [95 % CI = 1.24-1.79]; CHARLS: HR = 1.26 [95 % CI = 1.05-1.52]) were linked to dementia risk in all countries. While cardiometabolic multimorbidity (≥2 conditions) was not associated with dementia risk, those with the highest cardiometabolic index (≥4 conditions) had a greater risk of dementia in all samples (ELSA: HR = 1.82 [95 % CI = 1.01-3.26]; HRS: HR = 1.85 [95 % CI = 1.02-3.35]; CHARLS: HR = 1.65 [95 % CI = 1.18-2.30]). CONCLUSION Depressive symptoms are independently linked to dementia risk, while having multiple cardiometabolic conditions further increases this risk, especially when co-occurring with depressive symptoms in both Western and Chinese populations.
Collapse
Affiliation(s)
- Panagiota Kontari
- Department of Psychological Sciences, School of Psychology, Faculty of Health and Medicine, University of Surrey, Guildford, UK.
| | - Chris Fife-Schaw
- Department of Psychological Sciences, School of Psychology, Faculty of Health and Medicine, University of Surrey, Guildford, UK
| | - Kimberley Smith
- Department of Psychological Interventions, School of Psychology, Faculty of Health and Medicine, University of Surrey, Guildford, UK
| |
Collapse
|
2
|
Terstege DJ, Jabeen S, Galea LAM, Epp JR, Sargin D. SSRIs reduce plasma tau and restore dorsal raphe metabolism in Alzheimer's disease. Alzheimers Dement 2025; 21:e14579. [PMID: 39935329 PMCID: PMC11814539 DOI: 10.1002/alz.14579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/17/2024] [Accepted: 01/12/2025] [Indexed: 02/13/2025]
Abstract
INTRODUCTION Tau pathology impacts neurodegeneration and cognitive decline in Alzheimer's disease (AD), with the dorsal raphe nucleus (DRN) being among the brain regions showing the earliest tau pathology. As a serotonergic hub, DRN activity is altered by selective serotonin reuptake inhibitors (SSRIs), which also have variable effects on cognitive decline and pathology in AD. METHODS We examined N = 191 subjects with baseline 18F-fluorodeoxyglucose positron emission tomography and plasma biomarker data to study the effects of SSRIs on tau pathology, cognitive decline, and DRN metabolism. RESULTS Plasma phosphorylated tau 181 (p-tau181) was lower with SSRI use. The effect of SSRIs on cognition varied by cognitive assessment. The DRN was hypometabolic in AD patients relative to healthy controls; however, SSRI use restored the metabolic activity of this region in AD patients. DISCUSSION Long-term SSRI use may reduce the pathological presentation of AD but has variable effects on cognitive performance. HIGHLIGHTS Tau pathology spreads throughout the brain during AD pathogenesis. The DRN is among the first regions to develop tau pathology during this process. SSRI use restores the metabolic activity of the DRN and reduces plasma p-tau181.
Collapse
Affiliation(s)
- Dylan J. Terstege
- Department of Cell Biology and AnatomyCumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
| | - Shaista Jabeen
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Department of PsychologyUniversity of CalgaryCalgaryAlbertaCanada
- Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryAlbertaCanada
| | | | - Liisa A. M. Galea
- Department of PsychiatryUniversity of TorontoTorontoOntarioCanada
- Campbell Family Mental Health Research InstituteCentre for Addiction and Mental HealthTorontoOntarioCanada
| | - Jonathan R. Epp
- Department of Cell Biology and AnatomyCumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
| | - Derya Sargin
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Department of PsychologyUniversity of CalgaryCalgaryAlbertaCanada
- Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Department of Physiology and PharmacologyCumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
| |
Collapse
|
3
|
Neațu M, Ioniță I, Jugurt A, Davidescu EI, Popescu BO. Exploring the Complex Relationship Between Antidepressants, Depression and Neurocognitive Disorders. Biomedicines 2024; 12:2747. [PMID: 39767653 PMCID: PMC11727177 DOI: 10.3390/biomedicines12122747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 01/16/2025] Open
Abstract
The coexistence of dementia and depression in older populations presents a complex clinical challenge, with each condition often exacerbating the other. Cognitive decline can intensify mood disturbances, and untreated or recurring depression accelerates neurodegenerative processes. As depression is a recognized risk factor for dementia, it is crucial to address both conditions concurrently to prevent further deterioration. Antidepressants are frequently used to manage depression in dementia patients, with some studies suggesting they offer neuroprotective benefits. These benefits include promoting neurogenesis, enhancing synaptic plasticity, and reducing neuroinflammation, potentially slowing cognitive decline. Additionally, antidepressants have shown promise in addressing Alzheimer's-related pathologies by reducing amyloid-beta accumulation and tau hyperphosphorylation. However, treatment-resistant depression remains a significant challenge, particularly in older adults with cognitive impairment. Many do not respond well to standard antidepressant therapies due to advanced neurodegenerative changes. Conflicting findings from studies add to the uncertainty, with some research suggesting that antidepressants may increase dementia risk, especially when used in patients with undiagnosed early-stage dementia. This article aims to explore the intricate relationship between depression and dementia, examining the benefits and risks of antidepressant use. We highlight the urgent need for personalized, comprehensive treatment strategies that balance mental health improvement with cognitive protection.
Collapse
Affiliation(s)
- Monica Neațu
- Department of Clinical Neurosciences, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.N.); (I.I.); (A.J.); (B.O.P.)
- Department of Neurology, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Iulia Ioniță
- Department of Clinical Neurosciences, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.N.); (I.I.); (A.J.); (B.O.P.)
- Department of Neurology, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Ana Jugurt
- Department of Clinical Neurosciences, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.N.); (I.I.); (A.J.); (B.O.P.)
- Department of Neurology, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Eugenia Irene Davidescu
- Department of Clinical Neurosciences, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.N.); (I.I.); (A.J.); (B.O.P.)
- Department of Neurology, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Bogdan Ovidiu Popescu
- Department of Clinical Neurosciences, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (M.N.); (I.I.); (A.J.); (B.O.P.)
- Department of Neurology, Colentina Clinical Hospital, 020125 Bucharest, Romania
- Department of Cell Biology, Neurosciences and Experimental Myology, “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
| |
Collapse
|
4
|
Fakih N, Fakhoury M. Alzheimer Disease-Link With Major Depressive Disorder and Efficacy of Antidepressants in Modifying its Trajectory. J Psychiatr Pract 2024; 30:181-191. [PMID: 38819242 DOI: 10.1097/pra.0000000000000779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Alzheimer disease (AD) is a devastating neurodegenerative disorder that affects millions of individuals worldwide, with no effective cure. The main symptoms include learning and memory loss, and the inability to carry out the simplest tasks, significantly affecting patients' quality of life. Over the past few years, tremendous progress has been made in research demonstrating a link between AD and major depressive disorder (MDD). Evidence suggests that MDD is commonly associated with AD and that it can serve as a precipitating factor for this disease. Antidepressants such as selective serotonin reuptake inhibitors, which are the first line of treatment for MDD, have shown great promise in the treatment of depression in AD, although their effectiveness remains controversial. The goal of this review is to summarize current knowledge regarding the association between AD, MDD, and antidepressant treatment. It first provides an overview of the interaction between AD and MDD at the level of genes, brain regions, neurotransmitter systems, and neuroinflammatory markers. The review then presents current evidence regarding the effectiveness of various antidepressants for AD-related pathophysiology and then finally discusses current limitations, challenges, and future directions.
Collapse
Affiliation(s)
- Nour Fakih
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | | |
Collapse
|
5
|
Sawant N, Kshirsagar S, Reddy PH, Reddy AP. Protective effects of SSRI, Citalopram in mutant APP and mutant Tau expressed dorsal raphe neurons in Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166942. [PMID: 37931714 DOI: 10.1016/j.bbadis.2023.166942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/05/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023]
Abstract
Depression is among the most common neuropsychiatric comorbidities in Alzheimer's disease (AD) and other Tauopathies. Apart from its anti-depressive and anxiolytic effects, selective serotonin reuptake inhibitor (SSRI) treatment also offers intracellular modifications that may help to improve neurogenesis, reduce amyloid burden & Tau pathologies, and neuroinflammation in AD. Despite its multifaceted impact in the brain, the exact physiological and molecular mechanism by which SSRIs such as Citalopram improve neurogenesis and synaptogenesis in dementia is poorly understood. In the current study, we investigated the protective role of SSRI, Citalopram, in serotonergic, medullary raphe neurons (RN46A-B14). RN46A-B14 cells were transfected with wild-type and mutant APP and Tau cDNAs for 24 h and then treated with 20 μM Cit for 24 h. We then assessed mRNA and protein levels of pTau, total Tau, serotonin related proteins such as TPH2, SERT, and 5HTR1a, synaptic proteins and the cytoskeletal structure. We also assessed cell survival, mitochondrial respiration and mitochondrial morphology. The mutant APP and Tau transfected cells showed increased levels of serotonin related proteins and mRNA, while the mRNA and protein levels of synaptic proteins were downregulated. Citalopram treatment significantly reduced pathologically pTau level along with the serotonin related protein levels. On the other hand, there was a significant increase in the mRNA and protein levels of synaptic genes and cytoskeletal structure in the treated groups. Further, Citalopram also improved cell survival, mitochondrial respiration and mitochondrial morphology in the treated cells that express mAPP and mTau. Taken together these findings suggest Citalopram could not only be a promising therapeutic drug for treating patients with depression, but also for AD patients.
Collapse
Affiliation(s)
- Neha Sawant
- Nutritional Sciences Department, Texas Tech University, Lubbock, TX, USA; Internal Medicine Department, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Sudhir Kshirsagar
- Internal Medicine Department, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P Hemachandra Reddy
- Nutritional Sciences Department, Texas Tech University, Lubbock, TX, USA; Internal Medicine Department, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Pharmacology & Neuroscience Department, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Neurology Department, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Speech, Language and Hearing Sciences Departments, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Public Health Department, School of Population and Public Health, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Arubala P Reddy
- Nutritional Sciences Department, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
6
|
Bajaj S, Mahesh R. Converged avenues: depression and Alzheimer's disease- shared pathophysiology and novel therapeutics. Mol Biol Rep 2024; 51:225. [PMID: 38281208 DOI: 10.1007/s11033-023-09170-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/15/2023] [Indexed: 01/30/2024]
Abstract
Depression, a highly prevalent disorder affecting over 280 million people worldwide, is comorbid with many neurological disorders, particularly Alzheimer's disease (AD). Depression and AD share overlapping pathophysiology, and the search for accountable biological substrates made it an essential and intriguing field of research. The paper outlines the neurobiological pathways coinciding with depression and AD, including neurotrophin signalling, the hypothalamic-pituitary-adrenal axis (HPA), cellular apoptosis, neuroinflammation, and other aetiological factors. Understanding overlapping pathways is crucial in identifying common pathophysiological substrates that can be targeted for effective management of disease state. Antidepressants, particularly monoaminergic drugs (first-line therapy), are shown to have modest or no clinical benefits. Regardless of the ineffectiveness of conventional antidepressants, these drugs remain the mainstay for treating depressive symptoms in AD. To overcome the ineffectiveness of traditional pharmacological agents in treating comorbid conditions, a novel therapeutic class has been discussed in the paper. This includes neurotransmitter modulators, glutamatergic system modulators, mitochondrial modulators, antioxidant agents, HPA axis targeted therapy, inflammatory system targeted therapy, neurogenesis targeted therapy, repurposed anti-diabetic agents, and others. The primary clinical challenge is the development of therapeutic agents and the effective diagnosis of the comorbid condition for which no specific diagnosable scale is present. Hence, introducing Artificial Intelligence (AI) into the healthcare system is revolutionary. AI implemented with interdisciplinary strategies (neuroimaging, EEG, molecular biomarkers) bound to have accurate clinical interpretation of symptoms. Moreover, AI has the potential to forecast neurodegenerative and psychiatric illness much in advance before visible/observable clinical symptoms get precipitated.
Collapse
Affiliation(s)
- Shivanshu Bajaj
- Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani, 333031, Rajasthan, India
| | - Radhakrishnan Mahesh
- Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani, 333031, Rajasthan, India.
| |
Collapse
|
7
|
Eremin DV, Kondaurova EM, Rodnyy AY, Molobekova CA, Kudlay DA, Naumenko VS. Serotonin Receptors as a Potential Target in the Treatment of Alzheimer's Disease. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:2023-2042. [PMID: 38462447 DOI: 10.1134/s0006297923120064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 03/12/2024]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia worldwide that has an increasing impact on aging societies. Besides its critical role in the control of various physiological functions and behavior, brain serotonin (5-HT) system is involved in the regulation of migration, proliferation, differentiation, maturation, and programmed death of neurons. At the same time, a growing body of evidence indicates the involvement of 5-HT neurotransmission in the formation of insoluble aggregates of β-amyloid and tau protein, the main histopathological signs of AD. The review describes the role of various 5-HT receptors and intracellular signaling cascades induced by them in the pathological processes leading to the development of AD, first of all, in protein aggregation. Changes in the functioning of certain types of 5-HT receptors or associated intracellular signaling mediators prevent accumulation of β-amyloid plaques and tau protein neurofibrillary tangles. Based on the experimental data, it can be suggested that the use of 5-HT receptors as new drug targets will not only improve cognitive performance in AD, but will be also important in treating the causes of AD-related dementia.
Collapse
Affiliation(s)
- Dmitrii V Eremin
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| | - Elena M Kondaurova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Aleksander Ya Rodnyy
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Camilla A Molobekova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Dmitrii A Kudlay
- Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, 119991, Russia
| | - Vladimir S Naumenko
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| |
Collapse
|
8
|
PINK1 overexpression prevents forskolin-induced tau hyperphosphorylation and oxidative stress in a rat model of Alzheimer's disease. Acta Pharmacol Sin 2022; 43:1916-1927. [PMID: 34893682 PMCID: PMC9343460 DOI: 10.1038/s41401-021-00810-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/18/2022]
Abstract
PTEN-induced putative kinase 1 (PINK1)/parkin pathway mediates mitophagy, which is a specialized form of autophagy. Evidence shows that PINK1 can exert protective effects against stress-induced neuronal cell death. In the present study we investigated the effects of PINK1 overexpression on tau hyperphosphorylation, mitochondrial dysfunction and oxidative stress in a specific rat model of tau hyperphosphorylation. We showed that intracerebroventricular (ICV) microinjection of forskolin (FSK, 80 μmol) induced tau hyperphosphorylation in the rat brain and resulted in significant spatial working memory impairments in Y-maze test, accompanied by synaptic dysfunction (reduced expression of synaptic proteins synaptophysin and postsynaptic density protein 95), and neuronal loss in the hippocampus. Adeno-associated virus (AAV)-mediated overexpression of PINK1 prevented ICV-FSK-induced cognition defect and pathological alterations in the hippocampus, whereas PINK1-knockout significantly exacerbated ICV-FSK-induced deteriorated effects. Furthermore, we revealed that AAV-PINK1-mediated overexpression of PINK1 alleviated ICV-FSK-induced tau hyperphosphorylation by restoring the activity of PI3K/Akt/GSK3β signaling. PINK1 overexpression reversed the abnormal changes in mitochondrial dynamics, defective mitophagy, and decreased ATP levels in the hippocampus. Moreover, PINK1 overexpression activated Nrf2 signaling, thereby increasing the expression of antioxidant proteins and reducing oxidative damage. These results suggest that PINK1 deficiency exacerbates FSK-induced tau pathology, synaptic damage, mitochondrial dysfunction, and antioxidant system defects, which were reversed by PINK1 overexpression. Our data support a critical role of PINK1-mediated mitophagy in controlling mitochondrial quality, tau hyperphosphorylation, and oxidative stress in a rat model of Alzheimer's disease.
Collapse
|
9
|
Wang YJ, Gong WG, Ren QG, Zhang ZJ. Escitalopram Alleviates Alzheimer's Disease-Type Tau Pathologies in the Aged P301L Tau Transgenic Mice. J Alzheimers Dis 2021; 77:807-819. [PMID: 32741828 DOI: 10.3233/jad-200401] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND The inhibition of tau hyperphosphorylation is one of the most promising therapeutic targets for the development of Alzheimer's disease (AD) modifying drugs. Escitalopram, a kind of selective serotonin reuptake inhibitor antidepressant, has been previously reported to ameliorate tau hyperphosphorylation in vitro. OBJECTIVE In this study, we determined whether escitalopram alleviates tau pathologies in the aged P301L mouse. METHODS Mice were intraperitoneal injected with either escitalopram or saline for 4 weeks, and a battery of behavioral tests were conducted before tissue collection and biochemical analyses of brain tissue with western blot and immunohistochemistry. RESULTS Wild-type (Wt) mice statistically outperformed the aged pR5 mice in the Morris water maze, while escitalopram treatment did not significantly rescue learning and memory deficits of aged pR5 mice. Tau phosphorylation at different phosphorylation sites were enhanced in the hippocampus of aged pR5 mice, while escitalopram treatment significantly decreased tau phosphorylation. The levels of phosphorylated GSK-3β and phosphorylated Akt were significantly decreased in the hippocampus of aged pR5 mice, while escitalopram administration markedly increased the expression level. The aged pR5 mice showed significant decreases in PSD95 and PSD93, while the administration of escitalopram significantly increased PSD95 and PSD93 to levels comparable with the Wt mice. CONCLUSION The protective effects of escitalopram exposure during advanced AD are mainly associated with significant decrease in tau hyperphosphorylation, increased numbers of neurons, and increased synaptic protein levels, which may via activation of the Akt/GSK-3β signaling pathway.
Collapse
Affiliation(s)
- Yan-Juan Wang
- Department of Neurology, ZhongDa Hospital, Neuropsychiatric Institute, Medical School of Southeast University, Nanjing, China
| | - Wei-Gang Gong
- Department of Neurology, ZhongDa Hospital, Neuropsychiatric Institute, Medical School of Southeast University, Nanjing, China
| | - Qing-Guo Ren
- Department of Neurology, ZhongDa Hospital, Neuropsychiatric Institute, Medical School of Southeast University, Nanjing, China
| | - Zhi-Jun Zhang
- Department of Neurology, ZhongDa Hospital, Neuropsychiatric Institute, Medical School of Southeast University, Nanjing, China
| |
Collapse
|
10
|
Reddy AP, Yin X, Sawant N, Reddy PH. Protective effects of antidepressant citalopram against abnormal APP processing and amyloid beta-induced mitochondrial dynamics, biogenesis, mitophagy and synaptic toxicities in Alzheimer's disease. Hum Mol Genet 2021; 30:847-864. [PMID: 33615359 PMCID: PMC8355469 DOI: 10.1093/hmg/ddab054] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/24/2021] [Accepted: 02/12/2021] [Indexed: 12/14/2022] Open
Abstract
The purpose of this study is to study the neuroprotective role of selective serotonin reuptake inhibitor (SSRI), citalopram, against Alzheimer's disease (AD). Multiple SSRIs, including citalopram, are reported to treat patients with depression, anxiety and AD. However, their protective cellular mechanisms have not been studied completely. In the current study, we investigated the protective role of citalopram against impaired mitochondrial dynamics, defective mitochondrial biogenesis, defective mitophagy and synaptic dysfunction in immortalized mouse primary hippocampal cells (HT22) expressing mutant APP (SWI/IND) mutations. Using quantitative RT-PCR, immunoblotting, biochemical methods and transmission electron microscopy methods, we assessed mutant full-length APP/C-terminal fragments and Aβ levels and mRNA and protein levels of mitochondrial dynamics, biogenesis, mitophagy and synaptic genes in mAPP-HT22 cells and mAPP-HT22 cells treated with citalopram. Increased levels of mRNA levels of mitochondrial fission genes, decreased levels of fusion biogenesis, autophagy, mitophagy and synaptic genes were found in mAPP-HT22 cells relative to WT-HT22 cells. However, mAPP-HT22 cells treated with citalopram compared to mAPP-HT22 cells revealed reduced levels of the mitochondrial fission genes, increased fusion, biogenesis, autophagy, mitophagy and synaptic genes. Our protein data agree with mRNA levels. Transmission electron microscopy revealed significantly increased mitochondrial numbers and reduced mitochondrial length in mAPP-HT22 cells; these were reversed in citalopram-treated mAPP-HT22 cells. Cell survival rates were increased in citalopram-treated mAPP-HT22 relative to citalopram-untreated mAPP-HT22. Further, mAPP and C-terminal fragments werealso reduced in citalopram-treated cells. These findings suggest that citalopram reduces mutant APP and Aβ and mitochondrial toxicities and may have a protective role of mutant APP and Aβ-induced injuries in patients with depression, anxiety and AD.
Collapse
Affiliation(s)
- Arubala P Reddy
- Nutritional Sciences Department, Texas Tech University, Lubbock, TX, USA
| | - Xiangling Yin
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Neha Sawant
- Internal Medicine Department, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P Hemachandra Reddy
- Internal Medicine Department, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Pharmacology & Neuroscience Department, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Neurology Department, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Speech, Language and Hearing Sciences Departments, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Public Health Department, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
11
|
Miziak B, Błaszczyk B, Czuczwar SJ. Some Candidate Drugs for Pharmacotherapy of Alzheimer's Disease. PHARMACEUTICALS (BASEL, SWITZERLAND) 2021; 14:ph14050458. [PMID: 34068096 PMCID: PMC8152728 DOI: 10.3390/ph14050458] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022]
Abstract
Alzheimer’s disease (AD; progressive neurodegenerative disorder) is associated with cognitive and functional impairment with accompanying neuropsychiatric symptoms. The available pharmacological treatment is of a symptomatic nature and, as such, it does not modify the cause of AD. The currently used drugs to enhance cognition include an N-methyl-d-aspartate receptor antagonist (memantine) and cholinesterase inhibitors. The PUBMED, Medical Subject Heading and Clinical Trials databases were used for searching relevant data. Novel treatments are focused on already approved drugs for other conditions and also searching for innovative drugs encompassing investigational compounds. Among the approved drugs, we investigated, are intranasal insulin (and other antidiabetic drugs: liraglitude, pioglitazone and metformin), bexarotene (an anti-cancer drug and a retinoid X receptor agonist) or antidepressant drugs (citalopram, escitalopram, sertraline, mirtazapine). The latter, especially when combined with antipsychotics (for instance quetiapine or risperidone), were shown to reduce neuropsychiatric symptoms in AD patients. The former enhanced cognition. Procognitive effects may be also expected with dietary antioxidative and anti-inflammatory supplements—curcumin, myricetin, and resveratrol. Considering a close relationship between brain ischemia and AD, they may also reduce post-brain ischemia neurodegeneration. An investigational compound, CN-105 (a lipoprotein E agonist), has a very good profile in AD preclinical studies, and its clinical trial for postoperative dementia is starting soon.
Collapse
Affiliation(s)
- Barbara Miziak
- Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Barbara Błaszczyk
- Faculty of Health Sciences, High School of Economics, Law and Medical Sciences, 25-734 Kielce, Poland;
| | - Stanisław J. Czuczwar
- Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland;
- Correspondence: ; Tel.: +48-81-448-65-00; Fax: +48-81-65-00-01
| |
Collapse
|
12
|
Dafsari FS, Jessen F. Depression-an underrecognized target for prevention of dementia in Alzheimer's disease. Transl Psychiatry 2020; 10:160. [PMID: 32433512 PMCID: PMC7239844 DOI: 10.1038/s41398-020-0839-1] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 12/11/2022] Open
Abstract
It is broadly acknowledged that the onset of dementia in Alzheimer's disease (AD) may be modifiable by the management of risk factors. While several recent guidelines and multidomain intervention trials on prevention of cognitive decline address lifestyle factors and risk diseases, such as hypertension and diabetes, a special reference to the established risk factor of depression or depressive symptoms is systematically lacking. In this article we review epidemiological studies and biological mechanisms linking depression with AD and cognitive decline. We also emphasize the effects of antidepressive treatment on AD pathology including the molecular effects of antidepressants on neurogenesis, amyloid burden, tau pathology, and inflammation. We advocate moving depression and depressive symptoms into the focus of prevention of cognitive decline and dementia. We constitute that early treatment of depressive symptoms may impact on the disease course of AD and affect the risk of developing dementia and we propose the need for clinical trials.
Collapse
Affiliation(s)
- Forugh S Dafsari
- Department of Psychiatry and Psychotherapy, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany.
- Max-Planck-Institute for Metabolism Research, Gleueler Str. 50, 50931, Cologne, Germany.
| | - Frank Jessen
- Department of Psychiatry and Psychotherapy, University of Cologne, Faculty of Medicine and University Hospital Cologne, Kerpener Straße 62, 50937, Cologne, Germany
- German Center for Neurodegenerative Disease (DZNE), Sigmund-Freud-Str. 27, 53127, Bonn, Germany
| |
Collapse
|
13
|
Abstract
Alzheimer's disease is a chronic neurodegenerative devastating disorder affecting a high percentage of the population over 65 years of age and causing a relevant emotional, social, and economic burden. Clinically, it is characterized by a prominent cognitive deficit associated with language and behavioral impairments. The molecular pathogenesis of Alzheimer's disease is multifaceted and involves changes in neurotransmitter levels together with alterations of inflammatory, oxidative, hormonal, and synaptic pathways, which may represent a drug target for both prevention and treatment; however, an effective treatment for Alzheimer's disease still represents an unmet goal. As neurotrophic factors participate in the modulation of the above-mentioned pathways, they have been highlighted as critical contributors of Alzheimer's disease etiology, whose modulation might be beneficial for Alzheimer's disease. We focused on the neurotrophin brain-derived neurotrophic factor, providing several lines of evidence pointing to brain-derived neurotrophic factor as a plausible endophenotype of cognitive deficits in Alzheimer's disease, illustrating some of the most recent possibilities to modulate the expression of this neurotrophin in the brain in an attempt to ameliorate cognition and delay the progression of Alzheimer's disease. This review shows that otherwise disparate pharmacologic or non-pharmacologic approaches converge on brain-derived neurotrophic factor, providing a means whereby apparently unrelated medical approaches may nevertheless produce similar synaptic and cognitive outcomes in Alzheimer's disease pathogenesis, suggesting that brain-derived neurotrophic factor-based synaptic repair may represent a modifying strategy to ameliorate cognition in Alzheimer's disease.
Collapse
|
14
|
Li Y, Xu P, Shan J, Sun W, Ji X, Chi T, Liu P, Zou L. Interaction between hyperphosphorylated tau and pyroptosis in forskolin and streptozotocin induced AD models. Biomed Pharmacother 2020; 121:109618. [DOI: 10.1016/j.biopha.2019.109618] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/17/2019] [Accepted: 10/26/2019] [Indexed: 12/15/2022] Open
|
15
|
Tan CC, Zhang XY, Tan L, Yu JT. Tauopathies: Mechanisms and Therapeutic Strategies. J Alzheimers Dis 2019; 61:487-508. [PMID: 29278892 DOI: 10.3233/jad-170187] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tauopathies are morphologically, biochemically, and clinically heterogeneous neurodegenerative diseases defined by the accumulation of abnormal tau proteins in the brain. There is no effective method to prevent and reverse the tauopathies, but this gloomy picture has been changed by recent research advances. Evidences from genetic studies, experimental animal models, and molecular and cell biology have shed light on the main mechanisms of the diseases. The development of radiology and biochemistry, especially the development of PET imaging, will provide important biomarkers for the clinical diagnosis and treatment. Given the central role of tau in tauopathies, many treatments have constantly emerged, including targeting phosphorylation, targeting aggregation, increasing microtubule stabilization, tau immunization, clearance of tau, anti-inflammatory treatment, and other therapeutics. There is still a long way to go before we obtain drug therapy targeted at multifactor mechanisms.
Collapse
Affiliation(s)
- Chen-Chen Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong, China
| | - Xiao-Yan Zhang
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong, China
| | - Jin-Tai Yu
- Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
16
|
Zhou T, Wang J, Xin C, Kong L, Wang C. Effect of memantine combined with citalopram on cognition of BPSD and moderate Alzheimer's disease: A clinical trial. Exp Ther Med 2018; 17:1625-1630. [PMID: 30783429 PMCID: PMC6364245 DOI: 10.3892/etm.2018.7124] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 12/04/2018] [Indexed: 12/18/2022] Open
Abstract
Among Alzheimer's disease (AD) patients, it is very common to develop behavioral and psychological symptoms of dementia (BPSD), which has a close relation to the excess morbidity and mortality, greater healthcare use, earlier institutionalization, and caregiver burden. With evaluation of AD patients, the present study mainly aims to investigate whether citalopram would be efficient for BPSD, and examines citalopram's effects on cognitive function, caregiver distress, safety and tolerability. Eighty patients diagnosed with moderate AD and clinically significant BPSD from April 2015 to January 2016 were enrolled in this study. Patients randomly received memantine plus either citalopram (n=40, study group) or placebo (n=40, control group) in a 12-week period. The target dose of memantine was 20 mg/day. The dose of citalopram was 10 mg/day in the beginning with planned titration to 30 mg/day over 2 weeks on the basis of response and tolerability. Blood routine, urine routine, biochemical tests, electrocardiogram and electroencephalogram were carried out for each patient every month routinely to check the change induced by using medication. Treatment Emergent Symptom Scale (TESS) was used to measure untoward effects every 2 weeks. All of the agitation/aggression, irritability/lability, night-time behavioral disturbances, caregiver distress and Neuropsychiatric Inventory (NPI) total scores after treatment were found to be dramatically lower than those before treatment in both groups. Apathy, dysphoria and anxiety received lower scores in participants who received memantine combined with citalopram, compared to those before treatment. QTc interval prolongation was observed in 2 patients who were treated with 30 mg/day citalopramin. In conclusion, memantine combined with citalopram can more effectively improve the cognitive function, and reduce behavioral and psychological symptoms in patients with moderate AD. Cardiac adverse effects of citalopram are not common when the dose is <30 mg/day, which does not limit its practical application. Thus, citalopram has shown potential efficacy in adjunctive therapy of AD patients with BPSD.
Collapse
Affiliation(s)
- Tiantian Zhou
- Department of Geriatric Psychiatry, Qingdao Mental Health Center, Qingdao, Shandong 266034, P.R. China
| | - Jindong Wang
- Department of Geriatric Psychiatry, Qingdao Mental Health Center, Qingdao, Shandong 266034, P.R. China
| | - Cuiyu Xin
- Department of Geriatric Psychiatry, Qingdao Mental Health Center, Qingdao, Shandong 266034, P.R. China
| | - Lingli Kong
- Department of Geriatric Psychiatry, Qingdao Mental Health Center, Qingdao, Shandong 266034, P.R. China
| | - Chunxia Wang
- Department of Geriatric Psychiatry, Qingdao Mental Health Center, Qingdao, Shandong 266034, P.R. China
| |
Collapse
|
17
|
Wu C, Gong WG, Wang YJ, Sun JJ, Zhou H, Zhang ZJ, Ren QG. Escitalopram alleviates stress-induced Alzheimer's disease-like tau pathologies and cognitive deficits by reducing hypothalamic-pituitary-adrenal axis reactivity and insulin/GSK-3β signal pathway activity. Neurobiol Aging 2018; 67:137-147. [DOI: 10.1016/j.neurobiolaging.2018.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/10/2018] [Accepted: 03/10/2018] [Indexed: 10/17/2022]
|
18
|
Escitalopram attenuates β-amyloid-induced tau hyperphosphorylation in primary hippocampal neurons through the 5-HT1A receptor mediated Akt/GSK-3β pathway. Oncotarget 2017; 7:13328-39. [PMID: 26950279 PMCID: PMC4924645 DOI: 10.18632/oncotarget.7798] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 02/18/2016] [Indexed: 11/25/2022] Open
Abstract
Tau hyperphosphorylation is an important pathological feature of Alzheimer's disease (AD). To investigate whether escitalopram could inhibit amyloid-β (Aβ)-induced tau hyperphosphorylation and the underlying mechanisms, we treated the rat primary hippocampal neurons with Aβ1-42 and examined the effect of escitalopram on tau hyperphosphorylation. Results showed that escitalopram decreased Aβ1-42-induced tau hyperphosphorylation. In addition, escitalopram activated the Akt/GSK-3β pathway, and the PI3K inhibitor LY294002 blocked the attenuation of tau hyperphosphorylation induced by escitalopram. Moreover, the 5-HT1A receptor agonist 8-OH-DPAT also activated the Akt/GSK-3β pathway and decreased Aβ1-42-induced tau hyperphosphorylation. Furthermore, the 5-HT1A receptor antagonist WAY-100635 blocked the activation of Akt/GSK-3β pathway and the attenuation of tau hyperphosphorylation induced by escitalopram. Finally, escitalopram improved Aβ1-42 induced impairment of neurite outgrowth and spine density, and reversed Aβ1-42 induced reduction of synaptic proteins. Our results demonstrated that escitalopram attenuated Aβ1-42-induced tau hyperphosphorylation in primary hippocampal neurons through the 5-HT1A receptor mediated Akt/GSK-3β pathway.
Collapse
|
19
|
Lee CWS, Lin CL, Lin PY, Thielke S, Su KP, Kao CH. Antidepressants and risk of dementia in migraine patients: A population-based case-control study. Prog Neuropsychopharmacol Biol Psychiatry 2017; 77:83-89. [PMID: 28392483 DOI: 10.1016/j.pnpbp.2017.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/28/2017] [Accepted: 04/06/2017] [Indexed: 01/23/2023]
Abstract
To ascertain the relationship between receipt of antidepressant agents and the risk of subsequent dementia in migraine patients. A population-based case-control analysis, using the Taiwan National Health Insurance Research Database. We identified 1774 patients with dementia and 1774 matched nondementia controls from migraine patients enrolled in the Taiwan National Health Insurance program between 2005 and 2011. The proportional distributions of exposure to three classes of antidepressant were compared between dementia and nondementia groups. Univariable and multivariable logistic regression analyses were used to estimate odds ratios (ORs) and 95% confidence intervals (CIs) for the risk of dementia based on antidepressant exposure. The proportions of subjects taking tricyclic antidepressants (TCAs), selective serotonin reuptake inhibitors (SSRIs), and new-generation antidepressants (NGAs) in dementia versus nondementia groups are 52.3 vs 51.2%, 25.5 vs 30.7%, and 18.8 vs 6.26%, respectively. The adjusted ORs of dementia were 1.02 (95% CI=0.89, 1.17; P=0.56) for TCAs, 0.58 (95% CI=0.50, 0.69; P<0.001) for SSRIs, and 4.23 (95% CI=3.34, 5.37; P<0.001) for NGAs. Treatment with SSRIs was associated with a decreased risk of dementia in migraine patients. TCAs showed no association with dementia risk, and NGAs showed increased risk. Given the possibility of confounding by indication, additional prospective trials and basic research are needed before drawing conclusions about the population-level risks for dementia onset conferred by antidepressant medications.
Collapse
Affiliation(s)
- Cynthia Wei-Sheng Lee
- Center for Drug Abuse and Addiction, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Cheng-Li Lin
- Management Office for Health Data, China Medical University Hospital, China Medical University, Taichung, Taiwan; College of Medicine, China Medical University, Taichung, Taiwan
| | - Pan-Yen Lin
- Department of Psychiatry and Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan; Graduate Institute of Neural and Cognitive Sciences, College of Medicine, China Medical University, Taichung, Taiwan
| | - Stephen Thielke
- Geriatric Research, Education, and Clinical Center, Puget Sound VA Medical Center, Seattle, WA, USA
| | - Kuan-Pin Su
- Department of Psychiatry and Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan; Graduate Institute of Neural and Cognitive Sciences, College of Medicine, China Medical University, Taichung, Taiwan
| | - Chia-Hung Kao
- Graduate Institute of Clinical Medical Science, College of Medicine, China Medical University, Taichung, Taiwan; Department of Nuclear Medicine and PET Center, China Medical University Hospital, Taichung, Taiwan; Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan.
| |
Collapse
|
20
|
The Effect of Duloxetine on Tau Protein and Migration in Breast Cancer Cell Line. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2017. [DOI: 10.5812/ijcm.6422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Citalopram Ameliorates Synaptic Plasticity Deficits in Different Cognition-Associated Brain Regions Induced by Social Isolation in Middle-Aged Rats. Mol Neurobiol 2016; 54:1927-1938. [PMID: 26899575 DOI: 10.1007/s12035-016-9781-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 02/08/2016] [Indexed: 12/19/2022]
Abstract
Our previous experiments demonstrated that social isolation (SI) caused AD-like tau hyperphosphorylation and spatial memory deficits in middle-aged rats. However, the underlying mechanisms of SI-induced spatial memory deficits remain elusive. Middle-aged rats (10 months) were group or isolation reared for 8 weeks. Following the initial 4-week period of rearing, citalopram (10 mg/kg i.p.) was administered for 28 days. Then, pathophysiological changes were assessed by performing behavioral, biochemical, and pathological analyses. We found that SI could cause cognitive dysfunction and decrease synaptic protein (synaptophysin or PSD93) expression in different brain regions associated with cognition, such as the prefrontal cortex, dorsal hippocampus, ventral hippocampus, amygdala, and caudal putamen, but not in the entorhinal cortex or posterior cingulate. Citalopram could significantly improve learning and memory and partially restore synaptophysin or PSD93 expression in the prefrontal cortex, hippocampus, and amygdala in SI rats. Moreover, SI decreased the number of dendritic spines in the prefrontal cortex, dorsal hippocampus, and ventral hippocampus, which could be reversed by citalopram. Furthermore, SI reduced the levels of BDNF, serine-473-phosphorylated Akt (active form), and serine-9-phosphorylated GSK-3β (inactive form) with no significant changes in the levels of total GSK-3β and Akt in the dorsal hippocampus, but not in the posterior cingulate. Our results suggest that decreased synaptic plasticity in cognition-associated regions might contribute to SI-induced cognitive deficits, and citalopram could ameliorate these deficits by promoting synaptic plasticity mainly in the prefrontal cortex, dorsal hippocampus, and ventral hippocampus. The BDNF/Akt/GSK-3β pathway plays an important role in regulating synaptic plasticity in SI rats.
Collapse
|